
4
Numerical Procedure

This chapter presents the numerical procedure used to solve Eq.(3.52), which

consists of an operator splitting technique employed together with a backward

differentiation formula method, used to integrate stiff systems of ordinary

differential equations.

4.1
Operator Splitting Technique

In the simulation of stirred reactors, such as those presented in the preceding

chapter, a system of equations similar to Eq.(3.52) must be solved for each

particle in the reactor in order to predict the composition evolution. This

system of equations has two terms, each of which associated to a different

physical phenomena, micro-mixing and chemical reaction. To solve Eq.(3.52)

for each particle in a stirred reactor it is used an operator splitting technique,

also employed by Yang & Pope (1998a) [97] that allows the splitting of this

system of equations into two systems, a pure mixing system

dφ

dt

(j)

= Γ(j)(t), (4.1)

and a pure chemical reaction system

dφ

dt

(j)

= S(φ(j), t). (4.2)

In the first fractional step, given an initial composition φ(j)
0 and a time

step ∆t, the pure mixing system, Eq.(4.1), is solved to determine φ(j)
mix(t+∆t).

In the next fractional step, the pure chemical reaction system, Eq.(4.2), is

solved from an initial composition φ(j)
mix(t+∆t) over a time step ∆t to obtain

φ(j)(t+∆t). The overall process of integration via operator splitting technique

can be represented as

φ(j)(t)
mixing
−→ φ(j)

mix(t+∆t)
reaction
−→ φ(j)(t+∆t). (4.3)
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The advantage of an operator splitting technique lies in the fact that each

term in the evolution equation can be solved separately, using a specific efficient

numerical method to treat the particular features inherent to the physical

phenomenon modelled by the term (Fox, 2003) [18].

4.2
Integration of Mixing Vector

4.2.1
IEM Mixing Model

For the IEM model, Eq.(4.1), becomes

dφ

dt

(j)

= −
φ(j) − �φ�

τm
, (4.4)

which has an analytic solution, for an initial composition φ(j)
0 , given by

φ(j)
mix(t) = �φ�+ ζe−2t/τm , (4.5)

where the vector ζ is given by

ζ = �φ� − φ(j)
0 . (4.6)

4.2.2
PMSR Mixing Model

For PMSR model, the pure mixing step is the following pair of equations

dφ

dt

(j1)

= −
φ(j1) − φ(j2)

τm
, (4.7)

dφ

dt

(j2)

= −
φ(j2) − φ(j1)

τm
, (4.8)

which has an analytical solution, for a pair of initial compositions φ(j1)
0 and

φ(j2)
0 , given by

φ(j1)
mix(t) = ζ1 + ζ2e

−2t/τm , (4.9)

φ(j2)
mix(t) = ζ1 − ζ2e

−2t/τm , (4.10)

where the vectors ζ1 and ζ2 are given by

ζ1 =
1

2

�
φ(j1)

0 + φ(j2)
0

�
, (4.11)

ζ2 =
1

2

�
φ(j1)

0 − φ(j2)
0

�
. (4.12)

DBD
PUC-Rio - Certificação Digital Nº 0812195/CA



Chapter 4. Numerical Procedure 66

4.3
Integration of the Reaction Vector

For the PaSR/IEM model, Eq.(4.2), becomes

dφ

dt

(j)

= S(φ(j), t), (4.13)

which is numerically integrated from a composition φ(j)
mix using the CVODE solver

that is part of the SUNDIALS suite by Hindmarsh et al. (2005) [28]. Similarly,

from a pair of initial compositions φ(j1)
mix and φ(j2)

mix, it is integrated the chemical

reaction system for PMSR model, which is given by the following system of

equations

dφ

dt

(j1)

= S(φ(j1), t), (4.14)

dφ

dt

(j2)

= S(φ(j2), t). (4.15)

The system of ordinary differential equations given by Eq.(4.2) is

inherently nonlinear since its right hand side is proportional to the rate of

reaction of the chemical species present in the reaction mechanism used to

model the specified stirred reactor (Williams, 1985) [96].

If this system of equations is linearized around an equilibrium

composition, the resulting system presents eigenvalues with real part of

vastly different values, since the time scales associated with the elementary

reaction in the reaction mechanism span over several orders of magnitude

(Williams, 1985) [96]. Thus, the ratio between the eigenvalues maximum and

minimum real part is very large, which is characteristic of a system of equations

subject to a condition called stiffness (Shampine & Thompson, 2007) [85].

4.3.1
Backward Differentiation Formula

In order to numerically integrate a stiff system of ordinary differential

equations, the CVODE solver has a family of implicit methods called backward

differentiation formula (BDF). Assuming that the exact solution for the

system given by Eq.(4.2) is known at the instants tn−q, tn−q+1, · · · , tn−1, tn,

where q is the order of the method, this class of methods compute the

approximated value of the function derivative at tn+1 using the values

φ(tn−q),φ(tn−q+1), · · · ,φ(tn−1),φ(tn). Thus, the approximation precision

increases with the method order.

DBD
PUC-Rio - Certificação Digital Nº 0812195/CA



Chapter 4. Numerical Procedure 67

The BDF method formula is given by

φ(tn+1) =
q−1�

j=0

αj+1φ(tn−j) +∆tnS [φ(tn+1), tn+1] , (4.16)

where αj are coefficients related to a particular method and the n-th time step

is defined as

∆tn ≡ tn − tn−1. (4.17)

Since BDF methods are implicit, in order to find a value for φ(tn+1), it

is necessary to solve a nonlinear system of algebraic equations given by

N [φ(tn+1)] = 0, (4.18)

where

N [φ(tn+1)] ≡
q�

j=0

αjφ(tn−j) +∆tnS [φ(tn+1), tn+1] . (4.19)

In the CVODE solver the system defined by Eq.(4.18) is solved iteratively

using the Newton-Rapson method which defines the following iteration

φm+1(tn+1) = φm(tn+1)− J−1 [φm(tn+1)]N [φm(tn+1)] , (4.20)

where the superscript m denotes the m-th approximation of φ(tn+1) and J is

the Jacobian matrix of N , which is represented, in the canonical base, by the

components

Jij [φ(tn+1)] ≡
∂Ni

∂φn
j

[φ(tn+1)] . (4.21)

Further details on this solution method may be found in

Hindmarsh & Serban (2006) [29]. The reader interested in numerical

analysis issues such as convergence, order and stability is referred to

Hairer et al. (1996) [27].

4.3.2
Truncation Error Control

The calculations described in the section 4.3.1 are performed using a

floating point arithmetic, which has finite precision, and are subject to

truncation errors. The CVODE solver estimates the local truncation error in

the computation of i-th component of φ(tn), φi(tn), and store these values in

the i-th component of the vector

� =
�
�1, · · · , �nφ

�T
. (4.22)
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The control of the local truncation error is performed using two

positive scalar parameters, εrel and εabs, which represent relative and absolute

tolerances, respectively. Roughly speaking, for each component of the vector

φ(tn), one can think εrel as a value which defines the number of correct digits

in a single time step. Conversely, εabs indicates a value which the number of

correct digits in each component of the solution vector need not be smaller.

The vector that stores the local truncation error must satisfy the

inequality

||�||wrms ≤ 1, (4.23)

where the weighted root mean square norm, denoted by ||·||wrms, is given by

the expression

||�||wrms ≡

���� 1

nφ

nφ�

i=1

�
�i
wi

�2

, (4.24)

where the i-th error weight is defined as

wi = εrel.|φi(tn)|+ εabs. (4.25)

The inequality defined by Eq.(4.23) provides a test to control the

estimated local errors of truncation such that |�i| must be less than or equal

wi, i.e.,

|�i| ≤ εrel.|φi(tn)|+ εabs. (4.26)

In order to |�i| satisfy the inequality given by Eq.(4.26) it is sufficient

that

|�i| ≤ εabs, or
|�i|

|φi(tn)|
≤ εrel. (4.27)

The global truncation error results from the accumulation of the local

errors of truncation and can exceed the local tolerances. So it is recommended

to use conservative (small) values for εrel and εabs, i.e., of the order of 10−6 and

10−9, respectively (Liu & Pope, 2005) [49].
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