

Elvis Yuri Mamani Vargas

O Método Híbrido dos Elementos de Contorno com Base em Funções de Tensão de Westergaard Generalizadas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Ney Augusto Dumont

Rio de Janeiro Fevereiro de 2011

Elvis Yuri Mamani Vargas

O Método Híbrido dos Elementos de Contorno com Base em Funções de Tensão de Westergaard Generalizadas

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Ney Augusto Dumont Orientador Departamento de Engenharia Civil . PUC-Rio

> Prof. Raul Rosas e Silva Departamento de Engenharia Civil . PUC-Rio

> > **Prof. Euclides de Mesquita Neto** Universidade Estadual de Campinas

Prof. Rubens de Oliveira Universidade Federal de Juiz de Fora

Prof. Alexandre Antônio de Oliveira Lopes Petrosoft Design

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico . PUC-Rio

Rio de Janeiro, 25 de fevereiro de 2011.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Elvis Yuri Mamani Vargas

Graduou-se em Engenharia Civil no Departamento de Engenharia Civil da UNSAAC (Universidad Nacional de San Antonio Abad del Cusco ó Perú), em 2005. Em 2009 iniciou o curso de Mestrado em Engenharia Civil na PUCó Rio, na área de Estruturas, atuando na linha de pesquisa do método híbrido dos elementos de contorno.

Ficha Catalográfica

Vargas, Elvis Yuri Mamani

O Método Híbrido dos Elementos de Contorno com Base em Funções de Tensão de Westergaard Generalizadas / Elvis Yuri Mamani Vargas; orientador: Ney Augusto Dumont. . Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2011.

117 f.: il. (cor); 29,7 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

 Engenharia Civil - Teses. 2. Elementos de contorno. 3. Métodos híbridos. 4. Soluções fundamentais.
 Mecânica da fratura. 6. Funções de tensão de Westergaard. 7. Fator de intensidade de tensão. I. Dumont, Ney A. (Ney Augusto). II. Pontifícia Universidade Católica do Rio de Janeiro - Departamento de Engenharia Civil. III. Título.

Aos meus pais Vidal e Rosa, pelo inesgotável amor, apoio e estímulo que me ofereceram nos momentos mais difíceis.

À minha irmã Chris pela compressão e ajuda que sempre me ofereceu.

Ao Peru, pelo legado das culturas antigas.

Ao Deus por ter me concedido a vida.

Ao meu orientador Professor Ney Augusto Dumont pela orientação, confiança, conhecimento transmitido e sua disposição prestara na orientação deste trabalho.

Ao professor Alexandre Antônio de Oliveira Lopes pela confiança, estímulo, conhecimento transmitido, conselhos e sua amizade.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos professores da PUC-Rio, pelos ensinamentos transmitidos durante estes dois anos.

Aos professores da UNSAAC-Peru, pelos ensinamentos básicos da engenharia transmitidos durante a graduação.

Aos meus amigos Fernando, Eliot, Jorge, Gino (a fera), Júlio (jacaré), Evelin, Roxana, os amigos das peladas dos sábados e tantos outros que não citei por todo apoio, paciência e compreensão que tornarem esta jornada mais agradável.

Aos meus pais e irmãos pela educação, atenção e carinho de todas as horas.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Ao Brasil país maravilhoso e a sua gente que sempre me fez sentir em casa.

Resumo

Vargas, Elvis Yuri Mamani; Dumont, Ney Augusto. O Método Híbrido dos Elementos de Contorno com Base em Funções de Tensão de Westergaard Generalizadas. Rio de Janeiro, 2011. 117p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Apresenta-se uma formulação particular do método híbrido dos elementos de contorno para a análise de problemas planos de potencial e de elasticidade que, apesar de completamente geral, é apropriada a aplicações de mecânica da fratura. Funções do tipo de Westergaard são usadas como soluções fundamentais, Em uma generalização de uma proposta inicialmente feita por Tada et al. A formulação leva a conceitos de elementos de contorno de deslocamentos semelhante à apresentada por Crouch e Starfield, mas em um contexto variacional que permite interpretações mecânicas bem simples das equações matriciais resultantes. Problemas de topologia geral podem ser modelados, como no caso de domínios infinitos ou multiplamente conexos. A formulação, que é diretamente aplicável a placas com entalhes ou trincas curvas externas ou internas, permite a descrição adequada de altos gradientes de tensão e é uma ferramenta simples de avaliação de fatores de intensidade de tensão, com o que se podem verificar numericamente conceitos estabelecidos por Rice em 1968. Esta dissertação tem foco na fundamentação matemática da formulação para problemas de potencial e de elasticidade. Apresenta-se a implementação da formulação e são discutidos vários exemplos numéricos de validação.

Palavras-chave

Elementos de contorno; métodos híbridos; soluções fundamentais; mecânica da fratura; Funções de tensão de Westergaard; fator de intensidade de tensão.

Abstract

Vargas, Elvis Yuri Mamani; Dumont, Ney Augusto (Advisor). **The Hybrid Boundary Element Method Based on Generalized Westergaard Stress Functions.** Rio de Janeiro, 2011. 117p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A particular implementation of the hybrid boundary element method is presented for the two dimensional analysis of potential and elasticity problems, which although general in concept, is suited for fracture mechanics applications. Generalized Westergaard stress functions, as proposed by Tada et al in 1993, are used as the problem is fundamental solutions. The proposed formulation leads to displacement-based concepts that resemble those presented by Crouch and Starfield, although in a variational framework that leads to matrix equations with sound mechanical meanings. Problems of general topology, such as in the case of unbounded and multiply-connected domains, may be modeled. The formulation, which is directly applicable to notches and generally curved, internal or external cracks, is specially suited for the description of the stress field in the vicinity of crack tips and is an easy means of evaluating stress intensity factors and of checking some basic concepts laid down by Rice in 1968. This dissertation focuses on the mathematical fundamentals of the formulation. Several validating numerical examples are presented.

Keywords

Boundary elements; hybrid methods; fundamental solutions; fracture mechanics; Westergaard stress functions; stress intensity factors.

Sumário

1 INTRODUÇÃO	20
1.1. Considerações iniciais	20
1.2. Objetivos e delimitações	22
1.3. Estrutura da dissertação	23
2 FUNDAMENTOS DA MECÂNICA DA FRATURA	25
2.1. Mecânica da Fratura	25
2.2. Concentração de Tensões	26
2.3. Balanço de energia de Griffith	28
2.4. Fatores de Intensidade de Tensão	29
2.5. Função de Tensão Complexa de Westergaard	33
2.6. Integral J	39
3 MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO	41
3.1. Teoria da Elasticidade	42
3.2. Solução Fundamental de Kelvin	44
3.3. Potencial de Hellinger-Reissner	46
3.4. Estabelecimento da formulação	48
3.5. Transformações entre o sistema interno e externo de	
coordenadas	52
3.6. Obtenção de tensões e deslocamento no domínio	54
3.7. Caso particular de estruturas estaticamente	
determinadas	55
4 FUNCÃO DE TENSÃO DE WESTERGAARD GENERALIZADA	
APLICADA A PROBLEMAS DE POTENCIAL 2D	57
4.1. Potencial e fluxos para uma trinca genérica	58
4.2. Estabelecimento da função de tensão para uma trinca	
semi-elíptica	59

4.3. Considerações das singularidades e descontinuidades	62
4.3.1. Expansão da função de tensão Φ em torno à origem	62
4.3.2. Expansão da derivada da função de tensão Φ ' em torno	
à origem	64
4.3.3. Expansão da derivada da função de tensão Φ ' em torno	
à ponta	66
4.4. Formulação para um domínio finito	66
4.4.1. Exemplos	68
4.5. Formulação para uma trinca em um meio infinito	71
4.5.1. Exemplos	72
4.6. Formulação para uma trinca em um domínio finito	78
4.6.1. Exemplos	79
4.7. A Integral J no cálculo de fatores de intensidade de tensão	81
4.7.1. A integral J para problemas de potencial	82
4.7.2. Relação da integral J com o fator de intensidade de tensão	83
4.7.3. Exemplos	84
4.8. Aproximações polinomiais para o cálculo do fator de	
intensidade de tensão	
4.8.1. Exemplos	94
5 FUNCÃO DE TENSÃO DE WESTERGAARD GENERALIZADA	
APLICADA A PROBLEMAS DE ELASTICIDADE 2D	97
5.1. Deslocamentos e tensões para uma trinca genérica	97
5.1.1. Modo I de trincamento	98
5.1.2. Modo II de trincamento	100
5.2. Deslocamentos para a ação combinada de duas trincas	102
5.3. Estabelecimento da função de tensão para uma trinca	
semi-elíptica	102
5.4. Considerações das singularidades e descontinuidades	103
5.5. Superposição de efeitos de duas trincas semi-elípticas	104
5.5.1. Deslocamentos	106
5.5.2. Tensões	106
5.6. Exemplos	107

6 CONCLUSÕES E SUGESTÕES	111
6.1. Conclusões	111
6.2. Sugestões para trabalhos futuros	113
7 REFERÊNCIAS BIBLIOGRÁFICAS	114

Lista de figuras

Figura 2.1 - Entalhe circular em uma placa plana infinita	27
Figura 2.2 - Entalhe elíptico em uma placa plana infinita	27
Figura 2.3 - Modelo de Griffith para uma trinca	28
Figura 2.4 - Definição do sistema de coordenadas para a trinca	30
Figura 2.5 - Modos fundamentais de trincamento	31
Figura 2.6 - Trinca em uma placa infinita submetida a tensão biaxial	33
Figura 2.7 - Representação gráfica da função de tensão de	
Westergaard modificada	36
Figura 2.8 - Contorno arbitrário em torno da ponta de uma trinca	39
Figura 2.9 - Contorno fechado utilizado para cálculo da integral J	40
Figura 3.1 - Corpo elástico em equilíbrio	42
Figura 3.2 - Força singular aplicada em um ponto	44
Figura 3.3 - Gráfico da energia interna de deformação	47
Figura 3.4 - Sistema de coordenadas, para descrição do	
comportamento da estrutura	49
Figura 4.1 - Abertura semi-elíptica para uma trinca com	
comprimento $a = 1$	59
Figura 4.2 - Abertura semi-elíptica para uma trinca com	
comprimento a_1 e rotação θ_1	60
Figura 4.3 - Função $c { m sgn}($) da expansão em séries de Φ	
em torno à origem	63
Figura 4.4 - Abertura de um elemento de trinca formado por	
duas trincas semi-elípticas	67
Figura 4.5 - Exemplo da discretização de um contorno	
Γ com <u>12</u> elementos de trinca	67
Figura 4.6 - Estrutura para avaliação do potencial e dos fluxos em	
pontos internos, devido a uma fonte externa F	68
Figura 4.7 - Potencial u ao longo da linha tracejada	

A-B da Figura 4.6	69
Figura 4.8 - Gradientes q_x e q_y ao longo da linha tracejada	
A-B da Figura 4.6	70
Figura 4.9 - Erro do potencial u e dos fluxos q_x e q_y ao longo	
da linha tracejada A-B da Figura 4.6	70
Figura 4.10 - Trinca curva discretizada com n elementos	71
Figura 4.11 - Trinca reta de comprimento $a = 1$ submetida	
a um fluxo remoto unitário	73
Figura 4.12 . Fatores de intensidade de tensão K_1 para	
a trinca da Figura 4.11	73
Figura 4.13 - Erro dos fatores de intensidade de tensão K_I para	
a trinca da Figura 4.11	74
Figura 4.14 - Convergência da gradiente q_y ao longo da linha	
tracejada na Figura 4.11	75
Figura 4.15 - Erro no gradiente q_y ao longo da linha tracejada	
da Figura 4.11	76
Figura 4.16 - Trinca curva de raio $\sqrt{2}$ submetida a um fluxo	
remoto unitário	77
Figura 4.17 - Convergência da gradiente q_y ao longo da linha	
tracejada da Figura 4.16	77
Figura 4.18 - Trinca concêntrica em uma placa retangular	
submetida a um fluxo unitário	80
Figura 4.19 - Fatores de intensidade de tensão K_1 para a trinca	
da Figura 4.18	81
Figura 4.20 - K_I a partir da Integral J , para varias	
discretizações da trinca	84
Figura 4.21 - K_I a partir da Integral J , em função da distância	
da ponta da trinca ao ponto onde o caminho $\Gamma_{_J}$ corta à trinca	86
Figura 4.22 - K_I a partir de J , em função das dimensões de Γ_J	86
Figura 4.23 - K_I a partir de J , para varias discretizações da trinca	

influenciada por um furo próximo. ponta A	87
Figura 4.24 - K_I a partir de J , para varias discretizações da trinca	
influenciada por um furo próximo - ponta B	88
Figura 4.25 - K_I a partir de J , para uma trinca com influencia de	
um furo próximo - varias posições do caminho $\Gamma_{_J}$	89
Figura 4.26 - K_{I} para uma trinca com a influencia de um furo	
próximo - varias posições do contorno Γ_J	89
Figura 4.27 - K_I a partir de J em função do numero de elementos	
discretizado de uma trinca com influencia de dois furos próximos	90
Figura 4.28 - K_I a partir de J em função da posição do contorno	
$\Gamma_{\scriptscriptstyle J}$, trinca reta com a influencia de dois furos próximos	91
Figura 4.29 - Detalhe da abertura de uma trinca, próxima a sua ponta	93
Figura 4.30 - Fatores de intensidade de tensão para a trinca	
da Figura 4.11 a partir de aproximações polinomiais	94
Figura 4.31 - Erro dos fatores de intensidade de tensão para a trinca	
da Figura 4.11 a partir de aproximações polinomiais com três termos	95
Figura 5.1 - Deslocamentos e tensões para o modo I de trincamento,	
segundo sistema local e global de coordenadas	99
Figura 5.2 - Deslocamentos e tensões para o modo II de trincamento,	
segundo sistema local e global de coordenadas	101
Figura 5.3 - Superposição de efeitos de duas trincas semi-elípticas	105
Figura 5.4 - Trinca reta de comprimento $2a = 2$ submetida a um	
carregamento remoto unitário	107
Figura 5.5 - Interpretação física do parâmetro \mathbf{p}^{*}	108
Figura 5.6 - Tensões $\sigma_{_{yy}}$ ao longo da linha tracejada da Figura 5.4	109
Figura 5.7 - Estrutura para avaliação das tensões em pontos	
internos, devido a uma força unitária aplicada no ponto F	110
Figura 5.8 - Tensões analíticas e numéricas ao longo do segmento	
de linha AB, para uma força horizontal no ponto (-10.25)	110

Lista de tabelas

Tabela 2.1 - Tensões e deslocamentos para os modos I e II de	
trincamento no sistema cartesiano de coordenadas	31
Tabela 2.2 - Tensões para os modos I e II de trincamento no	
sistema polar de coordenadas	32
Tabela 2.3 - Representação gráfica das componentes de tensão σ_{ij}	
nos modos I e II de trincamento para o caso particular de $a = 1$	37
Tabela 2.4 - Representação gráfica das componentes de	
deslocamentos $u e v$ nos modos I e II de trincamento para o caso	
particular de $a = 1$, $v = 0,30$ e $E = 1$	38
Tabela 4.1 - Representação gráfica das funções $\Im(\Phi), \ \Re(\Phi),$	
$\Im(\Phi')$ e $\Re(\Phi')$ para o caso particular de $Z = x + iy$	61
Tabela 4.2 - Dimensões e discretizações das arestas da placa	
da Figura 4.18	80
Tabela 4.3 - Expressões para o cálculo dos fatores de intensidade	
de tensão K_I usando aproximações polinomiais	94

Lista de símbolos

Caracteres latinos:

А	Ponto extremo da elipse
а	Comprimento da trinca
a_{c}	Comprimento crítico da trinca
a_1	Comprimento do primeiro segmento da trinca discretizada
a_{n+1}	Comprimento do último segmento da trinca discretizada
В	Ponto extremo da elipse
b	Comprimento do entalhe elíptico
b_k , {b}	Deslocamentos do sistema interno equivalentes ao campo de
	deslocamentos referentes às forças de massa
C_{ij}	Constantes arbitrárias do campo de deslocamentos referentes
	à solução fundamental
C_{ijkl}	Tensor da relação constitutiva
<i>d</i> _j , { d }	Deslocamentos nodais do sistema externo
d_{k}^{*} , { d *}	Deslocamentos nodais equivalentes do sistema interno
Ε	Módulo de Young, modulo de elasticidade
$E_{_{kl}}$, [E]	Projetor ortogonal
f_{ij}	Função adimensional de θ
$F(\theta^*,\lambda)$	Função adimensional de θ^* e λ
\overline{F}_i , { \overline{F} }	Forças de massa prescritas
<i>F_{kl}</i> , [F]	Matriz de flexibilidade do sistema interno
G	Taxa de liberação de energia de deformação
G_{c}	Taxa crítica de liberação de energia de deformação
H _{kl} , [H]	Matriz de incidência cinemática
H ₀₀	Matriz referente à solução fundamental de Kelvin no contorno
	externo com integração no contorno externo
H _{0c}	Matriz referente à solução fundamental de Kelvin no contorno

externo com integração no contorno da trinca

- H_{c0} Matriz referente à solução fundamental de Westergaard no contorno da trinca com integração no contorno externo
- H_{cc} Matriz referente à solução fundamental de Westergaard no contorno da trinca com integração no contorno da trinca
- *i* Constante complexa
- J Integral J
- *K* Fator de intensidade de tensão
- $K_{I,II,III}$ Fator de intensidade de tensão para os módulos I, II e III de trincamento
- *K*, Fator de concentração de tensões
- K_{kl} , [K] Matriz de rigidez do sistema externo
- *k* Constante potencial
- N₁ Funções de interpolação
- p_i , {p} Forças nodais equivalentes
- p_i^* , {**p***} Forças singulares
- p_{ij}^* , {**p***} Função de transformação de forças referente à solução fundamental
- q_i , {**q**} Fluxo
- *R* Raio do circulo
- r Módulo do vetor posição (raio)
- t_k , {t} Forças nodais do sistema externo, equivalentes às forças de massa
- T_i , {**T**} Forças de superfície
- \overline{T}_i , { $\overline{\mathbf{T}}$ } Forças de superfície prescritas
- T_i^* , {**T***} Forças de superfície referentes à solução fundamental
- $u^{I,II}$ Deslocamentos segundo o eixo x de coordenadas devido aos modos I e II de trincamento
- u_i , {u} Deslocamentos, potenciais
- \overline{u}_i , { $\overline{\mathbf{u}}$ } Deslocamentos prescritos, potenciais prescritos
- u_i^* , {u*} Deslocamentos referentes à solução fundamental

- u_i^{*n} , { u^{*n} } Deslocamentos totais referentes às forças de massa
- $u_i^{*_p}$, { \mathbf{u}^{*_p} } Deslocamentos referentes à solução particular da equação de equilíbrio
- *u_{ii}*, **[u]** Funções de interpolação de deslocamentos
- u_{ij}^* , $[\mathbf{u}^*]$ Função de transformação de deslocamentos referente à solução fundamental
- $U_0(\varepsilon_{ii})$ Densidade de energia interna de deformação
- $U_0^c(\sigma_{ii})$ Densidade de energia interna na forma complementar
- $U_0^{c^*}(\sigma_{ij})$ Densidade de energia interna na forma complementar, referente ao sistema interno
- V_{kl} , **[V]** Matriz cujas colunas formam a base das forças singulares que correspondem a forças nodais equivalentes nulas
- v Espaço nulo
- $v^{I,II}$ Deslocamentos segundo o eixo x de coordenadas devido aos modos I e II de trincamento
- V₀ Espaço nulo decorrente da ortogonalidade a deslocamentos de corpo rígido
- V₁ Espaços nulos adicionais provenientes de cada par de nós com a mesma coordenada
- *w* Comprimento da placa
- W Energia de deformação
- W_{kl} , [W] Matriz cujas colunas formam a base dos deslocamentos de corpo rígido
- x_i , {x} Coordenadas cartesianas

Caracteres gregos:

- ∆ Trabalho não recuperável associado à deformação permanente na ponta da trinca
- Δ_{ii} Delta de Dirac
- Φ Funções de tensão de Airy
- $\Phi_{I,II}$ Função de tensão de Westergaard (modificada ou generalizada) para os modos I e II de trincamento

$\Phi'_{I,II}$	Derivada da função de tensão de Westergaard (modificada
	ou generalizada) para os modos I e II de trincamento
$\Phi"_{_{I,II}}$	Segunda derivada da função de tensão de Westergaard p
	os modos I e II de trincamento
Г	Contorno do corpo elástico, contorno arbitrário em torno da
	ponta da trinca
Γ_J	Região do contorno relacionado à Integral J
Γ_u	Região do contorno onde se têm deslocamentos ou
	potenciais prescritos
Γ_{σ}	Região do contorno onde se têm forças ou gradientes
	prescritos
Γ*	Contorno referente à solução fundamental
Γ_0	Região do contorno correspondente à parte externa da
	superfície esférica
$\overline{\Gamma}_0$	Região do contorno contida na superfície esférica
П	Energia potencial total
Π_{g}	Forma generalizada da energia potencial total
Π_R	Potencial de Hellinger-Heissner
Ω	Domínio do corpo elástico
Ω^*	Domínio referente à solução fundamental
$\Omega_{_0}$	Região onde a força singular é aplicada
$\delta_{_{ij}}$	Delta de Kronecker
\mathcal{E}_{ij}	Deformações
γ	Trabalho necessário para formar uma nova superfície de
	trinca
$\eta_{_j}$	Cossenos diretores de um elemento de superfície
$oldsymbol{\lambda}_{ij}$, $oldsymbol{\lambda}_i$	Multiplicadores de Lagrange
μ	Módulo de elasticidade transversal
ν	Coeficiente de Poisson
π	Constante
θ	Ângulo do sistema de coordenadas polares
$ heta_i$	Ângulo de rotação da trinca i em relação ao eixo positivo de x

- *ρ* Raio de curvatura
- σ Tensão normal
- σ° Tensão normal aplicada no meio infinito
- σ_{c} Tensão crítica a partir da qual o crescimento da trinca é instável
- σ_n Tensão normal nominal
- σ_{ii} Tensões normais, tensões
- $\sigma_{ij}^{I,II}$ Tensões normais, tensões devido aos modo I e II de trincamento
- σ_{ii}^* Tensões referentes à solução fundamental
- σ_{ii}^{*n} Tensões totais referentes às forças de massa
- σ_{ij}^{*p} Tensões referentes à solução particular da equação de equilíbrio
- *τ* Tensão cisalhante aplicada
- τ^{∞} Tensão cisalhante aplicada no meio infinito
- τ_{ii} Tensões cisalhantes
- $\tau_{ij}^{I,II}$ Tensões cisalhantes devido aos modos I e I de trincamento
- ξ, η Coordenadas paramétricas
- S()Parte imaginária de um número complexo
- $\Re()$ Parte real de um número complexo