PUC-RIo - Certificacdo Digital N° 0711234/CA

IV
Simulation Scenarios

The experiment conducted in the present work employs a simplified
simulation model trying to replicate the IP video environment, as close as
possible, as far as packet sizes and channel erasure parameters are considered.
The main target of this experiment is to compare the performance of video
transmission under different erasure protection schemes — an LT based scheme
is compared against two Reed-Solomon based schemes.

We made the choice of Reed-Solomon due to its known higher perform-
ance against simple parity codes. Reed-Solomon is also included as a possible
scheme in the RFC2733 [4].

The environment including LT erasure protection is described in sec-
tion IV.1 . The subsequent sections consider protecting the data with RS code
based protection schemes.

With the built setup, the following will be the outcomes examined:

— Comparison of the overhead required by the scheme with the LT encoder
to achieve video transmission with a given quality, with those required by

the schemes which use Reed-Solomon codes to achieve the same quality;

— Comparison of the LT code and Reed-Solomon behaviors upon different

channel erasure profiles;

— Real streaming of Transport Stream content and comparison of the result
with the non-Fountain practical approach, when submitted through the

same [P network.

The video quality will be quantified by using the objective Blocking
Artifacts measurement presented in [12]. Subjective evaluation is also assessed
by examining the decoded video content or printed frames included in the

next chapter, which presents the results.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 38

IV.1 Fountain Encoder Simulation

The Fountain encoder construction employed herein is shown in figure
IV.1.

Lower
Protocols/
PEC

bi) b y ¢ ¢
o Birin R Bur e ' g:)ci

Transport I)
|
|
|
I

Stream
File
User Tanner Graph

Param.

Figure IV.1: LT Encoder

Where the following notation is used:
b(i) is the individual byte read from the Transport Stream file.
TSger is the sync evaluation block of each TSP.
Birin is the LT encoder input buffer.
urr is the sequence of input blocks for the LT encoder.
Eir is the LT encoder.
c is the sequence of encoded blocks from the LT encoder.
Bitout is the encoder output buffer.
I;r is the LT interleaver.
p is the sequence of UDP payload blocks.
UDP,ck is the UDP packetizer.
udp is the sequence of network packets.

Most relevant items will be explained in details in the following sub-

sections.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

39 1V.1. Fountain Encoder Simulation

(a) Input file and TS Selection Block (7'Ssgr)

The Transport Stream samples employed in this work can be found in
[15]. Some samples do not start exactly with a sync byte, i.e. these do not
match with the starting point of a TSP being carried.

The TS Selection block analyzes the syc bytes of the TSP’s present
in the TS sample and makes the selection of valid TSP’s to be fed to the FEC
input buffer.

In order to define the starting point of the Transport stream file being
read as the first byte of the next integral Transport Stream packet, an auxiliary
188 bytes long vector entitled a is created. If the original TS file is valid, there
will be a sync byte at some point in vector a. The vector entitled input_aux

is the result of reading bytes directly from the source TS file:

fid=fopen(’SPTS sample.ts’,’r’);
input_aux=fread(fid) ;
fclose(fid);

a=input_aux(1:188);

The start variable indicates the position of the next sync byte found in
the string, given by 47 HEX (= 7T1DEC).

start=find(a==71);

Finally, the input vector containing complete TSP’s, denominated

input_TS, is obtained:
input_TS=input_aux(start: ((start-1)+(nTSPs*188)));

This pre-processing assures working with full Transport Stream packets
in the original file. This operation can be repeated for every new TSP read,
but it is expected that start will match the first byte position of every new

TSP from this point on.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 40

(b) Input Buffer (Brri,)

This block stores the incoming bytes read from the source file into vectors
designated upr(i), of length %k, which corresponds to the LT encoder source
block dimension.

Each vector upr(i) is a sequence of TSP’s, represented by vectors
(sl, S9,..., sNtSp).

Thus, the input buffer provides the sequence of L'T source blocks

Upr = (ULT(l), urr(2),. .., uLT(ﬁ)) (1)

where (3 is the amount of LT source packets produced within the interval

examined.

(c) LT Encoder block (Epr)

LT-encoding can be achieved by simply multiplying every component
vector upr(7) belonging to the sequence of vectors upr by the matrix G, of
dimensions (k,n), which characterizes the LT-encoder. The encoder output is
a sequence of vectors of length n, given by ¢ = (cl, Co, ..., c5), where [is the
amount of encoded blocks produced within the interval examined and each

component vector is given by the notation

C;, = (cl(l),cl(2),,c,(n)) (2)

User defined parameters

Still referring to fig. IV.1, the User Param. box will provide the set
of parameters defined by the user to generate the matrix G employed for
encoding.

The following parameters characterize the encoder:
0 is the failure probability defined by the user.
¢ is a constant defined by the user.

7(7) is given by

£ fori=1,...k/(R—1);
(i) = ¢ 2In(£), fori=Fk/R;
0, fori=k/R+1,.. k;

B(i) given by
56) = D 7(0) + pli)

=1

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

41 1V.1. Fountain Encoder Simulation

w(1) given by
(i) + (i)

(i) = 3
Once the Robust Soliton distribution g = (u(1),..., (i), ..., pu(k)) is
obtained, it will be used in the generation of the degrees vector d, necessary for
the construction of the generator matrix G. The Robust Soliton Distribution
p defines the probability of an element of the degree’s vector d to assume an
integer value between 1 and k.
In order to translate this information into the degrees vector d, we make

use of an auxiliary vector T of the same dimension of the vector d:

T = (T(1),...,T(k+1)) (3)
where:

T(1) = 0

T@G) = Zﬂ(j),@:z, k+1

The vector T will define k intervals between [0, 1], having threshold 7'(i),
for i = 1 : k. A uniform distribution in the interval [0,1] is sampled for
¢ =1,...,k and the degree d(¢) will be set equal to 7 if the sample value
ds(7) falls within the interval [T'(7),T'(i = 1)].

The generator matrix is created as a sparse matrix capable of allocating
a number of non-zero elements equivalent to the sum of the elements of the
degrees vector, from which G is generated. The n-th column of GG is created with
the amount of non-zero elements equivalent to the value of the n-th element
in the degree vector generating the matrix.

Finally, a random permutation of the elements in the column of G assures
that d source symbols are randomly chosen in the generation of each encoding

symbol.

(d) Encoder’s Output buffer (Brrou)

In the output buffer, each vector ¢(i) of the sequence c, provided by
the encoder, is stored as the columns of a matrix entitled C, of dimension
[n, 5], where n is the length of the LT encoded block and /3 the amount of
encoded blocks generated within the time interval observed and arranged as
the columns of C. The lower threshold for the output buffer capacity is then
given by n - (.

For notation purpose, C is given by:

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 42

C= (cl;cg;...,05). (4)

(e) Interleaving (I;r) and UDP packing (UDP,)

The interleaver provides the sequence p from the matrix C, by selecting
groups of its lines. We picked a value of 5 such that an integer amount of lines

is picked in order to compose one network packet.

P = (p17p27---,pc)- (5)

where (is the amount of p; blocks generated within the interval observed.

Each component p; is given by the concatenation of v lines of C:

pi = (C(i,:),C(i+1,2),...,C(,i+ (v — 1)) (6)
Hence, each vector p; has size v - bytes, being n the LT encoder output
block size.

As a result, the interleaving operation can be characterized as follows:

bi = (Cl<i)7 C2<i)7 s 765@)7 SR Cﬁ@ + (V - 1))
where a zig-zag scan is accomplished across v lines of the matrix C. In

other words, each network packet udp; will contain v lines of C.

For the sake of simplification, in the simulation herein, £ is made of the
size of a TSP. Considering the MTU of 1,500 bytes, v equals seven.

The user parameters employed in the LT encoder, namely the information
provided by the Tanner Graph, have to be provided to the LT decoder. We
assume that the same is appended unscrambled to the first bytes of the payload
section of each UDP packet. This is, for example, the method employed in
ETSI102034 [21] and in the RFC5052 [9].

(f) IP Erasure Channel

In this box, we assume that the UDP packets are encapsulated into
lower level protocols. Moreover, channel packet erasures occur, resulting in
the random erasure of some components UDP(i) belonging to the sequence
UDP, depending on the channel erasure rate.

At the receiving end, a sequence

y=(y1,y2 -, yn)

where N” < N’, to account for packet losses. If no packets were lost, we will

have y; = x;, otherwise y; = xy,, with ¢; known to the receiver.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

43 IV.2. Fountain decoder simulation

At implementation level, this can be easily accomplished by randomly
erasing the columns in the generator matrix used to decode the incoming
string, i.e. columns common to the same IP packet. It can be verified that
erasing all none-zero elements in a column of the Generator matrix is the same
as erasing all connections in the Tanner graph to a particular encoding symbol.

This symbol will be handled as unknown by the binary erasure channel receiver.

IV.2 Fountain decoder simulation

The construction of the Fountain decoder implemented herein is depicted
in figure IV.2.

t ’ A
udp’ | upp | p B P L c D w | g
De-Pack DECin LT LT DECout

[} Recovered
TS file

Lower
Protocols/

|

|

} User Tanner Graph information

| Param.
|

|

|

|

Figure IV.2: Fountain Decoder Simulation

The following notation is adopted:

udp’ is the sequence of UDP packets entering the decoder.

UDP De-Pack is the de-packetizer that extracts payload information from
incoming UDP packets.

> is the sequence of received network packets’ payload blocks.

|y
BpEecin is the decoder’s input buffer.
11?11* is the decoder’s inverse interleaver.

¢’ is the sequence of received LT encoded blocks.

Dyt is the LT decoder.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 44

upr is the sequence of recovered LT source blocks.

BbpEecout is the decoder output buffer.

Most important items will be explained in details in the following sub-

sections.

(a) UDP Unpacking block

This block receives the sequence udp’ = (udpl, udp,, ..., udpa), where
« is the amount of received UDP packets and ¢ corresponds to the amount
of UDP packets transmitted. Notice that due to erasures in the PEC channel,
o <g.

As the payload bytes p(i) are unpacked, these are provided to the
downstream buffer. We assume there is a mechanism to monitor packet loss,
such as RTP sequence numbering in each RTP packet. Such mechanism can
provide information to the upper layer channel decoder.

We also assume that this block retrieves information on how data was

encoded at the transmitter side and forwards it to the downstream LT decoder.

(b) LT decoder input buffer (Bpgci,) and de-interleaver
-1
)
This block restores the payload sequences p’ as v rows of the matrix C".

Information for § and v employed at the encoding side is necessary at this

point. The parameters § and v are explained in the previous sub-section.

Notice that:

size(C’,1) <= size(C,1)
size(C’,2) = size(C,2)

where the row sizes of matrices C’ and C differ by a factor of v.
The lines o C’ are picked by [L’% in order to compose the sequence c’.

Each component of c; is given by:

ci = (C'(+,4)) (7)

The de-interleaving is characterized as hereunder:

c; = (C'(1,1),C"(2,1),...,C"(n,19) (8)

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

45 IV.2. Fountain decoder simulation

(c) LT Decoding

The LT Decoder block loads the Generator matrix GG used in the encoding
side. We assume the same is provided by the UDP De-Pack block.

It also reads the incoming recovered LT-encoded packets. We assume
that the information concerning erasure positions is provided by lower level
protocols. This information can be retrieved through RTP packet numbering,
as explained in [1].

With the known erasure positions, the decoder erases all non-zero ele-
ments in the columns of G, which correspond to the positions of erased packets.

The block’s input is then given by the sequence of vectors (codewords)
¢. The sequence u'yr = (u’LT(l),u’LT(Q),) ..,u’LT(K)), is provided by the
decoder as a result of the decoding process — it should be kept in mind that

for most symbols it will happen that:

u'tr(j) = ().

But if decoding does not achieve completion, it may also happen that, some

symbols remain uncovered and delivered as erasure at the decoder output:
u'ir(j) = E.

If such is the case, the erasure will be, arbitrarily, transformed into a zero (or
a one) before being delivered to the the next processing box.

A brief explanation on the decoder’s implementation is next ensued.

LT decoder implementation

First, a variable designated Position is created, given by the amount of

non-zero elements in each column of G:

For i=1,...,N;
Position(i)= find(G(:,1i));

end

When the decoder finds a column with a single non-zero element, it discovers

the source symbol connected to that transmission node:

If Position(i)\equivl
u_hat_LT(j) = u_LT(j);

end

Once the source symbol u_hat_LT(j) is discovered, it is summed modulo

2 to all transmission nodes — also known as Neighbors nodes — connected to it.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 46

The positions of the Neighbors are defined by locating the non-zero elements
in the i-th line of the generator matrix G, where i is defined in the previous

step. We have thus: Neighbors_Positions=find(G(Positions,:))

The discovered source symbol is XOR’ed to the transmitted neighbors:

c_hat_in(Neighbors_Positions) = ...
bitxor(c_hat_LT(Neighbors_Positions), u_hat_LT(j)(j))

Finally, the corresponding connections in Tanner graph are erased, what is the

same as erasing the corresponding non-zero elements in G:

For Neighbors_Positions = 1:

G(j,Neighbors_Positions)=G(j,Neighbors Positions)-1

Fig. IV.3 illustrates the referred processing.

A “single-neighbored” encoding This connection is erased as well as all others within same row when
symbol has been found: the discovered symbol is x-ored onto its remaining neighbors:
0 0 0
0 0
0 [000 111101 .. 0000000D000..
1 0 0
0 0
0|6) ol €) ol €
0 0 0

Figure 1V.3: Processing of G upon each iteration

(d) LT decoder output buffer (Brrppcow:) and de-
interleaving (/)

The output buffer stores the decoded packets provided by D_LT as rows
of a matrix with dimension [Lrg, K1 r|, both explained in previous sections.
Finally, the de-interleaver recovers the original TSP’s, which are written to the
recovered file. Once all TSP’s have been written, the same will be ready for

analysis.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

IV.3. Repeating the Experiment with Reed-Solomon Codes:
47 one-dimensional scheme

IV.3 Repeating the Experiment with Reed-
Solomon Codes: one-dimensional scheme

The simulation presented in the previous section, in which the TS file is
protected by an LT code, is repeated, for the sake of comparison, with schemes
based on Reed-Solomon codes (RS codes, in short). Reed-Solomon codes are
cited, for instance, in the RFC presented in [4], that defines a payload format
for FEC in RTP streams. Reed-Solomon Codes are also frequently adopted as
an optional coding scheme by equipment manufacturers.

Next, a single dimensional RS code with a pre-interleaving stage is
employed. It is followed by a simulation that includes the second dimension of
the RS code. The simulations herein are based in the parametrization provided

in [20] and in the framework described in [9].

(a) RS-1D encoder
The RS-1D encoder is depicted in fig IV.4 and is very similar to the L'T

scheme presented in the previous section.

bii) tsp(j) Sy S0 RSyt c P
@—‘ TSt }7 Brs in Ers " Brso Irs }7 Pack

Transport [}
Stream :

I

I

Lower
Protocols/
PEC

File

Figure IV.4: RS-1D Encoder

The following notation is employed:

b(i), TSse1, tsp(i), IPpack, UDP(j) have the same definition as in the LT

simulation.
Brsin is the RS encoder input buffer.
S is the matrix of TSPs stored in the input buffer.

Igrs is the RS interleaver.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 48

RS;,, is the RS source block.

ERs is the RS encoder.

RS, is the RS encoded block.

BRrsout is the Reed-Solomon TP packing buffer.

C is the matrix of RS encoded packets.

The composition of the UDP packs is very similar to IV.1. The matrix C
has dimension [Lygp, ngrs|, being ngrs the RS output block size. The packing
into UDP packets is accomplished through selection of groups of seven columns
of C, distributed along the payload section of each network packet. The

simulation of packet erasures is the same.

(b) RS-1D decoder

The single-dimensional Reed-Solomon decoder is shown in figure IV.5.

A A A
UDP P c . Sau Sin
DePack | Boecn s’ ‘ — Drs Boecou

T Recovered
||
I
|
| |
|

>

Protocols/

TS file

Figure IV.5: RS-1D decoder

The following notation is employed:
UDP’(i), IP de-pack,p’(j), tsp(k) are the same as in IV.1.
Bpgcin is the RS decoder input buffer.
RSGyur is the RS encoded block received.
Dgg is the RS decoder.

RS}y is the recovered RS source block.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

I1V.4. Repeating the Experiment with Reed-Solomon Codes:
49 two-dimensional case

BpEecout is the RS decoder output buffer.
Iﬁls is the inverse RS interleaver.

The RS Decoder box reads the incoming RS-encoded packets, the string
of vectors (codewords) ¢. The sequence Ugrs = (ﬁRs(l),ﬁRs(Q), . .,ﬁRS(K)),
will be the sequence of symbols recovered by the decoder. Differently from the
LT scheme, the decoder either accepts the packet as received without error or

declares the whole packet as erased. In other words, it will either happen

upr(j) = upr(f).

or
ﬁLT(j) =FE.

In such case, the erasures can be arbitrarily transformed into zeros (or

into ones) before being delivered to the the next processing box.

IV.4 Repeating the Experiment with Reed-
Solomon Codes: two-dimensional case

(a) RS-2D encoder

Fig. IV.6 shows the workflow for the two-dimensional Reed-Solomon

encoder implemented herein.

7 eall) 7 e2m) [e2u(n)

L 59 ¥ / Bl o / o
TSseL i Brsn 1 Erst ﬁ{BRSwM % (" Ee 1 Baswm Irs %IPPack

Transport T
|
|
|

Lower
Protocols/

Stream —
File
User User

Param. Param.

Figure IV.6: RS-2D Encoder

The following notation is employed:

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 50

b(i), TSge1, tsp(i), Brsin, S have the same definition as in the RS-1D

scheme.
Irs is the RS interleaver for the first dimension only.

Ersi, Ers2 are the RS encoders for the first and second dimensions, respect-

ively.

BRrsout1s Brsoutz are the output block packing buffers for the first and second

dimensions, respectively.

C,1,Cy are the matrices composed by output blocks of the first and second
dimensions, respectively. These have sizes [krsi, Nrs1] and [krs2, Nrsal,
being krs1 and kgrge the source block sizes and Ngg; and Ngge output
block sizes for the RS encoders of the first and second dimensions,

respectively.

RSpack is the packetizer responsible for merging the original payload and

both overheads of the two separate dimensions into the same matrix.

C is the matrix of size [Ngs1, Ngso|, which contains both overheads from the

two dimensions and the original payload bytes.

IPpack is the IP packing block, which distributes the bytes of C across the
payload section of the UDP packets.

In the two-dimensional scheme, data is arranged into a long sequence
of square matrices and is split between two paths. In the first, the same is
inverted and line-wise encoded (vectors of length k; encoded with a systematic
RS-encoder), whereas in the second path, no inversion is made and encoding
is also performed on a line-by-line basis (vectors of length ky are encoded with
an RS-encoder). The processing is illustrated in Fig. IV.7.

The overhead blocks generated by the second dimension of the code are
indicated by FEC". According to [20], the second dimension is intended to

cope with single packet losses that might happen in addition to burst erasures.

The matrices C'; and Cy which result from storing the encoded blocks as
its rows, are typically rectangular. The overheads have now to be merged with
the original payload for transmission. These three components are arranged in
such a way that the same UDP packet will not contain bytes from the original

payload and from the resulting overheads, i.e., as if separate UDP packets were

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-Rio - Certificacdo Digital N° 0711234/CA

I1V.4. Repeating the Experiment with Reed-Solomon Codes:

51 two-dimensional case
_ [SSSSSSIIIIISISSSISSIIIIII) FSSSSSSSSSISIISIISSSSISSST
[-: |
|
IRRED TSP(6) TSPEL) | . TSPAL6) || recio) i
| RTP(0) RTP(0) ! |
e~ TS S oS jmmmomommmomoo—ooo——o—o—o oo :
¢ o :
[0} |
S| l I 1
[V | |]
Q | | | I
| ! | I
lJ. _________________________ L e o J1 _________ I
| |
| Tse) . TSP(6) TSP(7(L-1)) TSPIOLS) | ecipy i
| RTP(0) RTP(0) | |
o e I
| | | |
{ ' { ‘
| FEC(0) : : FEC(L-1) }
- } - ;
| L Packets |
[|

Figure IV.7: Two-Dimensional FEC

employed in the channel simulation, aiming to reproduce the framework in [21]
or [4], where separate ports are employed.

The matrix C, shown in fig.IV.8, is composed as follows:

C = zeros(k, (2N-k));
C(:,1:N) =C_1(:,1:N);
C(:,N+1:(2N-k)) = C_1(:,k+1:N)

| L RTP pack’s | | L RTP pack’s |
I l I \
w w
= _
[5) o
2 . = g
& § Q Packetizer & §
o 14
Q Q
o o
Q‘ Stuffing

Figure IV.8: Re-arrangement of data subjected to transmission

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

Chapter 1V. Simulation Scenarios 52

In the IP_Pack block, the columns of C are distributed along the payload
section of the UDP packets, as in the IP packing exposed in section IV.1.

Finally, we assume that the user parameters, necessary at the decoding

side, are multiplexed in the IP_Pack block.

(b) RS-2D decoder
The RS-2D decoder is depicted in figure IV.9:

Protocols/
PEC

/ / /

! ! !
UDP / El / €3 - / 8y
DePack | | B ks] Dre) Boeow (F [Dt — Brs

T } Recovered
|
' |
' |
' |
' |
|

TS file

Figure 1V.9: RS-2D decoder

The following notation is employed:

UDP’(i), IP de-pack,p’(j), tsp(k) are the same as in IV.1.
Bprcin is the RS-2D decoder input buffer.

C’ is the RS-2D encoded block received.

RSsgr1 is the RS encoded packet selector for the first dimension.
RSsgr2 is the RS encoded packet selector for the second dimension.

1, C, are the recovered C; and Cy matrices of payload and encoded packets,

as defined in the previous section.
Dgg1 is the RS decoder of the first dimension.
Dgs2 is the RS decoder of the second dimension.

RS}y is the recovered RS source block.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

PUC-RIo - Certificacdo Digital N° 0711234/CA

I1V.4. Repeating the Experiment with Reed-Solomon Codes:
53 two-dimensional case

BpEecout is the RS decoder output buffer.

Iﬁé is the inverse RS interleaver.

The payload bytes de-capsulated from the UDP packets by the Brsprcin
are arranged as lines of the matrix C.

Again, we assume that the erasures have known positions, that were
identified by RTP packet numbering and informed to upper layers of interest,
such as the channel decoder. It can be verified that due to erasures in the IP

channel:
size(C_recovered,2) >= size(C_,2)

The difference given by size(C_recovered,2) - size(C_,2) is a mul-
tiple of &, specified in the previous sub-section as the amount of columns
grouped into the same UDP payload.

Hence, it can also be verified that:

size(C_1,2) >= size(C_1RX,2)
size(C_1,2) >= size(C_2RX,1)

C: and (s are provided by the blocks RSsgr1 and RSsgro respectively.
These blocks literally "crop" the overhead column that is not useful for the
corresponding downstream Reed-Solomon decoder.

The modules entitled SUM will check the integrity of S’ provided by the

first dimension.

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

VOIVEZTTLO oN [enbia oedeonla)d - o14-oONd

DBD
PUC-Rio - Certificação Digital Nº 0711234/CA

