

Oswaldo Ángel Francisco Robles Castillo

Análise Experimental do Escoamento de Emulsões Óleo em Água através de Micro-capilares com Garganta

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC - Rio.

Orientador: Prof. Márcio da Silveira Carvalho

Rio de Janeiro Abril de 2011

Oswaldo Ángel Francisco Robles Castillo

Análise Experimental do Escoamento de Emulsões Óleo em Água através de Micro-capilares com Garganta

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Márcio da Silveira Carvalho Orientador Departamento de Engenharia Mecânica - PUC-Rio

Prof. Luis Fernando Alzuguir Azevedo Departamento de Engenharia Mecânica - PUC-Rio

Prof. Paulo Roberto de Souza Mendes Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 01 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Oswaldo Ángel Francisco Robles Castillo

Graduou-se em Engenharia Mecânica na Universidad Nacional de Trujillo - UNT (Trujillo, Perú) em 2004.

Ficha Catalográfica

Robles Castillo, Oswaldo Ángel Francisco

Análise experimental do escoamento de emulsões óleo em água através de micro-capilares com garganta / Oswaldo Ángel Francisco Robles Castillo ; orientador: Marcio da Silveira Carvalho. – 2011.

105 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Inclui bibliografia

 Engenharia mecânica – Teses. 2. Emulsões.
Micro-capilares. 4. μ-PIV. 5. Recuperação avançada de petróleo. 6. Meios porosos. I. Carvalho, Marcio da Silveira.
Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0912542/CA

Dedico este trabalho aos meus pais e irmãs, e em especial à Yngrid.

Agradecimentos

A Deus pela sua companhia.

Ao meu orientador, professor Márcio da Silveira Carvalho, pelos ensinamentos, dedicação, apoio e confiança em mim prestada.

Ao Departamento de Engenharia Mecânica da Pontifícia Universidade Católica de Rio de Janeiro.

Ao CNPq pelo auxilio financeiro concedido, indispensável na realização deste trabalho.

Aos membros da banca examinadora, que aceitaram revisar o trabalho e contribuíram com valiosas observações.

Aos amigos e colegas do grupo de trabalho do professor Márcio Carvalho e do LMMP pela sua ajuda direta ou indireta na realização deste trabalho.

Resumo

Robles Castillo, Oswaldo Ángel Francisco; Carvalho, Márcio da Silveira. Análise Experimental do Escoamento de Emulsões Óleo em Água através de Micro-capilares com Garganta. Rio de Janeiro, 2011. 105p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

No método de injeção de água, o óleo no reservatório é varrido até os poços produtores através de frentes de deslocamento não uniformes, deixando óleo estagnado em grandes regiões do reservatório. Frentes uniformes de deslocamento e uma melhor varredura do reservatório podem ser obtidas diminuindo a razão de mobilidade entre a água e o óleo. Normalmente, esta diminuição é feita através da modificação da razão de viscosidade entre ambas as fases. No método de injeção de emulsões, o controle da mobilidade é alcançado bloqueando os poros ou caminhos gerados pela água com gotas da fase dispersa com diâmetro da mesma ordem ou maior do que o tamanho de poro. A aplicação de emulsões no controle da mobilidade e o efeito do bloqueio de poro podem ser desenvolvidos mediante a análise de diferentes regimes de escoamento de emulsões em meios porosos. Neste trabalho, o estudo do escoamento de emulsões em meios porosos foi realizado mediante duas abordagens experimentais utilizando um micro-capilar com garganta para modelar uma garganta conectando dois poros adjacentes. Na primeira abordagem experimental, quantificou-se a queda de pressão para diferentes vazões com emulsões de três tamanhos de gota e duas concentrações de óleo em dois capilares diferentes. Os resultados confirmam que a razão entre o diâmetro da garganta do capilar e o tamanho de gota influencia fortemente a relação vazão-queda de pressão. Os resultados mostram que, para baixos números de capilaridade, o escoamento de emulsões é dominado por efeitos capilares e leva a uma diminuição da mobilidade local. Na segunda montagem experimental, o sistema de micro-velocimetria por imagem de partículas ou µ-PIV foi utilizado para medir campos de velocidade do escoamento através de micro-capilares com garganta. Resoluções espaciais da ordem de 20µm foram obtidas para o campo de velocidade calculado pela média amostral de vários campos instantâneos de velocidade. Os resultados experimentais da relação vazão-queda de pressão e os campos de velocidade obtidos mediante o μ -PIV representam informação de grande valor para o desenvolvimento de modelos de redes de capilares no estudo do escoamento de emulsões em meios porosos.

Palavras-chave

Emulsões; Micro-Capilares; µ-PIV; Recuperação Avançada de Petróleo; Meios Porosos.

Abstract

Robles Castillo, Oswaldo Ángel Francisco; Carvalho, Márcio da Silveira (Advisor). **Experimental Analysis of the Oil-in-water Emulsion Flow through Constricted Micro-capillaries.** Rio de Janeiro 2011. 105p. M.Sc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade de Rio de Janeiro.

During water injection, oil is swept through the reservoir to production wells by non-uniform displacement fronts originating large areas of entrapped oil in the reservoir. Uniform displacement fronts and better reservoir sweep can be achieved by improving the mobility ratio between water and oil. Usually, mobility ratio is reduced by changing the viscosity ratio between both phases. When injecting emulsions, mobility control is achieved by blocking water paths with dispersed phase drops with diameter of the same order of magnitude of the pore throats size. The application of emulsions as mobility control agents and the pore blocking effect may be developed by analyzing different flow regimes of emulsions through porous media. In the analysis presented here, two experimental setups were used using a constricted quartz capillary to represent a pore throat that connects two adjacent pore bodies to study the flow of emulsions in the pore scale. In the first experiment, pressure drop was measured at different imposed volumetric flow rates for three oil drop size emulsions at two oil concentrations and two different quartz capillaries. The results show that the ratio between the capillary constriction diameter and the oil drop size has a strong influence on the flow rate-pressure drop relation. Experimental results also indicate that the emulsion flow dominated by capillary effects (low capillary number) leads to a decrease of local mobility. In the second experiment, a microscopic particle image velocimetry (µ-PIV) system was used to measure velocity fields of the flow of emulsion through a constricted micro-capillary. Ensemble-average was used in order to obtain resolution in the order of 20 µm. The flow rate-pressure drop relation results and the µ-PIV velocity fields of the emulsion flow through a constricted micro-capillary represent invaluable information that can be used in the development of a capillary network model to study the flow of emulsions through porous media.

Keywords

Emulsions; Micro-Capillaries; µ-PIV; Enhanced Oil Recovery; Porous Media.

Sumário

1. Introdução	19
1.1. A produção de petróleo	21
1.2. Motivação	25
1.3. Objetivos	27
1.4. Escopo	28

2. Modelo simplificado de escoamento bifásico em um	
micro-capilar com garganta	29
2.1. Conceitos fundamentais	29
2.1.1. Emulsões	29
2.1.2. Estabilidade das emulsões	30
2.1.2.1. Surfactante	31
2.1.2.2. Concentração micelar crítica	32
2.1.3. Reologia das emulsões	33
2.1.4. Tensão superficial e tensão interfacial	33
2.1.5. Número de capilaridade	34
2.2. Escoamento de emulsões através de micro-capilares	34
2.2.1. O fator de bloqueio	34
2.2.2. Mecanismos de bloqueio	36
2.2.2.1. Mecanismo Viscoso	36
2.2.2.2. Mecanismo Capilar	38
2.3. Revisão bibliográfica	
3. Medição do fator de bloqueio	43
3.1. Abordagem experimental	43
3.1.1. Introdução	43
3.1.2. Formulação e preparação das emulsões	43
3.1.2.1. Preparação das fases	44
3.1.2.2. Caracterização das fases	46

49
51
54
54
56
58
58
60
61
65
66
67
67
71

4. Medição de campo de velocidade no escoamento bifásico	
através de um micro-capilar com garganta	73
4.1. Introdução	73
4.2. Abordagem experimental	76
4.2.1. Escolha dos fluidos de trabalho	76
4.2.2. Bancada experimental	77
4.2.2.1. Sistema de injeção	77
4.2.2.2. Sistema de micro-velocimetria por imagem de partículas	
4.2.3. Procedimento experimental	
4.2.4. Dificuldades encontradas no processo experimental	
4.3. Resultados	
4.3.1. Campo de velocidade no escoamento da fase aquosa	
através de um micro-capilar com garganta	87
4.3.1.1. Escoamento da fase aquosa através da seção reta	
do micro-capilar com garganta	87
4.3.1.2. Escoamento da fase aquosa através da seção convergente	
da garganta do micro-capilar	91

4.3.2. Campo de velocidade no escoamento bifásico	
através de um micro-capilar	96
4.4. Comentários	98
5. Comentários finais	100
	100
Referências bibliográficas	102

Lista de figuras

Figura 1.1:	Consumo de energia mundial por tipo de combustível,	
	1990-2035 (Quatrilhão BTU).	19
Figura 1.2:	Estrutura esquemática de um reservatório de petróleo.	22
Figura 1.3:	Esquema de método miscível utilizando CO2 como	
	solvente.(a) Deslocamento ideal. (b) Deslocamento	
	com influência das densidades dos fluidos.	
	(c) Deslocamento com influência da alta diferença	
	de viscosidades.	24
Figura 1.4:	Esquema de método de injeção micelar de polímero.	25
Figura 1.5:	Representação esquemática do método de recuperação	
	de petróleo mediante injeção de água.	26
Figura 2.1:	Tipos de emulsão segundo os seus componentes:	
	emulsão água em óleo, emulsão óleo em água e	
	emulsão múltipla a/o/a.	30
Figura 2.2:	(A) Esquema simplificado de uma molécula ativa	
	de superfície. (B) Estrutura molecular do surfactante	
	dodecil sulfato de sódio.	31
Figura 2.3:	Estrutura e orientação das moléculas de surfactante.	32
Figura 2.4:	Processo de formação de micelas de surfactante.	32
Figura 2.5:	Esquema do escoamento de uma gota de fase dispersa	
	através de um capilar reto.	36
Figura 2.6:	Perfis de velocidade do escoamento bifásico óleo-água	
	através de um capilar reto de 100 µm de diâmetro	
	para uma queda de pressão de 5 kPa.	37
Figura 2.7:	Esquema do escoamento de uma gota de fase dispersa	
	através da garganta do capilar.	38

Figura 3.1:	Balança e surfactante utilizados na preparação das fases.	45
Figura 3.2:	Dispensador de glicerina e agitador magnético usados	
	no processo de homogeneização da fase contínua.	45
Figura 3.3:	Bomba de vácuo e filtros empregados	
	nos processos de filtração.	46
Figura 3.4:	Balança e picnômetro utilizados na caracterização	
	das fases.	47
Figura 3.5:	Tensiômetro LAUDA VO 2001 e anel utilizado	
	na medição da tensão superficial da fase contínua.	47
Figura 3.6:	Pipeta de volume ajustável usada na preparação	
	das emulsões.	49
Figura 3.7:	Misturador mecânico rotativo Ultra Turrax T-25	
	e dispersor rotor-estator.	50
Figura 3.8:	Componentes do analisador de partículas	
	Mastersizer 2000.	51
Figura 3.9:	Principio de determinação da distribuição do tamanho	
	de partículas por difração laser.	51
Figura 3.10:	Sistema Mastersizer 2000 e Hydro 2000MU.	52
Figura 3.11:	Distribuição de tamanho de gota das emulsões	
	de 5% em volume de óleo.	53
Figura 3.12:	Distribuição de tamanho de gota das emulsões	
	de 15% em volume de óleo.	53
Figura 3.13:	Esquema da bancada experimental.	54
Figura 3.14:	(a) Seringa, torneira três vias e capilar utilizados	
	na injeção das emulsões. (b) Montagem dos	
	componentes na bomba de seringa.	55
Figura 3.15:	(a) Capilar 100/50µm. (b) Capilar 200/50µm.	56
Figura 3.16:	Transdutor de pressão Validyne DP15-TL.	56
Figura 3.17:	Placa de terminais Validyne P/N 12871-1 e placa	
	de interface Validyne UPC2100.	57
Figura 3.18:	Cabo P/N 12870-5 utilizado na conexão	
	entre as placas.	57
Figura 3.19:	Microscópio invertido Carl Zeiss Axiovert 40MAT.	58
Figura 3.20:	Montagem do sistema de injeção e transdutor.	59

≤
9
5
δ
2
ģ
2
ž
٩
Ë
Ξ
-
ã
ည့်
<u>ö</u> .
Ť
ē
O
<u>'</u>
ä
<u> </u>
2
ີ
_

Figura 3.21:	Montagem do sistema de injeção e transdutor	
	no microscópio.	59
Figura 3.22:	Roteiro seguido no desenvolvimento da presente	
	abordagem experimental.	62
Figura 3.23:	Queda de pressão em função da vazão no escoamento	
	das emulsões de 5% de óleo através do capilar	
	100/50µm.	62
Figura 3.24:	Queda de pressão em função da vazão no escoamento	
	das emulsões de 5% de óleo através do capilar	
	200/50µm.	63
Figura 3.25:	Queda de pressão em função da vazão no escoamento	
	das emulsões de 15% de óleo através do capilar	
	200/50µm.	63
Figura 3.26:	Valores médios de queda de pressão em função	
	da vazão no escoamento das emulsões de 5% de óleo	
	através do capilar 100/50µm.	64
Figura 3.27:	Valores médios de queda de pressão em função	
	da vazão no escoamento das emulsões de 5% de óleo	
	através do capilar 200/50µm.	64
Figura 3.28:	Valores médios de queda de pressão em função	
	da vazão no escoamento das emulsões de 15% de óleo	
	através do capilar 200/50µm.	65
Figura 3.29:	Fator de bloqueio em função do número de	
	capilaridade no escoamento das emulsões de 5%	
	de óleo através do capilar 100/50µm.	68
Figura 3.30:	Fator de bloqueio em função do número de	
	capilaridade no escoamento das emulsões de 5%	
	de óleo através do capilar 200/50µm.	69
Figura 3.31:	Fator de bloqueio em função do número de	
	capilaridade no escoamento das emulsões de 15%	
	de óleo através do capilar 200/50µm.	70

Figura 4.1:	Esquema da bancada experimental do sistema µ-PIV.	77
Figura 4.2:	Seringa de vidro de 100 µl utilizada na injeção	
	da fase dispersa.	78
Figura 4.3:	Microscópio de fluorescência refletido Olympus [®] .	79
Figura 4.4:	Objetiva Olympus 10x0.30 e cubo de filtro.	80
Figura 4.5:	Micro-esferas de poliestireno FluoSpheres®.	80
Figura 4.6:	Fonte de energia e cabeça do laser Nd:YAG SOLO III.	81
Figura 4.7:	Câmera CCD POWERVIEW TM de 1.4MP	
	Mod. Sensicam-630066.	82
Figura 4.8:	Sincronizador LaserPulse – Mod. 610034.	82
Figura 4.9:	Montagem do sistema de injeção.	84
Figura 4.10:	Montagem do sistema de injeção no microscópio.	84
Figura 4.11:	Campo de vetores velocidade do escoamento através	
	da seção reta obtido do processamento das imagens	
	no software INSIGHT 3G TM .	88
Figura 4.12:	Campo de velocidade do escoamento da fase aquosa	
	através da seção reta do micro-capilar.	89
Figura 4.13:	Campo de velocidade do escoamento através da seção	
	reta do micro-capilar apresentando 50% dos perfis	
	de velocidade.	89
Figura 4.14:	Comparação dos perfis parabólico e experimental.	90
Figura 4.15:	Campo de vetores velocidade do escoamento através	
	da seção convergente obtido do processamento	
	das imagens no software INSIGHT 3G TM .	91
Figura 4.16:	Campo de velocidade do escoamento da fase aquosa	
	através da seção convergente do micro-capilar.	92
Figura 4.17:	Campo de velocidade do escoamento através da seção	
	convergente do micro-capilar apresentando 50%	
	dos perfis de velocidade.	92
Figura 4.18:	Campo de velocidades obtido no estudo do	
	escoamento através de um micro-bocal,	
	desenvolvido por Wereley.	93

Figura 4.19:	Comparação dos perfis parabólicos e experimentais	
	na entrada e saída da seção convergente	
	do micro-capilar.	94
Figura 4.20:	Variação da velocidade máxima do escoamento	
	da fase aquosa na seção convergente do micro-capilar.	95
Figura 4.21:	Variação da velocidade máxima média do escoamento	
	da fase aquosa na seção convergente do micro-capilar.	95
Figura 4.22:	Campo de velocidade do escoamento bifásico através	
	da seção reta do micro-capilar.	97

Lista de tabelas

Tabela 2.1:	Macro-emulsões versus micro-emulsões.	29
Tabela 3.1:	Propriedades das fases contínua e dispersa das	
	emulsões a 23°C.	48
Tabela 3.2:	Parâmetros considerados no processo de emulsificação.	50
Tabela 3.3:	Parâmetros de emulsificação e características	
	morfológicas das emulsões.	53