

David Iván Maldonado Távara

Estudo Numérico de Jato Circular Espiralado Incidente em uma Placa Aquecida

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientadora: Angela Ourivio Nieckele

Rio de Janeiro Fevereiro de 2011

David Iván Maldonado Távara

Estudo Numérico de Jato Circular Espiralado Incidente em uma Placa Aquecida

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Angela Ourivio Nieckele Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Prof. Sergio Leal Braga Departamento de Engenharia Mecânica – PUC-Rio

Profa. Mônica Feijó Naccache Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Luiz Eduardo Bittencourt Sampaio Universidade Federal Fluminense – UFF

Prof. Roney Leon Thompson Universidade Federal Fluminense – UFF

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

PUC-Rio - Certificação Digital Nº 0521490/CA

Rio de Janeiro, 04 de Fevereiro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

David Ivan Maldonado Távara

Graduou-se em Engenharia Mecânica na Universidad Nacional de Trujillo, Trujillo – La Libertad – Peru

Mestrado em Engenharia Mecânica, pela Pontifícia Universidade Católica de Rio de Janeiro- PUC-Rio, Rio de Janeiro – Brasil.

Ficha Catalográfica

Maldonado Távara, David Iván

Estudo numérico de jato circular espiralado incidente em uma placa aquecida / David Iván Maldonado Távara ; orientador: Angela Ourivio Nieckele. – 2011.

211 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Jato circular espiralado incidente. 3. Turbulência. 4. RANS. 5. LES. 6. Troca térmica. I. Nieckele, Angela Ourivio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Agradecimentos

À Professora Angela Ourivio Nieckele, pela amizade e paciência para transmitir seu conhecimento, pela incansável motivação na realização deste trabalho.

À CAPES e a PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não teria sido possível.

Aos meus amigos e colegas de Termociências e do sexto andar de pós mecânica, por compartir comigo este caminho e sempre estarmos dispostos a nos ajudar um dos outros mesmo nos momentos difíceis.

Dedico esta teses a meus pais Germán e Luz pelo apoio incondicional em toda minha vida.

Resumo

Távara, David Iván Maldonado; Nieckele, Angela Ourivio. Estudo Numérico de Jato Circular Espiralado Incidente em uma Placa Aquecida. Rio de Janeiro, 2011. 211p. Tese de Doutorado -Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Escoamentos espiralados incidentes em superfícies são escoamentos altamente complexos, envolvendo uma variedade grande de regimes. A previsão numérica deste tipo de escoamento pode auxiliar na compreensão dos diversos fenômenos envolvidos, o que poderá permitir o desenvolvimento de processos mais eficientes, assim como auxiliar na avaliação de modelos de turbulência.

Visando avaliar o desempenho de diferentes modelos de turbulência para a previsão de um jato axi-simétrico espiralado incidindo em uma placa quente, determinou-se numericamente o escoamento com o auxílio da ferramenta computacional FLUENT, utilizando duas metodologias. A primeira baseada na média de Reynolds (RANS) e a segunda na simulação de grandes escalas (LES).

Diversos modelos RANS de duas equações diferenciais foram testados, visando identificar a validade de aplicação de cada um deles através da comparação com dados experimentais disponíveis. A metodologia LES foi avaliada utilizando o modelo dinâmico de sub-malha de Smagorinsky.

Apesar do alto custo, devido à necessidade de utilizar grande espaço de memória e tempo de simulação, os resultados obtidos com a metodologia LES foram significativamente superiores, uma vez que o escoamento apresenta alta anisotropia, a qual os modelos RANS apresentam dificuldade em prever.

Palavras-chave

Jato Circular Espiralado Incidente, Turbulência, RANS, LES, Troca Térmica.

Abstract

Távara, David Iván Maldonado; Nieckele, Angela Ourivio (Advisor). Numerical Study of Swirling Round Jet Impinging on a Heated Plate. Rio de Janeiro, 2011. 211p. DSc. Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Incident swirling jets are complex flow, which involve a large variety of regimes. The numerical prediction of this type of flow can help understand the several phenomena present, which could allow development of more efficient processes, as well as assist in the evaluation of turbulence models.

Aiming to evaluate the performance of different turbulence models in the predict of an axi-symmetric swirling jet impinging to a hot plate, the flow field was determined with the computational tool FLUENT, by employing two methodologies. The first one is based on the Reynolds average (RANS) and the second one is based on the Large Eddy Simulation (LES).

Several two differential equations RANS models were tested, in order to identify their range of validity, by comparing with available experimental data. The methodology LES was evaluated with the dynamic Smagorinsky sub-grid model.

In spite of the high cost, due to the need of utilizing a large memory space and simulation time, the results obtained with the LES methodology were significantly superior, due to the high anisotropy of the flow, which the RANS models have difficult to predict.

Keywords

Swirling Round Jet Impinging; Turbulence, RANS, LES, Heat Transfer.

Lista de Símbolos

а	Variável original antes da Filtragem
\overline{a}	Variável filtrada
$A_f = S_f$	Vetor área da face f do volume de controle i
Cp	Calor especifico a pressão constante
C_k	Constante de Kolmogorov
C _p	Calor especifico
C_s	Coeficiente de Smagorinsky
D	Diâmetro do jato
E(k)	Energia Cinética Turbulenta
$G_{\scriptscriptstyle\Delta_C}$	Filtro de Kernel
Н	Distancia entre o bocal na saída do jato e a parede
y+	Distancia adimensional para parede
κ	Energia Cinética Turbulenta
\overline{k}	valor médio do campo de energia cinética turbulenta
k	Comprimento de onda
k	Condutividade térmica
l_d	Comprimento do turbilhão em pequenas escalas
ℓ_s	O comprimento de escala de Smagorinsky
l_c	Comprimento característico
L	Comprimento do turbilhão em grandes escalas
\dot{m}_{f}	Fluxo de massa cruzando a face f
N_i	Número de faces do i-ésimo Volume de Controle
Ngl	Número de graus de liberdade
N-S	Equações de Navier Stokes

р	Pressão Termodinâmica
p_T	Pressão Reduzida
\overline{p}	Componente da pressão filtrada
Pr	Número de Prandtl
Prt	Número de Prandlt Turbulento
q_s''	Fluxo de calor constante
q _{SGS}	Fluxo de calor turbulento de sub-malha
Re	Número de Reynolds
S	Número de Swirl
S_{ij}	Taxa de deformação do escoamento médio
S_{c}	Termo fonte constante
S_p	Constante angular do termo fonte
St_D	Número de Strouhal avaliado no diâmetro
t	Tempo
Г	Coeficiente de difusão
Т	Temperatura
T _{ref}	Temperatura de referencia
\overline{T}	Componente da temperatura filtrada
u	Vetor velocidade
u^+	Velocidade Adimensional
u*	Velocidade de atrito
ū	Componente da velocidade filtrada
V_{ci}	Volume de controle de índice <i>i</i>
$\left \overline{D} \right $	Modulo do tensor taxa de deformação
$\overline{D_{ij}}$	Taxa de deformação do campo resolvido de velocidade
\forall_i	i-ésimo Volume de controle

Símbolos gregos

ρ	Massa específica ou densidade (l	cg/m^3)

 μ Viscosidade absoluta

\boldsymbol{v}_t	Viscosidade turbulenta
$\mathcal{U}_{t,SGS}$	Viscosidade turbulenta sub-malha
ε	Taxa de dissipação de energia
ω	Taxa de dissipação especifica
α	Difusividade térmica
Γ	Coeficiente de difusão
Δ	Largura de filtro espacial ou temporal
Δt	Passo de tempo
$arOmega_{ij}$	Taxa de rotação do escoamento médio
$\mu_{\scriptscriptstyle SGS}$	Viscosidade turbulenta da sub-malha
$ au_{_W}$	Tensão cisalhante na parede
$ au_{ij}$	Tensor de Reynolds sub-malha
ϕ	Campo escalar genérico
$\overline{\phi}$	Média de uma Grandeza
ϕ'	Valor instantâneo
$oldsymbol{\phi}_{f}$	Valor de ϕ na face

Sumário

1 Introdução	21
1.1 Objetivo e Escopo do Trabalho	27
1.2 Organização do Trabalho	29
2 Revisão Bibliográfica	30
2.1 Física do Problema	30
2.1.1 Jato Livre	33
2.1.2 Jato de Parede	35
2.1.3 Jatos Incidentes	36
2.1.4 Características Dinâmicas do Jato incidente	38
2.1.5 Transferência de Calor em Jatos Incidentes	41
2.1.6 Jatos Incidentes Espiralados	45
2.2 Turbulência e seus Respectivos Modelos de Simulação	49
2.3 Adaptação dos Modelos de Turbulência ao Fenômeno do jato	
Incidente	51
3 Modelamento Matemático	53
3.1 Equações Governantes	57
3.2 Equações de Médias de Reynolds - RANS	59
3.2.1 Modelo $\kappa - \varepsilon$ padrão	62
3.2.2 Modelo $\kappa - \varepsilon$ Realizável	63
3.2.3 Modelo $\kappa - \varepsilon$ RNG	66
3.2.4 Modelo κ – ω SST	67
3.2.5 Modelo do Tensor de Reynolds, RSM	70
3.2.6 Modelos RANS nas regiões próximas às paredes	76

3.3 Simulação de Grandes Escalas - LES	80
3.3.1 Modelo sub-malha de Smagorinsky	85
3.3.2 Modelo de Smagorinsky Dinâmico	86
4 Método Numérico	90
4.1 Discretização da Equação Geral de Transporte	91
4.1.1 Esquema Power-Law	93
4.1.2 Esquema Diferenças Centrais	94
4.1.3 Esquema QUICK	97
4.1.4 Discretização Temporal	97
4.2 Discretização das Equações de Navier-Stokes	98
4.2.1 Acoplamento pressão-velocidade	100
4.3 Metodologia de Solução do Sistema Algébrico	101
5 Resultados	104
5.1 Experimento	105
5.2 Domínio Computacional	107
5.3 Condições de Contorno	108
5.4 Modelos RANS	110
5.4.1 Modelos RANS, Caso S=0	112
5.4.1.1 Velocidade Radial Média, Caso S=0	113
5.4.1.2 Estatísticas de Segunda Ordem, Caso S=0	117
5.4.1.3 Coeficiente de Atrito e de Pressão, Caso S=0	126
5.4.1.4 Temperatura, Caso S=0	127
5.4.1.5 Fluxo de Calor Turbulento, Caso S=0	131
5.4.1.6 Número de Nusselt, Caso S=0	132
5.4.1.7 Influência da Energia Cinética do Jato, Caso S=0	135
5.4.2 Modelos RANS, Caso S=0,3	138
5.4.2.1 Velocidade Radial Média, Caso S=0,3	138
5.4.2.2 Estatísticas de Segunda Ordem, Caso S=0,3	142

5.4.2.3 Temperatura, Caso S=0,3	148
5.4.2.4 Fluxo de Calor Turbulento, Caso S=0,3	150
5.4.2.5 Número de Nusselt, Caso S=0,3	151
5.4.2.6 Influência da Energia Cinética do Jato, Caso S=0,3	152
5.4.3 Modelos RANS, Caso S=0,5	154
5.4.3.1 Velocidade Radial Média, Caso S=0,5	154
5.4.3.2 Estatísticas de Segunda Ordem, Caso S=0,5	158
5.4.3.3 Temperatura, Caso S=0,5	163
5.4.3.4 Fluxo de Calor Turbulento, Caso S=0,5	165
5.4.3.5 Número de Nusselt, Caso S=0,5	166
5.4.3.6 Influência da Energia Cinética do Jato, Caso S=0,5	167
5.5 Simulação de Grandes Escalas (LES)	170
5.5.1 Velocidade Radial Média, Caso LES, S=0	173
5.5.2 Estatísticas de Segunda Ordem, LES, S=0	174
5.5.3 Número de Nusselt, LES, S=0	179
6 Comentários Finais e Conclusões	182
6.1 Conclusões	183
6.2 Recomendações	186
Referências Bibliográficas	187
APÊNDICE A Domínio Computacional e Malha	198
A.1 Simulações RANS	198
A.1.1 Teste de malha para Simulações RANS, S=0	200
A.1.2 Teste de malha para Simulações RANS, S=0,5	203
A.1.3 Teste de malha para Simulações RANS, S=0,5	205
A.2 Simulações LES	207
APÊNDICE B Teste para tamanho do Domínio	210

Lista de Figuras

Figura 1.1-	Representação esquemática de um jato incidindo	
	sobre uma superfície plana.	22
Figura 1.2-	Hipóteses esquemática de equilíbrio de Kolmogorov	
	(Pope, 2000).	26
Figura 2.1-	Visualização do escoamento de um jato incidente	
	(Lee e Lee,2000).	37
Figura 2.2-	Esquema da visualização de Leonardo da Vinci.	49
Figura 3.1-	Grandes vórtices na camada limite turbulenta	
	(Corrsin e Kistler, 1954).	53
Figura 3.2-	Comparação entre as diferentes modelagens da	
	turbulência.	56
Figura 4.1-	Volume de controle tipo, na discretização da equação	
	de transporte.	92
Figura 4.2-	Volume de controle unidimensional.	95
Figura 4.3-	Diagrama das variáveis normalizadas, NVD (Choi et.	
	al., 1995).	95
Figura 4.4-	Seqüência de malhas para o esquema Multigrid.	102
Figura 5.1-	Vista frontal da geometria utilizada por Abrantes	
	(2005).	106
Figura 5.2-	Estações de medição sobre a superfície, Abrantes	
	(2005).	107
Figura 5.3-	Domínio computacional com as condições de	
	contorno e estações de medição empregadas.	107
Figura 5.4-	Perfis de velocidade média e energia cinética	
	turbulenta do jato. Caso S=0.	108
Figura 5.5-	Perfis da dissipação especifica ω , e a taxa de	
	dissipação ε do jato. Caso S=0.	109
Figura 5.6-	Perfis de velocidade média axial e radial do jato.	

	Caso S=0,3	109
Figura 5.7-	Perfis de velocidade média axial e radial do jato.	
	Caso S=0,5	110
Figura 5.8-	Velocidade radial média. Caso S=0. Cinco modelos.	113
Figura 5.9-	Perfis de velocidade radial média. Caso S=0.	
	κ – ω STT (LRC) e RSM (EWT).	115
Figura 5.10-	Perfil de velocidade média em unidades de parede.	
	Caso S=0.	116
Figura 5.11-	Velocidades turbulentas radial. Caso S=0. Cinco	
	modelos.	118
Figura 5.12-	Velocidades turbulentas axial. Caso S=0. Cinco	
	modelos.	119
Figura 5.13-	Tensão cisalhante de Reynolds turbulento. Caso	
	S=0. Cinco modelos.	120
Figura 5.14-	Perfis de velocidade radial turbulenta, Caso S=0.	
	$\kappa - \omega$ STT e RSM (EWT).	121
Figura 5.15-	Perfis de velocidade axial turbulenta, Caso S=0.	
	$\kappa - \omega$ STT (LRC) e RSM (EWT).	123
Figura 5.16-	Perfis da tensão cisalhante de Reynolds turbulento,	
	Caso S=0. κ - ω STT (LRC) e RSM (EWT).	124
Figura 5.17-	Energia cinética turbulenta, <i>y/D</i> =0,02. Caso S=0.	
	Cinco modelos.	125
Figura 5.18-	Coeficiente de atrito ao longo da superfície. Caso	
	S=0. Cinco modelos.	126
Figura 5.19-	Coeficiente de pressão na superfície. Caso S=0.	
	Cinco modelos.	127
Figura 5.20-	Temperatura adimensional nas estações radiais r/D.	
	Caso S=0.	128
Figura 5.21-	Temperatura em coordenadas axiais (y/D), Caso	
	S=0.	129
Figura 5.22-	Perfil de Temperatura média em unidades de parede.	
	Caso S=0.	130
Figura 5.23-	Perfil do fluxo de calor turbulento em unidades de	

	parede. Caso S=0.	132
Figura 5.24-	Número de Nusselt na superfície. Caso S=0. Cinco	
	modelos.	133
Figura 5.25-	Número de Nusselt na superfície. Caso S=0.	
	κ – ω STT e RSM (EWT).	134
Figura 5.26-	Influência do Prandtl turbulento no número de	
	Nusselt. Modelo $\kappa - \omega$ SST LRC. Caso S=0.	135
Figura 5.27-	Influência do perfil da energia cinética turbulenta do	
	jato no número de Nusselt. Modelo κ - ω SST LRC.	
	Caso S=0.	136
Figura 5.28-	Influência do perfil da energia cinética turbulenta do	
	jato nas tensões de Reynolds. Modelo κ – ω SST LRC.	
	Caso S=0.	137
Figura 5.29-	Influência do perfil da energia cinética turbulenta do	
	jato no número de Nusselt. Modelo κ - ω SST LRC.	
	Caso S=0.	137
Figura 5.30-	Velocidade radial média. Caso S=0,3. Quatro	
	modelos.	139
Figura 5.31-	Perfis de velocidade radial média. Caso S=0,3.	4.40
	κ – ω STT (LRC) e RSM (EWT).	140
Figura 5.32-	Perfil de velocidade média em unidades de parede.	
	Caso S=0,3.	141
Figura 5.33-	Velocidades turbulentas radial. Caso S=0,3. Quatro	1 1 2
	modelos.	143
Figura 5.34	Velocidades turbulentas axial. Caso S=0,3. Quatro	111
	modelos.	144
Figura 5.35-	Perfis de velocidade radial turbulenta.	1/5
	Caso =0,3.	145
Figura 5.36-	Perfis de velocidade axial turbulenta.	146
	Caso S=0,3.	140
Figura 5.37-	Energia cinética turbulenta, y/D=0,02. Caso S=0,3.	147
	Quatro modelos.	171
Figura 5.38-	Temperatura adimensional nas estações radiais.	

	Caso S=0,3.	148
Figura 5.39-	Perfil de Temperatura média em unidades de parede,	
	Caso <i>S</i> =0,3.	150
Figura 5.40-	Perfil do fluxo de calor turbulento em unidades de	
	parede, Caso S=0,3.	151
Figura 5.41-	Número de Nusselt na superfície, Caso S=0,3.	
	Quatro modelos.	152
Figura 5.42-	Influência do perfil da energia cinética turbulenta do	
	jato na velocidade radial média. Modelo $\kappa - \omega$ SST	
	LRC, Caso S=0,3.	153
Figura 5.43-	Influência do perfil da energia cinética turbulenta do	
	jato nas tensões de Reynolds. Modelo κ - ω SST LRC,	153
	Caso <i>S</i> =0,3.	
Figura 5.44-	Influência do perfil da energia cinética turbulenta do	
	jato no número de Nusselt. Modelo κ - ω SST LRC,	154
	Caso S=0,3.	
Figura 5.45-	Velocidade radial média. Caso S=0,5. Quatro	
	modelos.	155
Figura 5.46-	Perfis de Velocidade Radial Média, Caso S=0,5.	
	κ – ω STT (LRC) e RSM (EWT).	157
Figura 5.47-	Perfil de velocidade média em unidades de parede.	
	Caso <i>S</i> =0,5.	158
Figura 5.48-	Velocidades turbulentas radial. Caso S=0,5. Quatro	
	modelos.	159
Figura 5.49-	Velocidades turbulentas axial. Caso S=0,5. Quatro	
	modelos.	160
Figura 5.50-	Perfis de Velocidade Radial Turbulenta,	
	Caso S=0,5.	161
Figura 5.51-	Perfis de Velocidade Axial Turbulenta,	
	Caso S=0,5.	162
Figura 5.52-	Energia cinética turbulenta, y/D=0,02. Caso S=0,5.	4.6.5
	Quatro modelos.	163
Figura 5.53-	Temperatura adimensional nas estações axiais, Caso	

	S=0,5.	164
Figura 5.54-	Perfil de Temperatura média em unidades de parede,	
	Caso S=0,5.	165
Figura 5.55-	Perfil do fluxo de calor turbulento em unidades de	
	parede, Caso S=0,5.	166
Figura 5.56-	Número de Nusselt na superfície, Caso S=0,5.	
	Quatro modelos.	167
Figura 5.57-	Influência do perfil da energia cinética turbulenta do	
	jato na velocidade radial média. Modelo κ - ω SST	
	LRC, Caso S=0,5.	168
Figura 5.58-	Influência do perfil da energia cinética turbulenta do	
	jato nas tensões de Reynolds. Modelo κ – ω SST LRC,	
	Caso S=0,5.	169
Figura 5.59-	Influência do perfil da energia cinética turbulenta do	
	jato no número de Nusselt. Modelo κ - ω SST LRC,	
	Caso S=0,5.	169
Figura 5.60-	Evolução da velocidade no tempo - sondas P1, P2,	
	P3, P4 e P5.	171
Figura 5.61-	Perfis de velocidade radial média,	
	LES - Dinâmico.	173
Figura 5.62-	Perfis de velocidade turbulenta em,	
	<i>r/D</i> =0,5	175
Figura 5.63-	Perfis de velocidade radial turbulenta, LES -	
	Dinâmico.	177
Figura 5.64-	Perfis de Velocidade Axial Turbulenta, LES -	
	Dinâmico.	178
Figura 5.65-	Perfis do Tensor Cisalhante de Reynolds Turbulento,	
	LES – Dinâmico.	179
Figura 5.66-	Número de Nusselt na superfície,	
	LES - Dinâmico.	181
Figura A.1-	Detalhes do domínio computacional utilizado, malha	
	120x150.	198
Figura A.2-	Teste de malha radial para S=0 através da	

	Velocidade radial.	200
Figura A.3-	Teste de malha radial para S=0 através do y ⁺ e o	
	Coeficiente de pressão (C _p) na parede.	201
Figura A.4-	Teste de malha radial para S=0 através Número de	
	Nusselt (Nu) e Coeficiente de Atrito (C_f) na parede.	201
Figura A.5-	Teste de malha axial para S=0 através da Velocidade	
	radial.	201
Figura A.6-	Teste de malha axial para S=0 através do y ⁺ e o	
	Coeficiente de pressão (Cp) na parede.	202
Figura A.7-	Teste de malha axial para S=0 através Número de	
	Nusselt (Nu) e Coeficiente de Atrito (C_f) na parede.	202
Figura A.8-	Teste de malha radial para S=0,3 através da	
	Velocidade radial.	203
Figura A.9-	Teste de malha radial para S=0,3 através Número de	
	Nusselt (Nu) na parede.	203
Figura A.10-	Teste de malha axial para S=0,3 através da	
	Velocidade radial.	204
Figura A.11-	Teste de malha axial para S=0,3 através Número de	
	Nusselt (Nu) na parede.	204
Figura A.12-	Teste de malha radial para S=0,5 através da	
	Velocidade radial.	205
Figura A.13-	Teste de malha radial para S=0,5 através Número de	
	Nusselt (Nu) na parede.	205
Figura A.14-	Teste de malha axial para S=0,5 através da	
	Velocidade radial.	206
Figura A.15-	Teste de malha axial para S=0,5 através Número de	
	Nusselt (Nu) na parede.	206
Figura A.16-	Detalhe da malha utilizada na avaliação do modelo	
	LES.	208
Figura A.17-	Comparação entre as malhas 3,6 M e 5,4 M.	209
Figura B.1-	Domínio computacional (D2).	210
Figura B.2-	Resultados de teste do domínio computacional.	211

Lista de Tabelas

Tabela 5.1- Posição das estações de medição dos perfis de velocidad grandezas turbulentas	e e 106
Tabela 5.2- Propriedades do Ar na condição de entrada.	110
Tabela 5.3- Coordenadas das sondas na Simulação de Grandes Esca	las 170
Tabela A.1- Malhas escolhidas para a realização do teste de malha -	
Simulações RANS.	199
Tabela A.2- Malhas escolhidas para a realização do teste de malha -	
Simulações LES.	207