
3
Modelling of Stirred Reactors

In this chapter the fundamental aspects related to the modelling of stirred

reactors are presented. These aspects cover basic definitions about the gas

system, the principles of gas phase thermochemistry, the balance equations

from continuum mechanics, two models for a spatially homogeneous transient

reactor and a geometrical interpretation of the chemical reactors equations on

the basis of the theory of dynamical systems. The presentation of the chemical

transformation assumes that the continuum hypothesis is valid for the reactive

gas mixture when such a mixture flows through a control volume.

3.1
Fundamental Definitions

The molar fraction of the i-th chemical species is defined as

Xi ≡
ni

n
, (3.1)

where ni is the number of moles of the i-th chemical species, n is the system

total number of moles, i.e,

n ≡

ns�

i=1

ni, (3.2)

where ns is the number of chemical species. It follows from the definition that

Xi satisfies

0 ≤ Xi ≤ 1, and
ns�

i=1

Xi = 1. (3.3)

The mass fraction of the i-th chemical species is defined as

Yi ≡
mi

m
, (3.4)

where mi is the i-th chemical species mass and m is the system total mass,

i.e.,

m ≡

ns�

i=1

mi. (3.5)
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It follows straightforward from the definition, that Yi satisfies

0 ≤ Yi ≤ 1, and
ns�

i=1

Yi = 1. (3.6)

The molar mass of the i-th chemical species, Wi, is defined as the mass

of 1 mol of this species, i.e., NA particles, where NA = 6.023 × 1023 is the

Avogadro number . The sum of the molar masses of all the species that compose

a homogeneous gas mixture weighted by the molar fraction is the mean molar

mass of the mixture,

W ≡

ns�

i=1

XiWi. (3.7)

Mass fraction and molar fraction are two different concepts used to

describe the amount of a chemical species in a gas mixture, and may be related

with the help of W and Wi,

Yi =
Wi

W
Xi. (3.8)

The molar concentration of the chemical species i is defined as

Ci ≡
ni

V
, (3.9)

where V is the volume of the system, whereas the mixture concentration is

defined as

C ≡

ns�

i=1

Ci =
n

V
. (3.10)

The partial density of the chemical species i is defined as

ρi ≡
mi

V
, (3.11)

whereas the mixture density , or density , is defined as

ρ ≡

ns�

i=1

ρi =
m

V
. (3.12)

Density and concentration are intensive properties of a gas mixture, which

are related via

ρ = WC. (3.13)
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3.2
Gas Phase Thermochemistry

3.2.1
Equation of State for Perfect Gases

A perfect gas is a model to describe a gas that is composed by a set of point

particles moving randomly that interact only through elastic collisions. This

class of gases obeys an equation of state relating temperature, pressure and

density called ideal gas law, which is given by

pV = nRT, (3.14)

where p is the pressure, R is the universal gas constant and T is the

temperature.

A consequence of the perfect gas model is that all the intensive

thermodynamical properties are known function of the mixture temperature

only. Herein it will be assumed that all the gas mixtures are composed by gases

that behave as a perfect gas.

3.2.2
Stoichiometry

A gas mixture is said to be stoichiometric if the fuel and the oxidizer are in

a proportion that are completely consumed during the reaction. If there is

an excess of fuel, the mixture is called fuel–rich, and if there is an excess of

oxidizer, it is called fuel–lean (Warnatz et al., 1999) [95].

The equivalence ratio is defined as

Φ ≡

XFu

XOx�
XFu

XOx

�

st

, (3.15)

where XFu is the fuel molar fraction, XOx is the oxidizer molar fraction and the

subscript st notes stoichiometric conditions. By definition, Φ is smaller than

one if the mixture is fuel-lean, greater than one if the mixture is fuel-rich and

unitary if the mixture is stoichiometric, i.e.,

Φ < 1 fuel − lean mixture, (3.16)

Φ = 1 stoichiometric mixture,

Φ > 1 fuel − rich mixture.
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3.2.3
Reaction Mechanism

During a chemical transformation the molecular bonds holding atoms in a

given molecule are broken and new bonds are formed with other molecules,

leading to a conversion process between bond and kinetic energy. The number

of atoms does not change in this transformation (Zel’dovich et al., 1985) [99].

A reaction mechanism with nr elementary reactions and ns chemical

species can be represented in the general form

ns�

i=1

ν
�

ijMi �
ns�

i=1

ν
��

ijMi, j = 1, · · · , nr, (3.17)

where Mi is the symbol of the i-th chemical species and the integers ν
�
ij and ν

��
ij

are, respectively, the forward and reverse stoichiometric coefficients of chemical

species i in the j-th elementary reaction. The Table 3.1 presents a chemical

kinetics mechanism, with 4 species (CO, O, CO2 and O2) and 3 reactions, for

the description of carbon monoxide oxidation (Gardiner, 2000) [21].

Table 3.1: Reaction mechanism for carbon monoxide (CO) oxidation. In this
table M represent a third body with a specific efficiency for each species
(fO2 = 0.4, fCO = 0.75 and fCO2 = 1.5).

Reaction
Ai βi Ei

(cm,mol, s) (cal/mol)

1: O2 + CO � CO2 +O 1.260× 1013 0.00 23682.94
2: CO +O +M � CO2 +M 1.540× 1015 0.00 1510.70
3: O +O +M � O2 +M 5.400× 1013 0.00 −899.69

Further information about reaction mechanisms can be obtained in the

work of Orbegoso et al. (2009) [65], that presents a survey of recent chemical

kinetics mechanisms available to model the combustion of simple fuels, such

as hydrogen, natural gas, Syngas and liquefied petroleum gas.
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3.2.4
Rate of Reaction

The transition from the initial to the final state is characterized by the chemical

reaction rates for the various species of the reaction mechanism. The net

production rate ω̇i of the i-th chemical species in a multistep mechanism is

given by

ω̇i =
nr�

j=1

νijrj, (3.18)

where the overall stoichiometric coefficients are

νij = ν
��

ij − ν
�

ij, (3.19)

and the overall reaction rate of the j-th elementary reaction, rj, is given by

rj = r+j − r−j , (3.20)

where the forward reaction rate r+j and the reverse reaction rate r−j are given

by

r+j = k+
j

ns�

i=1

C
ν
�
ij

i , and r−j = k−
j

ns�

i=1

C
ν
��
ij

i , (3.21)

with k+
j and k−

j being the rate constants for the forward and reverse j-th

elementary reaction.

The forward rate constant for the j-th elementary reaction is assumed to

evolve according to an Arrhenius law (Williams, 1985) [96],

k+
j = AjT

βj exp

�
−

Ej

RT

�
, (3.22)

where Aj is the pre-exponential factor , of the j-th elementary reaction, which

is representative of the molecular collision frequency at the average thermal

velocity, βj is temperature exponent of the j-th reaction and Ej is the activation

energy of the j-th elementary reaction, which describes a barrier of energy that

has to be overcome during the reaction.

The reverse rate constant for the j-th elementary reaction is related to

the forward rate and its determination will be given in the following subsection.
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3.2.5
Thermochemical Equilibrium

When the forward and the reverse reaction rate of the j-th elementary

reaction approach each other, the concentration of the chemical species

ceases to change and the system reaches a state of dynamic equilibrium

(Zel’dovich et al., 1985) [99], which can be expressed as

0 = k+
j

ns�

i=1

C
ν+ij
i − k−

j

ns�

i=1

C
ν−ij
i , (3.23)

which yields

Kcj ≡
k+
j

k−
j

=

ns�

i=1

C
ν−ij
i

ns�

i=1

C
ν+ij
i

=
ns�

i=1

C
νij
i , (3.24)

which defines the j-th elementary reaction equilibrium constant in

concentration units , Kcj . Note that it is also possible to define the j-th

elementary reaction equilibrium constants in terms of pressure units,

Kpj ≡

ns�

i=1

p
νij
i , (3.25)

and it is easy to show that the two equilibrium constants are related by

Kcj = Kpj

�
po

RT

��ns
i=1 νij

, (3.26)

where po is the pressure at the standard state.

From the definition of the Gibbs free energy (Warnatz et al., 1999) [95],

it is possible to show that

Kpj = exp

�
∆So

j

R
−

∆Ho
j

RT

�
, (3.27)

where the net change in entropy ∆So
j and the net change in enthalpy ∆Ho

j in

the j-th reaction are respectively given by

∆So
j ≡

ns�

i=1

νijS
o
i , (3.28)

and

∆Ho
j ≡

ns�

i=1

νijH
o
i . (3.29)

For all chemical species, the enthalpy of formation Ho
i and entropy in

standard state So
i are assumed to be known functions of temperature and can

be calculated, for example, using Chemkin-II package (Kee et al., 1989) [37].
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3.3
Equations of Balance

Classically, the fundamental principles of balances (mass, momentum, chemical

species and energy) are mathematically formulated in terms of partial

differential equations. These fundamental principles are presented here

without development, which may be found elsewhere Williams (1985) [96] or

Law (2006) [45].

The balance equations of the total mass, momentum, species mass and

energy read

∂ρ

∂t
= Γρ, (3.30)

∂(ρu)

∂t
= Γu, (3.31)

∂(ρYi)

∂t
= ΓYi + Ωi, i = 1, · · · , ns, (3.32)

∂(ρh)

∂t
= Γh, (3.33)

where t is the time; Γρ represents the mass convection; u is the velocity field;

Γu accounts for the momentum convection, external surface and body forces;

ΓYi describes the convective and diffusive transport of the i-th chemical species;

Ωi is the i-th chemical species source term; h is the specific enthalpy and Γh

accounts for all mechanisms of energy transport, i.e., conduction, convection

and radiation. These equations are supplemented by the equation of state,

Eq.(3.14), appropriate boundary and initial conditions.

3.4
Partially Stirred Reactor with IEM Model

A partially stirred reactor (PaSR) is a spatially homogeneous, transient, reactor

model governed by the competition of chemical reactions, turbulent mixing and

the residence time within the reactor, defined as

τr ≡
ρV

ṁ
, (3.34)

where ṁ is the mass flow rate entering the reactor. In such a reactor, a

statistically steady state of “unmixedness” may be maintained. In this sense,

this reactor is a chemical equivalent of the nondecaying homogeneous turbulent

flow, in which energy is continuously supplied to the system in order to

maintain the turbulence (Correa, 1993) [13].

A particular solution to such a reactor considers Monte-Carlo techniques,

in which the reactive system consists of np stochastic particles, evolving

adiabatically and at constant pressure. Under such hypothesis, Γρ = Γu = 0,

DBD
PUC-Rio - Certificação Digital Nº 0812195/CA



Chapter 3. Modelling of Stirred Reactors 58

and the equation of state determines the density for a given temperature

and mixture composition. The terms of enthalpy transport Γh and of the

chemical species ΓYi describe the turbulent transport micromixing process

(Pope, 1985) [69]. Thus, under the hypothesis of linear relaxation of the

properties towards the mean value, the balance equations for the the j-th

stochastic particle (j = 1, · · · , np) of this system read

dh

dt

(j)

= −
h(j) − �h�

τm
, (3.35)

dp

dt

(j)

= 0, (3.36)

dYi

dt

(j)

= −
Y (j)
i − �Yi�

τm
+

ω̇(j)
i Wi

ρ
, i = 1, · · · , ns, (3.37)

where the superscript (j) denote the j-th stochastic particle, τm is the mixing

time, �h� and �Yi� denote the ensemble average of h and Yi respectively, where

the ensemble average operator is defined as

�ψ� ≡
1

np

np�

j=1

ψ(j), (3.38)

being ψ a generic property of the reactive system.

Another statistical quantity that is useful in the description of a system

with stochastic particles is the ensemble variance, whereas the ensemble

variance operator is defined as

�
ψ�2�

≡
1

np

np�

j=1

(ψ(j)
− �ψ�)2, (3.39)

and can be shown that

�
ψ�2� =

�
ψ2

�
− �ψ�2 . (3.40)

Note that the micromixing process has been described in Eq.(3.37) by

the interaction by exchange with the mean (IEM) model. More details about

mixing models can be found in Fox (2003) [18]. The second term on the

right hand side of Eq.(3.37) is the reaction rate of the i-th chemical species.

The modelling of this nonlinear term has been described in section 3.2.4 and

introduces stiffness on the chemical system, since the associated range of time

scales spans over several orders of magnitude (Correa, 1993) [13].

3.5
Pairwise Mixing Stirred Reactor

According to Pope (1997) [70], for the purpose of testing a chemical kinetic

reduction technique, it is desirable to devise a mixing model that leads to a
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composition region accessed during the solution process which is “wider” than

that provided by the IEM model.

Therefore, Pope (1997) [70] proposed the pairwise mixing stirred reactor

(PMSR), which is designed to yield a much larger accessed region, and hence

should provide a stringent test to the ability of the reduction technique to yield

a reduction in computational time.

In the PMSR model the reactor consists of an even number np of particles.

Given a time step, ∆t, the model describes three types of events, for each

discrete times k∆t, where k is an integer, inflow , outflow and pairing .

Initially, the particles are arranged in pairs (j1, j2) such that the particles

(1, 2), (3, 4), · · · , (np − 1, np) are partners. Given a specified residence time,

τr, the inflow and outflow events consist of randomly selecting nin pairs of

particles and exchanging their thermodynamical properties by the properties

of a prescribed inflow. The number of particles pairs to input the system is

defined as

nin ≡ ceil

�
1

2

∆t

τr
np

�
, (3.41)

where ceil (·) denotes the ceil function of a real number, i.e., the smallest integer

not less than a given real. Given a specified pairwise time, τp, the pairing event

consists of randomly selecting a number of pairs of particles, different from the

inflow particles, equal to

npair ≡ ceil

�
1

2

∆t

τp
np

�
, (3.42)

for pairing. Then the chosen particles (inflow/outflow and paring) are randomly

shuffled. Between these discrete times, the pairs of particles (j1, j2) evolve

according to the following mixing law

dh

dt

(j1)

= −
h(j1) − h(j2)

τm
, (3.43)

dh

dt

(j2)

= −
h(j2) − h(j1)

τm
, (3.44)

dp

dt

(j1)

= 0, (3.45)

dp

dt

(j2)

= 0, (3.46)

dYi

dt

(j1)

= −
Y (j1)
i − Y (j2)

i

τm
+

ω̇(j1)
i Wi

ρ
, i = 1, · · · , ns, (3.47)

dYi

dt

(j2)

= −
Y (j2)
i − Y (j1)

i

τm
+

ω̇(j2)
i Wi

ρ
, i = 1, · · · , ns. (3.48)

and the equation of state, Eq.(3.14).
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3.6
The Geometry of Reactive Systems

In this section it is developed a geometric language to interpret a stirred

reactor such as PaSR/IEM or PMSR. This approach is based on the theory of

dynamical systems and allows one to identify the thermodynamical state of a

reactive system as a vector and its evolution as a vector path on the systems

phase space.

3.6.1
Composition Space

Given a reactive mixture in a stirred reactor, such as PaSR/IEM or PMSR, its

thermodynamical state may be completely determined by the mass fraction Yi

(i = 1, · · · , ns) of the ns chemical species, the specific enthalpy h and pressure

p. The thermodynamic state of the reactive mixture can be represented in a

compact way by the composition vector defined as

φ ≡ (h, p, Y1, · · · , Yns)
T , (3.49)

where the superscript T denotes the transposition operation. One should note

that, due to the invariance of the system number of atoms, which ensures the

total conservation of the mass, the components of vector φ are not linearly

independent.

Figure 3.1: Sketch of the composition space and its subsets.
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Defining nφ ≡ ns+2, the composition φ is a point in the nφ–dimensional

Euclidean space the so called composition space (C), where the first direction

is associated with the enthalpy, the second with the pressure and the other

ns are related to the chemical species. The region of the composition space

defined by all physical realizable values of φ — those that respect elemental

conservation — is called realizable region (R). The locus in the realizable

region defined by all composition φ that occurs in a given flow calculation

is called accessed region (A). By definition, the accessed region is a subset of

the realizable region, which is a subset of the composition space. Figure 3.1

illustrates the structure of the composition space and it subsets.

3.6.2
Mixture Temperature

The composition vector φ completely defines the thermodynamical state of a

reactive mixture in a partially stirred reactor. Thus, it is possible to determine

the mixture temperature from the components of φ. Indeed, the mixture

enthalpy is a function of the temperature given by

h(T ) ≡
ns�

i=1

Yihi(T ) (3.50)

where the specific enthalpy of the i-th chemical species is given by

hi(T ) ≡ ho
i +

� T

T o

cpi(T
�)dT � (3.51)

where ho
i and cpi respectively are the specific enthalpy of formation and specific

heat of i-th chemical species and T o is the temperature at the standard

state. In this work, ho
i and cpi are computed using the Chemkin-II package

by Kee et al. (1989) [37] and the system temperature is obtained from the

Eq.(3.51) using the bisection method.

3.6.3
Reaction Mapping

Considering an ideal spatially homogeneous, transient, chemical reactor such

as PaSR/IEM or PMSR, the evolution of the composition of each particle in

the reactor can be written in a general framework according to the following

set of ordinary differential equations

dφ

dt

(j)

= Γ(j)(t) + S(φ(j), t), (3.52)

where Γ(j)(t) is the rate of change due to micromixing transport and S(φ(j), t)

is the rate of change associated to the chemical reactions.
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Integrating both sides of equation Eq.(3.52) from an initial time t0 to a

time t gives

φ(j)(t) = φ(j)
0 +

� t

t0

Γ(j)(t�)dt� +

� t

t0

S(φ(j), t�)dt�, (3.53)

and defining the reaction mapping

R(φ(j)
0 , t) ≡ φ(j)(t), (3.54)

as the solution of Eq.(3.52) after a time t starting from the initial composition

φ(j)(t0) = φ(j)
0 .

The reaction mapping corresponds to a trajectory in composition space,

which, for large values of t, tends to the equilibrium composition for the given

enthalpy and pressure on φ(j)
0 , such as shown in Figure 3.2.

φ(t0) = φ0

φ(t) = R(φ0, t)

chemical equilibrium

Figure 3.2: Sketch of a trajectory in composition space departing from an initial
composition φ0 until the chemical equilibrium.

3.6.4
Reaction Vector

For each particle with composition φ(j), the reaction vector S(φ(j), t) has its

first and second components equal to zero and the next ns components given

by the mass rate of production of each species, i.e.,

S(φ(j), t) =

�
0, 0,

ω̇(j)
1 W1

ρ
, · · · ,

ω̇(j)
ns Wns

ρ

�T

. (3.55)
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3.6.5
Evolution Equations of PaSR/IEM

In the case of the IEM model the mixing vector can be written as

Γ(j)(t) = −
1

τm

�
h(j)

− �h� , 0, Y (j)
1 − �Y1� , · · · , Y

(j)
ns

− �Yns�

�T

, (3.56)

or, equivalently,

Γ(j)(t) = −
φ(j) − �φ�

τm
, (3.57)

where �φ� is the ensemble average composition vector is given by

�φ� = (�h� , 0, �Y1� , · · · , �Yns�)
T , (3.58)

such that the composition of the j-th stochastic particle evolves according to

the following system of ODEs

dφ

dt

(j)

= −
φ(j) − �φ�

τm
+ S(φ(j), t). (3.59)

3.6.6
Evolution Equations of PMSR

In the case of the PMSR the mixing vectors for the pair of particles (j1, j2)

can be written as

Γj1(t) = −
1

τm

�
h(j1) − h(j2), 0, Y (j1)

1 − Y (j2)
1 , · · · , Y (j1)

ns
− Y (j2)

ns

�T

, (3.60)

Γj2(t) = −
1

τm

�
h(j2) − h(j1), 0, Y (j2)

1 − Y (j1)
1 , · · · , Y (j2)

ns
− Y (j1)

ns

�T

, (3.61)

or, equivalently,

Γj1(t) = −
φ(j1) − φ(j2)

τm
, (3.62)

Γj2(t) = −
φ(j2) − φ(j1)

τm
, (3.63)

such that the compositions of a pair of particles (j1, j2) evolves according to

the following system of ODEs

dφ

dt

(j1)

= −
φ(j1) − φ(j2)

τm
+ S(φ(j1), t), (3.64)

dφ

dt

(j2)

= −
φ(j2) − φ(j1)

τm
+ S(φ(j2), t). (3.65)
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