

Marco Antonio Santos de Abreu

Síntese e caracterização de nanomateriais à base de TiO₂ e seu uso no abatimento fotocatalítico de NO_x

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio.

> Orientador: Prof. Bojan Marinkovic Co-orientador: Prof. Edisson Morgado Jr.

> > Rio de Janeiro Dezembro de 2010

Marco Antonio Santos de Abreu

Síntese e caracterização de nanomateriais à base de TiO₂ e seu uso no abatimento fotocatalítico de NO_x

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Bojan Marinkovic Orientador Departamento de Engenharia de Materiais - PUC-Rio

Prof. Edisson Morgado Jr. Co-orientador Centro de Pesq. e Desenv. Leopoldo Américo Miguêz de Mello - CENPES

> Prof. Roberto Ribeiro de Avillez Departamento de Engenharia de Materiais - PUC-Rio

> > Prof. Marco André Fraga Instituto Nacional de Tecnologia - INT

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 21 de dezembro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marco Antonio Santos de Abreu

Graduou-se em Química pela Faculdade de Humanidades Pedro II – RJ 1994.

Ficha Catalográfica

Abreu, Marco Antonio Santos de

Síntese e caracterização de nanomateriais à base de TiO_2 e seu uso no abatimento fotocatalítico de NO_x / Marco Antonio Santos de Abreu ; orientador: Bojan Marinkovic ; co-orientador: Edisson Morgado Jr.. – 2010.

117 f.: il. (color); 30 cm

Dissertação (Mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2010.

Inclui bibliográfia

1. Engenharia de materiais – Teses. 2. Nanomateriais. 3. Síntese hidrotérmica. 4. TiO₂. 5. Fotocatálise de NO_x I. Marinkovic, Bojan. II. Morgado Junior, Edisson. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD: 620.11

Ao meu saudoso pai Nilton, minha referência e mãe amada Maristela, à minha esposa Luciana e minhas filhas Luiza e Letícia, cuja compreensão e amor me ajudaram nos momentos mais difíceis.

Agradecimento

Edisson Morgado Jr, pela amizade, orientação, apoio e incentivo ao longo de toda caminhada.

Bojan Marinkovic, por sua dedicação diária como orientador, amizade e principalmente pelos ensinamentos que recebi. Terei sempre o orgulho de ter sido seu primeiro orientado, dos muitos que virão.

Paula Jardim, sua inestimável colaboração, principalmente na interpretação dos dados cristalográficos.

Oscar René Chamberlain Právia e Raul Rawet, que na condição de Gerentes e representantes da Petrobras, permitiram que eu iniciasse e concluísse a minha dissertação de mestrado.

Willian Gilbert por sua ajuda na soluções matemáticas para representação do abatimento fotocatalítico.

Mônica e Selma pela aquisição dos espectros de IV e análise elementar de S.

Anilza Lyra e Dayse Lovatte pela aquisição dos espectros de DRS/UV-Vis.

Gilmara e Barbara pelas medidas de adsorção de nitrogênio.

Andréa Pinheiro, Angélica Marques e Priscilla do SENAI/CTGas pela realização das análises de DRX, TGA e MEV.

Lam, Marlon, Necco, Karine, Fábio e Fátima por sua amizade e apoio, e pelas valiosas discussões nos intervalos do cafezinho, e a todos os meus colegas da Gerência de Tecnologia de FCC do CENPES/Petrobras que compartilharam de minha rotina, me apoiaram e incentivaram.

Luciana, Bruna, Ana Karla, Jean, Abiatar e demais colegas de pós-graduação da PUC-Rio, pela amizade e ajuda em todos os momentos.

À PETROBRAS S.A. por propiciar os recursos e as condições necessárias à realização deste trabalho.

Resumo

Abreu, Marco Antonio Santos; Marinkovic, Bojan. **Síntese e caracterização de nanomateriais à base de TiO₂ e seu uso no abatimento fotocatalítico de NO_x. Rio de Janeiro, 2010. 116p. Dissertação de Mestrado - Departamento de Engenharia dos Materiais, Pontifícia Universidade Católica do Rio de Janeiro.**

A síntese de nanomateriais com morfologia unidimensional 1-D a base de TiO_2 recebeu um grande impulso a partir de 1998, depois da introdução da rota hidrotérmica alcalina a partir de óxidos de titânio. Dezenas de publicações logo se seguiram, não apenas devido à simplicidade desta rota de síntese, dispensando o uso de templates, mas também pelas propriedades físico-químicas que este novo material apresentava, tais como: alta área superficial, facilidade de troca iônica e propriedades de semicondutor. Nos últimos anos os nanomaterias (nanotubos e/ou nanofitas) com estrutura lamelar de titanato (H₂Ti₃O₇) obtidos por esta rota, como também os nanomateriais (nanobastões e nanopartículas) a base de TiO₂ resultantes dos seus pós-tratamentos, térmico (calcinação) e ácido, passaram a ser considerados e otimizados para aplicações fotocatalíticas. O presente trabalho teve como objetivo investigar a síntese e a aplicação de tais materiais na degradação fotocatalítica de poluentes gasosos (ex. NO_x), a qual poderia vir a ser empregada em unidades de craqueamento catalítico fluido (UFCC), pois tal processo é a fonte individual que mais emite NO_x em uma refinaria e, portanto, de grande interesse da indústria do petróleo para reduzir o nível de emissões gasosas. Os materiais foram sintetizados em escala laboratorial e caracterizados por difração de raios-X, microscopia eletrônica de transmissão, difração de elétrons. análise termogravimétrica, adsorção de nitrogênio, fluorescência de raios-X, análise elementar para enxofre, fotometria de chama e técnicas espectroscópicas de infravermelho e de refletância difusa no UV-Visível. A atividade fotocatalítica foi testada em uma unidade experimental para abatimento de NO acoplada a um cromatógrafo gasoso com espectrômetro de massas. Verificou-se que o

nanomaterial na forma de nanotubos de H₂Ti₃O₇, obtido pela rota hidrotérmica alcalina e protonizado após lavagem ácida, não apresenta boa atividade fotocatalítica para degradação de NO apesar de sua alta área superficial, enquanto que seus derivados pós-tratados por calcinação apresentam boa atividade fotocatalítica. Isto se deve, entre outros fatores, a mudança de fases onde a 450°C tem-se nanobastões de anatásio com pequenas quantidades de TiO₂(B) e a 550°C apenas nanobastões de anatásio estão presentes. Em relação aos materiais póstratados com ácido somente aqueles que tiveram conversão completa para anatásio apresentaram boa atividade fotocatalítica. A amostra mais ativa para a degradação fotocatalítica foi a chamada A5, que foi calcinada a 550°C e formada de nanobastões, tendo sido mais ativa que seu par, também de fase anatásio, mas obtido por tratamento ácido e formado de nanopartículas na forma de bi-pirâmide truncada. A morfologia dos nanobastões de anatásio no primeiro caso desenvolveu facetas no plano (001) com considerável extensão e energia superficial, mais alta que os planos (101) encontrados predominantemente nas nanopartículas de anatásio bi-piramidal (encontradas no segundo caso), é possível que essa diferença explique as diferentes atividades fotocatalíticas. O SO^{-2}_{4} remanescente nas amostras de anatásio que sofreram tratamento ácido foi dependente do pH de tratamento com H₂SO₄, e pode ser uma possível explicação para a menor atividade fotocatalítica das amostras de anatásio de alta área superficial, uma vez que os radicais hidroxila na superfície podem ser prejudicados na reação com NO adsorvido. As atividades de todas as amostras foram comparadas com a atividade do padrão comercial P-25 da Degussa (anatásio 70% : rutilo 30%). A atividade da amostra A5 com a morfologia de nanobastões é ~20% mais alta que a do padrão comercial P-25.

Palavras-chave

Nanomateriais; Síntese Hidrotérmica; TiO₂; Fotocatálise de NO_x.

Abstract

Abreu, Marco Antonio Santos; Marinkovic, Bojan (Advisor). Synthesis and characterization of TiO_2 based nanomaterials and their use in photocatalytic degradation of NO_x gases. Rio de Janeiro, 2010. 116p. MSc. Dissertation - Departamento de Engenharia dos Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

The development of TiO₂ based 1-D nanomaterials received a significant stimulus since alkali hydrothermal process has been proposed as a new templatefree method for obtaining nanotubes and/or nanobelts with high surface area. This new nanomaterial offers a novel combination of chemistry, morphology, structural, physical and chemical properties. From the structural point of view, they are layered titanates with general chemical formula H₂Ti₃O₇. Due to their high surface area and semiconductor properties these new 1-D nanomaterials have been studied in photocatalytic applications for the degradation of liquid and/or gas pollutants. At the same time 1-D nanostructure titanates are being considered as potential precursors for further development of novel TiO₂ based photocatalytic nanomaterials through thermal and/or soft-chemical (acid) post-treatments. The study presented here aims at the development of active TiO₂ based nanomaterials capable of photo-oxidative degradation of NO_x, which are of potential interest for petroleum refineries since they are one of the main industrial sources of NO_x pollution and because environmental regulations tend to become more and more rigid. Titanate nanotubes have been synthesized by submitting a commercial anatase powder to a selected alkaline hydrothermal condition, followed by acid washing of the precipitate. The as-prepared titanate nanotubes (TTNT) were posttreated, either through calcination in air or by aging in the presence of sulfuric acid, in order to produce different TiO₂ based nanomaterials. These have been thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, thermogravimetric analysis, BET analysis, diffuse-reflectance UV-Vis spectroscopy, infra-red spectroscopy and elementary analysis for sulphur, while their photocatalytic activity have been evaluated by flowing NO (100 ppm in He) through a photo-reactor equipped with

three UV lamps attached to a Gas chromatograph / Mass spectrometer system. Despite its high surface area and typical optical properties of semiconductors, the as synthesized titanate nanotubes $(H_2Ti_3O_7)$ proved to be poor photocatalysts for the degradation of NO. In contrast, some of their derivatives obtained through thermal and acid post-treatments showed promising photocatalytic activities. In the case of the heat treated samples, the improved photocatalytic activity was due to the phase transition into TiO₂ phases occurring above 350°C and that resulted in the formation of anatase nanorods. For the acid treated samples exhibiting high photocatalytic activities a complete phase transformation into anatase was verified as well. Therefore, anatase was the predominant phase for all good photocatalysts prepared in this study. The most active anatase sample in the study (named A5) was the one formed of nanorods obtained by calcining the precursor TTNT at 550°C. Its counterpart obtained via acidic treatment with similar chemical composition and surface area but constituted of truncated bipyramidal nanoparticles, was less active. The rod-like morphology of anatase in the former case developed (001) facets with considerable extension and the higher surface energy of its prevailing (001) planes relative to the (101) planes predominantly found in the truncated bipyramidal anatase nanoparticles (synthesized in the second case), was suggested to explain the differences in their photocatalytic activity. The remaining SO_4^{2} content in the other anatase samples derived from acidic aging was dependent on the pH of the H₂SO₄ treatment and was assigned as a possible explanation for the lower photocatalytic activity of the high surface anatase samples obtained via this route, since it might be impairing surface hydroxyl radicals to react with the adsorbed NO. The photocatalytic activity of all samples has been compared to the activity of the commercial TiO2 P-25 (Degussa) which is considered a benchmark photocatalysts. The sample A5 presented 20% higher photocatalytic activity for NO degradation as compared to P-25.

Keywords

Nanomaterials; Hydrothermal Synthesis; TiO₂; Photocatalysis of NO_x.

Sumário

1 Introdução	18
2 Revisão Bibliográfica	21
2.1. Fotocatálise	21
2.2. Propriedades Fotocatalíticas do TiO ₂	27
2.3. Fotocatálise de gases tóxicos (NO _x) com nanomaterias a base de	
TiO ₂	31
2.4. Métodos de síntese de nanomateriais a base de TiO ₂	34
2.4.1. Preparo pelo método Sol-Gel	34
2.4.2. Preparo utilizando template	35
2.4.3. Preparo por reação hidrotérmica alcalina	37
2.4.3.1. Preparo por Calcinação	38
2.4.3.2. Preparo por tratamento ácido	39
3 Objetivos	42
3.1. Objetivo Geral	42
3.2. Objetivos Específicos	42
4 Materiais e Métodos	43
4.1. Titânia (TiO ₂) de partida e reagentes	43
4.2. Procedimentos de síntese	44
4.2.1. Preparo do Trititanato Nanotubular (TTNT)	44
4.2.2. Pós-tratamento térmico dos TTNTs - calcinação	47
4.2.3. Pós-tratamento ácido dos TTNTs	48
4.3. Técnicas de caracterização	50
4.3.1. Determinação do teor de sódio	50
4.3.2. Difração de Raios-X (DRX)	50
4.3.3. Análises térmicas (TGA)	51
4.3.4. Microscopia eletrônica de transmissão e difração de elétrons da	
área selecionada	51

4.3.5. Adsorção de nitrogênio	51
4.3.6. Espectroscopia de refletância difusa na região de UV-Vis (DRS)	51
4.3.7. Espectroscopia de I.V. com transformada de Fourier (FTIR)	54
4.3.8. Determinação do teor de S	54
4.4. Testes Fotocatalíticos	55
4.4.1. Sistema fotocatalítico	55
4.4.2. Substrato	56
4.4.3. Procedimento do teste fotocatalítico	56
4.4.4. Cálculo das atividades fotocatalíticas	58
4.4.5. Cálculo do erro experimental da atividade fotocatalítica	60
5 Resultados e Discussões	62
5.1. Difração de Raios-X	62
5.2. Área específica	68
5.3. Análise morfológica por microscopia eletrônica de transmissão	
(MET)	69
5.4. Análises térmicas e elementar (enxofre)	73
5.5. Análises espectrométricas	79
5.6. Desempenho fotocatalítico	82
5.6.1. Discussão sobre o ranking de atividade fotocatalítica entre as	
amostras estudadas	83
6 Conclusões	93
7 Bibliografia	95
8 Anexos	

Lista de figuras

Figura 1: Emissão de NOx em função de nitrogênio da carga 19
Figura 2: Unidade de Craqueamento Catalítico Fluido (UFCC) 19
Figura 3: Processos convencionais e avançados para abatimento de
poluentes 25
Figura 4: Esquema representativo da partícula de um semicondutor
irradiado 26
Figura 5: Esquema mostrando o potencial redox para vários processos
que ocorrem na superfície do TiO ₂ em pH 7 31
Figura 6: Relação entre o tempo de irradiação UV e a concentração de
NO 32
Figura 7: Conversão de NO(%) contra tempo de irradiação UV e
Mecanismo de oxidação fotocatalítica 33
Figura 8: Rota de síntese para preparo pelo método sol-gel e MET do
nanomaterial (400°C/2h) 35
Figura 9: Esquema das alternativas de preparo de nanomaterias com a
utilização de template 36
Figura 10: Preparo de TiO2 nanoestruturado com a utilização de template
36
Figura 11: (a) imagem de TEM da amostra TTNT/L e correspondente
padrão de difração de elétrons (SAED); (b) imagem de alta resolução
(HRTEM) da amostra TTNT/L; (c), (d) imagens de alta resolução
(HRTEM) dos nanotubos na amostra TTNT/H; (e) visão transversal
dos nanotubos 37
Figura 12: (1) imagens de alta resolução (HRTEM) das amostras de
$H_2Ti_3O_7$ nanotubular calcinadas entre 250 e 550°C; (2) esquema
proposto para a transformação térmica estrutural do H ₂ Ti ₃ O ₇ em TiO ₂
(B) 39
Figura 13: Imagem de alta resolução (HRTEM) de amostra H ₂ Ti ₃ O ₇ após
tratamento ácido (pH=0,5/28dias) transformada em nanopartículas de

40

Figura 14: Fotodegradação do alaranjado de metila por irradiação UV-A
em pH 1, onde (A) nanopartículas de anatásio por tratamento ácido
(B) P25 (C) nanotubos calcinados a 700ºC (D) mistura de
nanopartículas de anatásio/rutilo/bruquita (60:35:5)
respectivamente 41
Figura 15: Esquema simplificado das rotas de preparo44
Figura 16: Esquema de preparo do trititanato nanotubular protonizado
(TTNT) 45
Figura 17: Sistema de multi-reatores da Parr usado nos experimentos 46
Figura 18: Relação entre o pH da lavagem ácida e o % de sódio do
TTNT 47
Figura 19: Esquema simplificado dos pós-tratamentos em meio ácido dos
TTNT 48
Figura 20: Fluxograma geral do tratamento ácido49
Figura 21: Gráfico de (F(R).hv) $^{1/2}$ vs $h\nu$ com as retas traçadas na parte
linear da curva para estimativa da energia do bandgap no intercepto
do eixo-x ((F(R).hv) $^{1/2} = 0$) 53
Figura 22: Sistema de avaliação fotocatalítica, incluindo uma unidade de
testes e o equipamento de detecção de gases (GC-MS) 55
Figura 23: Foto e esquema simplificado da unidade de teste fotocatalítica
aberta 56
Figura 24: Representação esquemática das etapas no teste de
desempenho fotocatalítico 57
Figura 25: Curva típica de foto-oxidação do NO59
Figura 26: Esquema representativo da área a ser calculada a partir da
curva obtida na fotocatálise 59
Figura 27: Difratogramas das titânias comerciais63
Figura 28: Difratogramas da amostra precursora de H-TTNT e de suas
derivadas de tratamento térmico 64
Figura 29: Difratogramas das amostras derivadas do tratamento
hidrotérmico em meio ácido de H-TTNT a 150°C 65
Figura 30: Difratogramas das amostras derivadas do tratamento
hidrotérmico em meio ácido de H-TTNT a 80°C 66

Figura 31: Difratogramas das amostras derivadas do tratament	to
hidrotérmico em meio ácido de H-TTNT a temperatura ambient	te
(25°C) 6	57
Figura 32: Imagens de MET das titânias comerciais; (a) A12 e (b) A13 6	;9
Figura 33: Imagens de MET da amostra A1, ilustrando a formação d	le
nanotubos de titanatos 7	0
Figura 34: Imagens de MET da amostra A5 (calcinação de TTNT a 550°C	C)
7	'1
Figura 35: Imagens de MET das amostras pós-tratadas em meio d	le
H ₂ SO ₄ 7	'2
Figura 36: Curvas termogravimétricas das titânias comerciais e da	as
amostras derivadas de tratamento térmico (A2 a A5) 7	'4
Figura 37: Curvas termogravimétricas das amostras derivadas d	lo
tratamento hidrotérmico em meio ácido de H-TTNT a 80°C (part	te
inferior) e 150°C (parte superior – A9 a A11) 7	'5
Figura 38: Curvas termogravimétricas das amostras derivadas d	lo
tratamento em meio ácido (pH 0,5) a temperatura ambiente 7	'5
Figura 39: Correlação entre SO4 medido por LECO e determinado po	or
TGA 7	7
Figura 40: Correlação entre SO4 determinado por TGA e o pH d	le
tratamento ácido 7	7
Figura 41: Correlação entre área BET e TG (150-550°C) para as amostra	s
pós-tratadas 7	'8
Figura 42: Correlação entre área BET e TG (30-150ºC) para as amostra	as
pós-tratadas 7	'8
Figura 43: Espectros de Infravermelho Médio (FT-IR) 8	30
Figura 44: Gráfico de (F(R).hv) $^{1/2}$ vs hv da amostra precursora de H	┨-
TTNT e de suas derivadas de tratamento térmico; tangentes traçada	as
na parte linear da curva para estimar a energia do bandgap n	10
intercepto do eixo-x ((F(R).hv) $^{1/2} = 0$) 8	31
Figura 45: Gráfico de (F(R).hv) $^{1/2}$ vs hv das amostras derivadas d	le
tratamento hidrotérmico em meio ácido ; tangentes traçadas na part	te

linear da curva para estimar a energia do bandgap no intercepto do

eixo-x ((F(R).hv) $^{1/2} = 0$).	81
Figura 46: Gráfico da atividade fotocatalítica para abatimento de NO	82
Figura 47: MET de alta resolução das amostras de alta atividade	85
Figura 48: Morfologia de equilíbrio de anatásio: bi-pirâmide truncada	89
Figura 49: Nanocristais aparentemente equi-axiais de anatásio	90
Figura 50: MET de alta resolução da amostra A4	90
Figura 51: MET de alta resolução da amostra A5	91
Figura 52: MET de alta resolução da amostra A5	92

Lista de tabelas

Tabela 1: Limites estabelecidos por lei no Brasil para emissão de NO _x en
unidades de FCC 18
Tabela 2: Informações básicas das titânias comerciais43
Tabela 3: Condições reacionais e de pH na lavagem ácida 48
Tabela 4: Teor de sódio (%Na) do TTNT lavado4
Tabela 5: Denominação de amostras após pós-tratamento térmica
(calcinação) 44
Tabela 6: Planejamento experimental- pós-tratamento ácido 48
Tabela 7: Fases cristalinas e tamanho médio de cristalito de anatásio 6
Tabela 8: Área específica das amostras69
Tabela 9: Resultados da análise termogravimétrica e de teor de sulfato 70
Tabela 10: Resultados da atividade fotocatalítica e propriedade
correlatas 82