

Carla Massignani Carrapatoso

Análise dos Modelos Analíticos de Otimização de Perfuração Baseados em Energia Específica para Formações Evaporíticas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Sérgio Augusto Barreto da Fontoura

Pontifícia Universidade Católica do Rio de Janeiro

Carla Massignani Carrapatoso

Análise dos Modelos Analíticos de Otimização de Perfuração Baseados em Energia Específica para Formações Evaporíticas

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Sérgio Augusto Barreto da Fontoura Orientador PUC-Rio

> > Prof. Paulo Couto COPPE/UFRJ

Prof. João Carlos Plácido CENPES/PETROBRAS

> Dr. Nelson Inoue GTEP – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de Janeiro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Carla Massignani Carrapatoso

Graduou-se em Engenharia Civil na UFRGS (Universidade Federal do Rio Grande do Sul) em 2007.

Ficha Catalográfica

Carrapatoso, Carla Massignani

Análise dos modelos analíticos de otimização de perfuração baseados em energia específica para formações evaporíticas / Carla Massignani Carrapatoso ; orientador: Sérgio A. B. da Fontoura. – 2011.

164 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2011. Inclui bibliografia

 Engenharia civil – Teses. 2. Energia específica.
 Otimização de perfuração. 3. Evaporitos. I. Fontoura, Sérgio A. B. da. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD 624

PUC-Rio - Certificação Digital Nº 0812383/CA

Para meu filho João Marcelo.

Agradecimentos

Agradeço a Deus, por ser meu guia, por me conceder mais uma vez a oportunidade de buscar a perfeição, através desta vivência.

À minha mãe, pelo amor incondicional, por me incentivar nas horas de desânimo, por ter sido a minha fortaleza nestes últimos anos, demonstrando ser muito mais mãe do que eu imaginava que pudesse ser.

Ao meu pai, por ser o meu exemplo de persistência e determinação, pelos seus conhecimentos transmitidos, que me auxiliaram no andamento deste trabalho.

Ao meu Luis, por estar ao meu lado em todos os momentos, pela paciência, amor e por ter construído junto a mim o nosso bem mais precioso: a nossa família.

Ao meu filho João Marcelo, que desde sua chegada trouxe um novo sentido para minha vida, é a razão pela qual vivo e pela qual quero continuar crescendo pessoalmente e profissionalmente.

À Nina, que está sempre nos meus pensamento e no meu coração. Por ter me criado e me amado como filha.

À Rita, pelas palavras de incentivo que me trouxe nos momentos de dúvida e por ter cuidado do João com tanto carinho.

Aos meus amigos: Emmanuel, Paulista, Cristiane, Gabi, Paula, Josi e Jana, que são minha família de coração e que torceram por mim neste período.

Ao meu orientador, prof. Sérgio, pelos conhecimentos transmitidos e por ter sido um exemplo de profissional humano.

Ao GTEP e aos colegas do grupo, em especial à Vivian e ao Freddy, por estarem sempre dispostos a ajudar e a tirar dúvidas.

À Baker Hughes e Petrobrás, pelo fornecimento dos dados utilizados para este estudo. Em especial ao engenheiro Marcos Freesz, pelo apoio e prestatividade.

Ao Departamento de Engenharia Civil da PUC-Rio e aos colegas de mestrado.

Ao CNPq e à PUC-Rio, pelo apoio financeiro.

A todos que de alguma forma contribuíram para a realização deste trabalho.

Resumo

Carrapatoso, Carla Massignani; Fontoura, Sérgio Augusto Barreto da. Análise dos Modelos Analíticos de Otimização de Perfuração Baseados em Energia Específica para Formações Evaporíticas. Rio de Janeiro, 2010. 163p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A indústria do petróleo sempre investiu em pesquisa de modo a otimizar as operações de perfuração. O objetivo é desenvolver tecnologia para aumentar a taxa de penetração e reduzir o tempo não produtivo durante a perfuração. As recentes descobertas de campos de petróleo localizados em camadas profundas, cobertas por espessas camadas de evaporitos aumentaram a importância dos estudos associados com a otimização nas bacias marítimas brasileiras do pré-sal. Existem muitos modelos para a previsão da taxa de penetração baseados em parâmetros operacionais tais como peso sobre a Broca (WOB), taxa de penetração (ROP), torque a rotação da broca (RPM), e resistência à compressão da rocha. A energia mecânica específica é o parâmetro freqüentemente usado como referência para estabelecer a eficiência das operações de perfuração assim como identificar o que deve ser modificado de modo a melhorar a perfuração. Esta dissertação analisa diferente métodos de otimização de perfuração baseados na energia mecânica específica. Estes métodos são aplicados a um conjunto de dados que consiste nos parâmetros de perfuração (WOB, T, RPM, ROP) obtidos ao longo dos trechos de evaporitos em 6 poços perfurados com broca PDC. Dados de ensaios de perfuração de grande escala realizados em laboratório também foram analisados nesta dissertação. Este estudo conclui que a energia mecânica específica ideal em muitas das operações está relacionada com uma parcela da resistência à compressão confinada da rocha.

Palavras-chave

Energia Específica; Otimização de Perfuração; Evaporitos.

Abstract

Carrapatoso, Carla Massignani; Fontoura, Sérgio Augusto Barreto da. Analysis of Optimization Analytical Models Based on Specific Energy Applied to Evaporite Rocks. Rio de Janeiro, 2010. 163p. M.Sc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The oil industry has always invested in research in order to optimize drilling operation. The aim is to develop technology to increase the rate of penetration and reduce the non-productive time during drilling. The recent discovery of large oil reserves located in very deep layers that are covered with thick salt layers has increased the importance of studies associated with drilling optimization in Brazilian offshore sub-salt oil fields. There are many models to predict rate of penetration based on operational parameters, drill bit type and rock properties. The specific mechanical energy is the parameter often used as reference to guide the efficiency of the drilling operation as well as to identify what has to be changed in order to improve the drilling. This dissertation analyses different methods for drilling optimization based on the specific mechanical energy. These methods are applied to a data set that consists of drilling parameters (weight-onbit, torque, rate of penetration, rotation per minute) for 6 wells along the sections of evaporites. Large-scale drilling experiments carried out at the laboratory were also used. The study concludes that the ideal specific mechanical energy on most operations is related to a fraction of the confined compressive strength of the rock.

Keywords

Specific energy; Drilling Optimization; Evaporite.

Sumário

1 Introdução	18
1.1. Relevância e Motivação do Estudo	18
1.2. Objetivos	19
1.3. Organização da Dissertação	19
2 Revisão Bibliográfica	21
2.1. Considerações sobre Perfurações	21
2.1.1. Brocas PDC	21
2.1.2. Sistemas de Aquisição de Dados	24
2.2. Contribuição da Hidráulica em Perfurações de Poços	29
2.3. Aplicação dos Conceitos de Energia Específica em Perfurações de	е
Poços de Petróleo	33
2.4. Modelos Analíticos de Otimização de Perfuração Baseados na	
Transferência de Energia Específica	39
2.4.1. Modelo analítico de Otimização da Perfuração – Dupriest	39
2.5. Modelo SEROP (Specific Energy ROP Model)	42
2.6. Modelo analítico de otimização da perfuração – Armenta	47
3 Estudo de Caso - Ensaios de Perfuração em Laboratório	53
3.1. Descrição do Equipamento e Metodologia do Ensaio	53
3.2 Avaliação da Resistência da Rocha	56
3.2.1 Resistência da Rocha definida pela CCS (Confined Compressiv	о С
Strength)	57
3.3. Aplicação dos Modelos Analíticos de Otimização Baseados na	
Transferência de Energia Específica	60
4 Estudo de Caso - Perfuração no Campo	85
4.1. Avaliação da Resistência da Rocha	93
4.2. Aplicação dos Modelos Analíticos de Otimização Baseados na	50
Transferência de Energia Específica	95
	50

4.3. Comparação entre as Análises: Poços x Ensaios de Laboratório	112
5 Conclusões	116
Referências Bibliográficas	119
Apêndice	124
A.1. Gráficos Representativos de Perfis	124
A.2. Gráficos da Faixa de Variação da Resistência à Compressão	
Confinada para Poços e Ensaios de Laboratório	131
A.3. Gráficos da Aplicação dos Modelos Analíticos para os Poços e	
Ensaios de Laboratório	135
A.4. Gráficos da Eficiência Mecânica Máxima versus Profundidade -	
Poços	136
A.5. Gráficos da Eficiência Mecânica Máxima versus Profundidade -	
Ensaios de Laboratório	139
A.6. Avaliação do Comportamento do Coeficiente de Atrito ao	
Deslizamento da Broca – Ensaios de Laboratório	142
A.7. Curvas WOB x ROP – Ensaios de Laboratório	146
A.8. Comparação entre as curvas T x (WOB.Db/36) – Ensaios de	
Laboratório	151
A.9. Curvas SE_Teale x ROP para Ensaios de Laboratório	153
A.10. Curvas SE x CCS para Trechos dos Poços	156
A.11 Curvas T x WOB.Db/36 para trechos dos poços	158

Lista de figuras

Figura 1 - Broca PDC (Wamsley e Ford, 2006)21
Figura 2 - Plano de thrust e modo de corte do cortador PDC (Wamsley e
Ford, 2006)22
Figura 3 - Ângulo de ataque de um cortador PDC (Plácido e Pinho, 2009).
Figura 4 - Ângulo side rake (modificado de Bourgoyne et al., 1991)24
Figura 5 - Sensor de carga no gancho (Tavares, 2006)25
Figura 6 - Sensor de altura do gancho (Tavares, 2006)26
Figura 7 - Sistema de aquisição de dados do CoPilot™29
Figura 8: Avaliação da influência da potência hidráulica da broca no
folhelho Pierre com fluido base-óleo e fluido base-água (modificado
de Holster e Kipp, 2002)30
Figura 9: Avaliação da influência da potência hidráulica da broca no
arenito Berea com fluido base-óleo (modificado de Holster e Kipp,
2002)
Figura 10: Avaliação da influência da potência hidráulica da broca no
arenito Berea com fluido base-água (modificado de Holster e Kipp,
2002)
Figura 11: Influência da potência hidráulica na eficiência mecânica
máxima – broca TCI (modificado de Pessier e Fear, 1992)32
Figura 12 - SE versus UCS para duas brocas de cone (modificado de
Teale, 1965)
Figura 13: Energia específica obtida através de brocas PDC, TCI e
Impregnada para fluido base-água – arenito Crab Orchard
(Modificado de Judzis et al., 2009)37
Figura 14: Energia específica obtida através de brocas PDC, TCI e
Impregnada para fluido base-água – calcário Carthage (Modificado de
Judzis et al., 2009)37
Figure 45. lefte în de tine de nache ne energie especifice - energite Orch
Figura 15: Influencia do tipo de rocha na energia específica – arenito Grab
Orchard (Modificado de Judzis et al., 2009)

Figura 16: Influência do tipo de rocha na energia específica - calcário
Marble (Modificado de Judzis et al., 2009)
Figura 17 - Ensaio de <i>drilloff</i> (Dupriest et al., 2005)41
Figura 18 - Valores do fator hidráulico da broca (Modificado de Armenta,
2008)
Figura 19 - DSE versus CCS (Modificado de Armenta, 2008)49
Figura 20 - SE versus CCS (Modificado de Armenta, 2008)50
Figura 21 - Parâmetros de perfuração para o poço estudado (Armenta,
2008)51
Figura 22 - Cálculo da DSE para o poço estudado (Armenta, 2008)51
Figura 23 - Imagem do simulador em grande escala de perfuração da
Baker Hughes54
Figura 24 - Perfis do ensaio OB0001B55
Figura 25 - Perfis do ensaio OB0001F56
Figura 26 - Valores típicos de UCS para minerais evaporíticos (Jeremic,
1994)58
Figura 27 - Faixa de valores de CCS para os ensaios OB0001A e
OB0001B59
Figura 28 - SE versus CCS – ensaio OB0001A e OB0001I61
Figura 29 - SE versus CCS - ensaios OB0001B_RPM=120 e
OB0001B_RPM=18062
Figura 30 - SE versus CCS - ensaios OB0001D_RPM=120 e
OB0001D_RPM=18062
Figura 31 - SE versus CCS - ensaios OB0001F_RPM=120 e
OB0001F_RPM=18063
Figura 32 - SE versus CCS - ensaios OB0001J_RPM=120 e
OB0001J_RPM=18063
Figura 33 - SE versus CCS - ensaios OB0001K_RPM=120 e
OB0001K_RPM=18064
Figura 34 - SE versus CCS - ensaios OB0002A_RPM=120 e
OB0002A_RPM=18064
Figura 35 - Cálculo da distância para que a broca penetre todos seus
dentes laterais65

Figura 36 - Avaliação do comportamento de μ para o ensalo OB0001B: (a)
RPM=120 e (b) RPM=18071
Figura 37 - Comparação entre μ para rotações de 120 e 180 RPM do
ensaio OB0001D71
Figura 38 - Profundidade de corte versus WOB para o ensaio OB0001D.
Figura 39 - ROP versus WOB para o ensaio OB0001D73
Figura 40 - SE_T versus ROP para o ensaio OB0001B74
Figura 41 - Influência da resistência da formação na variação de μ : (a)
RPM=120 e (b) RPM=18076
Figura 42 - ROP versus WOB para halita e anidrita em diferentes RPMs:
(a) RPM=120 e (b) RPM=18077
Figura 43 - Influência da broca na variação de μ : (a) RPM=120 e (b)
RPM=18078
Figura 44 - Comportamento da ROP para os diferentes tipos de broca: (a)
RPM=120 e (b) RPM=18079
Figura 45: Influência do peso de fluido na taxa de penetração - RPM =
12081
Figura 46: Influência do poso do fluido na oporgia ospocífica - PPM - 120
Tigura 40. Influencia do peso de fiuldo na energía específica – $1/F M = 120$
Figura 47: Influência do peso de fluido na taxa de penetração – RPM =
Figura 40. Influência do peso de fluido na energía especifica – IXPM – 120
 Figura 40. Influência do peso de fluido na energía específica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energía específica – RPM =
 Figura 40. Influência do peso de fluido na energía específica – RPM = 82 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. 83
 Figura 40. Initiational do peso de fluido na energía especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8.
 Figura 40. Initiation do peso de fluido na energía especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8. Figura 50 - Perfis do Poço 2.
 Figura 40. Initiational do peso de fluido na energía especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8. Figura 50 - Perfis do Poço 2. 90 Figura 51 - Comparação entre dados de superfície e CoPilot[™] para Poço
 Figura 40. Influência do peso de fluido na energía especifica – RPM = 120 82 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. 83 Figura 48: Influência do peso de fluido na energia específica – RPM = 180. 83 Figura 49 - Perfis do Poço 8. 89 Figura 50 - Perfis do Poço 2. 90 Figura 51 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – torque e tempo de trânsito cisalhante.
 Figura 40. Influência do peso de fluido na energia especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8. Figura 50 - Perfis do Poço 2. 90 Figura 51 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – torque e tempo de trânsito cisalhante. 92 Figura 52 - Comparação entre dados de superfície e CoPilot™ para Poço
 Figura 40. Influência do peso de fluido na energia especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8. Figura 50 - Perfis do Poço 2. 90 Figura 51 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – torque e tempo de trânsito cisalhante. 92 Figura 52 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – RPM e Gamma Ray.
 Figura 40. Initidencia do peso de fluido na energia específica – RPM = 120 82 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180
 Figura 40. Initidencia do peso de fluido na energia específica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180
 Figura 40. Influência do peso de fluido na energia especifica – RPM = 120 Figura 47: Influência do peso de fluido na taxa de penetração – RPM = 180. Figura 48: Influência do peso de fluido na energia específica – RPM = 180. Figura 49 - Perfis do Poço 8. Figura 50 - Perfis do Poço 2. 90 Figura 51 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – torque e tempo de trânsito cisalhante. 92 Figura 52 - Comparação entre dados de superfície e CoPilot™ para Poço 10 – RPM e Gamma Ray. 92 Figura 53 - Valores de CCS estimados por diferentes correlações para os Poços 4 e 7. 95 Figura 54 - Aplicação dos modelos analíticos de otimização através da SE

Figura 55 - Aplicação dos modelos analíticos de otimização através da SE
– Poço 497
Figura 56 - Aplicação dos modelos analíticos de otimização através da SE
– Poço 5
Figura 57 - Aplicação dos modelos analíticos de otimização através da SE
– Poço 799
Figura 58 - Aplicação dos modelos analíticos de otimização através da SE
– Poço 8100
Figura 59 - Aplicação dos modelos analíticos de otimização através da SE
– Poço 9101
Figura 60 - Aplicação dos modelos analíticos de otimização através da SE
– Poço10102
Figura 61 - Aplicação dos modelos analíticos de otimização através da SE
– Poço
Figura 62 - SE x CCS para Poços 3 e 4104
Figura 63 - SE_Teale_CoPilot™ versus SE_Teale_superfície - Poço 2.106
Figura 64 - Comparação entre as curvas de energia específica de todos
os poços de estudo108
Figura 65 - SE versus CCS para trecho do Poço 3112
Figura 66 - Avaliação de μ para um trecho do Poço 2: (a) RPM=169 e (b)
RPM=193114
Figura 67 - Avaliação de μ para um trecho do Poço 3: (a) Trecho 1 e (b)
Trecho 2115

Lista de tabelas

Tabela 1 - Parâmetros medidos por sensores de superfície (modificado de
Tavares, 2006)25
Tabela 2 - Características do simulador de elevadas pressões da Baker
Hughes54
Tabela 3 - Resumo das características de perfuração dos ensaios56
Tabela 4 - Energias específicas médias para os ensaios68
Tabela 5 - Valores médios de EFFmáx para os ensaios de laboratório em
grande escala69
Tabela 6 - Diferença percentual entre os coeficientes de atrito ao
deslizamento para as diferentes brocas79
Tabela 7 - Valores médios de μ para os ensaios em grande escala80
Tabela 8 - Resumo dos dados disponíveis para os poços em estudo86
Tabela 9 - Dados de perfuração e de broca para os poços estudados87
Tabela 10 - Legenda de cores representativa da litologia dos poços88
Tabela 11 - Valores típicos de tempo de trânsito compressional e raios
gama de alguns evaporitos (Mohriak et al., 2008)
Tabela 12 - Valores dos parâmetros de ajuste $k_1 e k_2$ (Modificado de Olea
<i>et al.</i> , 2008)94
Tabela 13 - EFF máximas para os poços perfurados104
Tabela 14 - Valores de energia específica para sal obtidos na literatura.
Tabela 15 - Valores médios de EFF máxima para os trechos dos poços
perfurados em campo113
Tabela 16 - Valores de $\boldsymbol{\mu}$ para os trechos dos poços perfurados com
medidas de CoPilot114

Lista de símbolos

A _B	área da seção transversal da broca
BHA	bottomhole assembly
	resistência à compressão confinada da rocha
D _B	diâmetro da broca
DP	pressão diferencial
DSE	energia específica de perfuração
DTc	tempo de trânsito compressional
DTs	tempo de trânsito cisalhante
ECD	densidade de fluido circulante
ECMP	pressão de fluido circulante
EFFmax	eficiência mecânica máxima;
φ	ângulo de atrito interno da rocha;
GR	raios gamma
ΗΡ _Β	potência hidráulica da broca
HSI	razão entre potência hidráulica da broca e área da seção
	transversal da broca
λ	fator hidráulico da broca
μ	coeficiente de atrito ao deslizamento da broca
MW	peso de fluido de perfuração
Ν	revoluções por minuto
OB	Pressão de sobrecarga
ре	porosidade efetiva
PP	poro-pressão
ROP	taxa de penetração
RPM	revoluções por minuto
SE	energia específica
SE_D	energia específica de Dupriest
SE_T	energia específica de Teale
т	torque da broca
UCS	resistência à compressão não confinada da rocha
ΔW	variação de trabalho

- WOB peso sobre broca
- ΔV variação de volume