Americo Barbosa da Cunha Junior

Reduction of Complexity in Combustion Thermochemistry

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Postgraduate Program in Mechanical Engineering

Rio de Janeiro August 2010

Americo Barbosa da Cunha Junior

Reduction of Complexity in Combustion Thermochemistry

Dissertação de Mestrado

Dissertation presented to the Postgraduate Program in Mechanical Engineering of the Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC–Rio, as partial fulfillment of the requirements for the degree of Mestre em Engenharia Mecânica.

Advisor: Prof. Luís Fernando Figueira da Silva

Rio de Janeiro August 2010

Americo Barbosa da Cunha Junior

Reduction of Complexity in Combustion Thermochemistry

Dissertation presented Postgraduate to the Program Mechanical Engineering of the Departamento in de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio, as partial fulfillment of the requirements for the degree of Mestre em Engenharia Mecânica. Approved by the following commission:

Prof. Luís Fernando Figueira da Silva Advisor Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro

Prof. Angela Ourivio Nieckele

Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro

Prof. Guenther Carlos Krieger Filho

Departamento de Engenharia Mecânica Universidade de São Paulo

Dr. Ricardo Serfaty

Centro de Pesquisa e Desenvolvimento da Petrobras Petróleo Brasileiro S.A.

Prof. José Eugenio Leal Coordinator of the Centro Técnico Científico Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro — August 19, 2010

All rights reserved. It is forbidden partial or complete reproduction without previous authorization of the university, the author and the advisor.

Americo Barbosa da Cunha Junior

The author graduated from Pontifícia Universidade Católica do Rio de Janeiro in Mechanical Engineering and Applied Mathematics. Currently he works as a professor of mathematics at the same university.

Bibliographic data

Cunha, Americo Barbosa

Reduction of Complexity in Combustion Thermochemistry / Americo Barbosa da Cunha Junior; advisor: Luís Fernando Figueira da Silva . — 2010. 134 f. : il. ; 30 cm

1. Dissertação (Mestrado em Engenharia Mecânica) -Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui bibliografia

 Engenharia Mecânica – Teses.
 modelagem da combustão.
 cinética química detalhada.
 modelo reduzido.
 tabulação adaptativa.
 Figueira da Silva, Luís Fernando.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Mecânica.
 Título.

CDD: 621

Acknowledgments

First of all, I wish to express my deepest gratitude to my parents, Americo Barbosa da Cunha and Heleny da Gloria Santos da Cunha, for their unconditional love, constant support to my plans, for teaching me the value of the truth and the importance of taking the consequences of my mistakes. I love you both more than anything. As important is the acknowledgment to my sister Amanda Gloria Santos da Cunha, for unconsciously being my best friend.

I want to express gratitude to my advisor Prof. Luís Fernando Figueira da Silva for his support during all stages of this work and his significant contribution to my development as a researcher. Also, I would like to thank him for the careful technical and grammatical review of this document.

I want to express my gratitude to professors Angela Ourivio Nieckele, Carlos Tomei, George Svetlichny, Luís Fernando Alzuguir Azevedo, Marcelo Miranda Viana da Silva, Márcio da Silveira Carvalho, Nicolau Corção Saldanha, Paulo Roberto de Souza Mendes, Ricardo Sá Earp and Rubens Sampaio Filho. These professors have influenced me in a positive way and contributed a lot to my formation as an engineer, mathematician and researcher. Furthermore, I wish to register a special acknowledgment to professors Carlos Frederico Borges Palmeira, Gregorio Salcedo Muñoz, Rubens Sampaio Filho and Washington Braga Filho for the friendship shown during the last years.

During the development of this work some people have helped me whenever requested. I am very grateful to them and want to register my sincere thanks to: Fernando Oliveira de Andrade and Silvia Emilia de Jesus Barbosa da Cunha for reviewing the grammar of the text; Bruno de Barros Mendes Kassar and Daniel Fleischman for many programming tips and help in tracking bugs in the code developed; Carlos Tomei for helping me with the development presented in section 5.3; and Thomas Maurice Lewiner for help me with the customization of BIBT_EX citation style.

I wish to thank the members of my jury, Angela Ourivio Nieckele, Guenther Carlos Krieger Filho and Ricardo Serfaty, for their valuable comments and suggestions that help to improve the quality of the final version of this dissertation. In especial professor Guenther, who also provided the code which serves as example for the code developed in this work. In addition, I am very grateful to my friends and colleagues from PUC–Rio for their enjoyable company, especially Alan da Silva Esteves, Andrea Cristina Carvalho dos Anjos, André Luiz Tenório Rezende, André Reinaldo Novgorodcev Júnior, Bruno de Barros Mendes Kassar, Bruno Messer, Daniel Fleischman, Elder Marino Mendonza Orbegoso, Fernando Oliveira de Andrade, Leonardo Weiskopf, Luis Enrique Alva Huapaya, Nattan Roberto Caetano and Roberta de Queiroz Lima.

I also wish to thank the staff of the Mechanical Engineering Department at PUC–Rio for their assistance, especially Mrs. Flavia Rocha Souza and Mrs. Rosely Ribeiro de Almeida Marins.

An especial acknowledgment goes to the staff of PUC–Rio's Library for their efficiency and friendliness always demonstrated during my visits or web requests for some lost paper or book.

Due to my lack of attention during the replacement of a hard disk, some colleagues from the Laboratory of Computation in Transport Phenomena have lost part of their work. It is unusual to apologize in a section titled Acknowledgments, but as I harmed some people, even unintentionally, I take this section to express once again my sincere apologies to André Luiz Tenório Rezende, David Ivan Maldonado Távora, Javier Enrique Basurco Cayllahua, Luis Enrique Alva Huapaya, Luiz Eduardo Bittencourt Sampaio and Luiz Renato Minchola Morán.

Finally, I wish to thank the Brazilian Council for Scientific and Technological Development (CNPq) and Foundation for Research Support in Rio de Janeiro State (FAPERJ) for their financial support during the first and second year of the M.Sc. course, respectively.

Abstract

Cunha. Silva. Luís Americo Barbosa: Figueira da Reduction of Complexity in Combustion Fernando. Thermochemistry. Rio de Janeiro, 2010. 134p. Dissertação de Mestrado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The development of computational models for the numerical simulation of chemically reacting flows operating in the turbulent regime requires the solution of partial differential equations that represent the balance of mass, linear momentum, chemical species and energy. Moreover, the chemical reactions of the model may require a detailed reaction mechanism for the description of the physicochemical phenomena involved. One of the biggest challenges is the stiffness of the numerical simulation of these models and the nonlinear nature of species rate of reaction. This dissertation presents an overview of the main techniques available in the literature for the development of reduced models of chemical kinetics, particularly for the combustion, as well as the techniques for efficient computation of the chemically reacting flows models. After a presentation of the associated mathematical formulation, the methodology dubbed in situ adaptive tabulation (ISAT) is implemented and its accuracy, efficiency and memory usage are evaluated in the simulation of homogeneous stirred reactor models. The combustion of carbon monoxide with oxygen and methane with air mixtures is considered, which detailed reaction mechanisms involve 4 and 53 species, 3 and 325 reactions respectively. The results of these simulations indicate that the development implementation of the ISAT technique has a absolute global error of less than 1%. Moreover, the ISAT technique provided gains, in terms of computational time, of up to 80% when compared to the direct integration of the full chemical kinetics. However, in terms of memory usage the present implementation of ISAT technique was found to be excessively demanding.

Keywords

combustion modelling. detailed thermochemistry. reduced model. adaptive tabulation.

Resumo

Cunha, Americo Barbosa; Figueira da Silva, Luís Fernando. Redução de Complexidade da Cinética Química da Combustão. Rio de Janeiro, 2010. 134p. Dissertação de Mestrado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O desenvolvimento de modelos computacionais para simulação de escoamentos reativos operando em regime de turbulência requer a solução das equações diferenciais parciais que representam os balanços de massa, quantidade de movimento linear, espécies químicas e energia. Além disso, as reações químicas do modelo necessitam de um mecanismo cinético detalhado para descrição dos fenômenos físico-químicos associados. Um dos maiores desafios encontrados é a rigidez da simulação numérica desses modelos e a natureza não linear do termo de produção das espécies químicas. Esta dissertação apresenta uma revisão das principais técnicas disponíveis na literatura para o desenvolvimento de modelos reduzidos de cinética química, em particular para a combustão, bem como de técnicas para solução eficiente dos modelos de escoamentos reativos. Após uma apresentação da formulação matemática associada, a metodologia denominada tabulação adaptativa in situ (ISAT) é implementada e avaliada quanto a sua acurácia, eficiência e uso de memória na simulação de alguns modelos de reator homogêneo agitado. Avalia-se a combustão de misturas de monóxido de carbono/oxigênio e metano/ar cujos mecanismos cinéticos tem 4 e 53 espécies, 3 and 325 reações respectivamente. Os resultados destas simulações indicam que a presente implementação da técnica ISAT tem erro relativo global inferior a 1%. Além disso, a técnica ISAT propiciou ganhos, em termos de tempo computacional, de até 80% quando comparado a simulação direta da cinética detalhada. Entretanto, em termos de utilização da memória, a implementação desenvolvida da técnica ISAT se mostrou excessivamente exigente.

Palavras-chave

modelagem da combustão. cinética química detalhada. modelo reduzido. tabulação adaptativa.

Contents

1	Introduction	23
1.1	Historical and Economical Aspects	23
1.2	Combustion Applied to Industrial Devices	24
	Industrial Process Furnaces	24
	Gas Turbines	25
1.3	Fundamental Challenges	26
1.4	Objectives of this Dissertation	27
1.5	Outline of this Dissertation	27
2	Literature Review	28
2.1	Introduction to the Reduction Approaches	28
2.2	Reduction to Skeleton Mechanisms	28
	Sensitivity Analysis	29
	Proper Orthogonal Decomposition	30
	Directed Relation Graph	31
2.3	Dimension Reduction	32
	Reaction Lumping	32
	Quasi-Steady State Approximation	33
	Rate-Controlled Constrained Equilibrium	35
	Computational Singular Perturbation	36
	Intrinsic Low-Dimensional Manifold	37 39
	Proper Orthogonal Decomposition Invariant Constrained Equilibrium Edge Pre-image Curve	59 40
2.4		40 42
2.4	Storage/Retrieval <i>Look-Up Table</i>	42
	Repro-Modelling	42
	Piece-Wise Reusable Implementation of Solution Mapping	44
	Artificial Neural Network	45
	In Situ Adaptive Tabulation	46
2.5	The State of the Art	50
3	Modelling of Stirred Reactors	51
3.1	Fundamental Definitions	51
3.2	Gas Phase Thermochemistry	53
	Equation of State for Perfect Gases	53
	Stoichiometry	53
	Reaction Mechanism	54
	Rate of Reaction	55
	Thermochemical Equilibrium	56
3.3	Equations of Balance	57
3.4	Partially Stirred Reactor with IEM Model	57

3.5	Pairwise Mixing Stirred Reactor	58
3.6	The Geometry of Reactive Systems	60
	Composition Space	60
	Mixture Temperature	61
	Reaction Mapping	61
	Reaction Vector	62
	Evolution Equations of PaSR/IEM	63
	Evolution Equations of PMSR	63
4	Numerical Procedure	64
4.1	Operator Splitting Technique	64
4.2	Integration of Mixing Vector	65
	IEM Mixing Model	65
	PMSR Mixing Model	65
4.3	Integration of the Reaction Vector	66
	Backward Differentiation Formula	66
	Truncation Error Control	67
5	In Situ Adaptive Tabulation	69
5.1	Linearized Reaction Mapping	69
5.2	Ellipsoid of Accuracy	70
5.3	Hyper-ellipsoid Growth	72
5.4	Adaptive Tabulation Procedure	75
6	Results and Discussion	79
6.1	Code Verification	79
	Numerical Integration Verification Test	79
	Error Control Verification Test	81
6.2	Analysis of ISAT Accuracy	83
	Error Metrics	83
	PMSR with a CO/O_2 Mixture	84
	Influence of the time scale ratio	84
	Influence of the statistical process seed	90
	Influence of the ISAT error tolerance Influence of the ISAT lower bound	90 91
	PMSR with a CH_4/Air Mixture	92
6.3	Analysis of ISAT Performance	95
0.5	ISAT Performance for CO/O_2 Mixtures	95 96
	ISAT Performance for CH_4/Air Mixtures	90 99
6.4	Analysis of ISAT Memory Usage	101
0.1	ISAT Memory Complexity	101
	ISAT Memory Cost for CO/O_2 Mixtures	103
	ISAT Memory Cost for CH_4/Air Mixtures	103
7	Conclusions and Suggestions	105
7.1	Contributions of this Dissertation	105

7.2	Suggestions for Further Works	106
Bibl	iography	108
А	Dimensionless Parameters	119
A.1	Dimensionless Time	119
A.2	Reduced Temperature	119
A.3	Ensemble Average of Reduced Temperature	119
A.4	Ensemble Variance of Reduced Temperature	120
В	Analysis of ISAT Efficiency	122
B.1	Necessary Condition for Efficiency	122
B.2	Empirical Metrics	122
B.3	Addition/Retrieve Relation	123
С	Conference Paper	124

List of Figures

1.1 1.2	Schematic representation of an industrial process furnace. Adapted from http://en.wikipedia.org/wiki/Furnace Sketch of reverse flow combustor gas turbine. Adapted from http://en.wikipedia.org/wiki/Capstone_Turbine	24 25
2.1	Illustration of the classification of the different approaches. S/M : reduction to skeletal mechanism; D/R : dimension reduction; S/R : storage and retrieval.	29
3.1 3.2	Sketch of the composition space and its subsets. Sketch of a trajectory in composition space departing from an initial composition ϕ_0 until the chemical equilibrium.	60 62
5.1 5.2 5.3 5.4 5.5 5.6	The region of accuracy for a constant approximation is a hyper-ellipsoid in composition space. Growth process of the original hyper-ellipsoid. Sketch of the binary search trees created by ISAT algorithm (leaves are black and nodes white). Sketch of cutting plane in relation to EOA position. Binary search tree before and after the addition of a new node. A flowchart showing all step of ISAT algorithm.	71 73 76 77 78 78
6.1 6.2	Evolution of T and Y_{OH} for the first verification test. Behavior of the ISAT global error as function of the error tolerance for the second verification test.	81 83
6.3	Comparison between DI and ISAT results of ensemble average of reduced temperature for cases 1 and 2.	85
6.4	Comparison between DI and ISAT results of ensemble variance of reduced temperature for cases 1 and 2.	86
6.5 6.6	Evolution of relative local error for ensemble average of the reduced temperature and of the <i>O</i> mass fraction for cases 1 and 2. Evolution of relative local error for ensemble variance of the	87
6.7	reduced temperature and of the <i>O</i> mass fraction for cases 1 and 2. Comparison between DI and ISAT computations of the mean	88
6.8	histograms (over the last 50 residence times) of the reduced temperature for cases 1 and 2. Comparison between DI and ISAT computations of the mean	88
	histograms (over the last 50 residence times) of the O mass fraction for cases 1 and 2.	89
6.9	Comparison between DI and ISAT results (using different seeds) of reduced temperature ensemble average and the corresponding relative local errors for cases 1 and 2.	89
6.10	Comparison between DI and ISAT computations (using different seeds) of the mean histograms (over the last 50 residence times) of the reduced temperature for cases 1 and 2.	90

6.11	Absolute global errors for cases 1 and 2 as function of the error	
	tolerance, using a binary search tree with $50\mathrm{k}$ entries.	91
6.12	Comparison between DI and ISAT results of the ensemble average	
	of the reduced temperature and OH mass fraction for case 3.	93
6.13	Comparison between DI and ISAT results of the ensemble variance	
	of the reduced temperature and OH mass fraction for case 3.	94
6.14	Evolution of relative local error of the first two statistical moments	
	of the reduced temperature and OH mass fraction for case 3.	94
6.15	Comparison between DI and ISAT computations of the mean	
	histograms (over the last 50 residence times) of the reduced	
	temperature and HCO mass fraction for case 3.	95
6.16	Evolution of the ISAT algorithm outputs and of the height of	
	ISAT binary search tree for cases 1 and 2.	96
6.17	Evolution of the rates of change of each ISAT algorithm outputs	
	and of the height of the ISAT binary search tree for cases 1 and 2.	97
6.18	Evolution of the ISAT algorithm outputs and of the height of the	
	ISAT binary search tree for case 3.	100
6.19	Evolution of the rates of change of each ISAT algorithm outputs	
	and of the height of the ISAT binary search tree for case 3.	100

List of Tables

1.1	Energy supply structure by source for Brazil in 2008 and World in 2007 (EPE, 2009) [16].	23
3.1	Reaction mechanism for carbon monoxide (CO) oxidation. In this table M represent a third body with a specific efficiency for each species ($f_{O_2} = 0.4$, $f_{CO} = 0.75$ and $f_{CO_2} = 1.5$).	54
6.1	Skeletal reaction mechanism for methane/air combustion.	80
6.2	PMSR parameters used in the code verification tests.	82
6.3	Parameters used in the simulation of a CO/O_2 mixture in a PMSR.	85
6.4	Mean and maximum relative errors for cases 1 and 2, using a binary	
	search tree with $50k$ entries.	86
6.5	Absolute global error as function of ε_{tol} and κ .	92
6.6	Parameters for a PMSR of CH_4/Air that behaves like a partially	
	stirred reactor.	93
6.7	Mean and maximum relative errors for case 3, using a binary search	
	tree with $60k$ entries.	95
6.8	Comparison between the computational time spent by DI and ISAT	
	in cases 1 and 2 and the corresponding speed-up factors.	99
6.9	Comparison between the memory cost of some data types in	
	cases 1 and 2 using two different implementations of the ISAT	
	technique.	103
6.10	Comparison between the memory cost of some data types in case 3	
	using two different implementations of the ISAT technique.	104
B.1	Empirical metrics for the computational time spent at each output	
0.1	of ISAT algorithm and DI.	123
		140

Nomenclature

Upper-case Roman

$oldsymbol{A}(oldsymbol{\phi},t)$	mapping gradient matrix
В	scaling matrix
G	rank-one modification matrix
Ι	identity matrix
J	Jacobian matrix of \boldsymbol{N}
L'	new EOA Cholesky matrix
L	EOA Cholesky matrix
N	nonlinear system of algebraic equations
$oldsymbol{R}(oldsymbol{\phi},t)$	reaction mapping of ϕ
$oldsymbol{R}^c(oldsymbol{\phi},t)$	constant approximation for $\boldsymbol{R}(\boldsymbol{\phi},t)$
$oldsymbol{R}^l(oldsymbol{\phi},t)$	linear approximation for $\boldsymbol{R}(\boldsymbol{\phi},t)$
$oldsymbol{S}(oldsymbol{\phi},t)$	reaction vector
$oldsymbol{U}$	real square orthogonal matrix
V	real square orthogonal matrix
\mathcal{A}	accessed region
${\mathcal C}$	composition space
\mathcal{M}_i	i-th chemical species symbol
${\cal R}$	realizable region
\overline{W}	mean molar mass
\widetilde{A}	modification of \boldsymbol{A}
$A_{ij}(\boldsymbol{\phi},t)$	components of $\boldsymbol{A}(\boldsymbol{\phi},t)$
A_j	j-th reaction pre-exponential factor
C	mixture concentration
C_i	i-th chemical species molar concentration
E_j	j-th reaction activation energy
H_i^o	i-th chemical species enthalpy of formation
K	number of time steps

K_{c_j}	j-th reaction equilibrium in concentration units
K_{p_j}	j-th reaction equilibrium in pressure units
N_A	Avogadro number
R	universal gas constant
$R_i(\boldsymbol{\phi},t)$	i-th component of $oldsymbol{R}(oldsymbol{\phi},t)$
S_i^o	i-th chemical species entropy in standard state
Т	temperature
T^o	temperature at standard state
V	system volume
W_i	<i>i</i> -th chemical species molar mass
X_i	i-th chemical species molar fraction
X_{Fu}	fuel molar fraction
X_{Ox}	oxidizer molar fraction
Y_i	i-th chemical species mass fraction
Lower-ca	ase Roman
v	cutting plane normal vector
\dot{m}	mass flow rate
u	velocity field
$\widetilde{l_i}$	modified length of EOA in i -th direction
a	cutting plane scalar
c_{p_i}	i-th chemical species specific heat
h	specific enthalpy
h_i	i-th chemical species specific enthalpy
h_i^o	$i\math{-}\mbox{th}$ chemical species specific enthalpy of formation
k_j	j-th reaction rate constant
l_i	half-length of EOA in i -th principal direction
m	system total mass
m_i	<i>i</i> -th chemical species mass
n	system total number of moles

n_i	i-th chemical species number of moles
n_r	number of elementary reactions
n_s	number of chemical species
n_{ϕ}	number of composition components
n_A	number of additions
n_{DE}	number of direct evaluations
n_{DI}	number of direct integrations
n_G	number of growths
n_{in}	number of particles to input the system
n_L	number of leaves
n_N	number of nodes
n_{pair}	number of particles for pairing
n_p	number of reactor particles
n_R	number of retrieves
n_{tab}	number of entries in the binary search tree
p	pressure
p^{o}	pressure at the standard state
q	order of BDF method
r_j	j-th reaction rate
t	time
t_0	initial time
t_n	<i>n</i> -th time instant
u_r	machine unit roundoff
w_i	<i>i</i> -th error weight
Upper-c	ase Greek
$\mathbf{\Gamma}(t)$	mixing vector
Σ	real square diagonal matrix
$\Delta \tau$	time interval

 ΔH_j^o j-th reaction net change in enthalpy

ΔS_j^o	j-th reaction net change in entropy
Δt	time step
Δt_n	<i>n</i> -th time step
$\Gamma_{ ho}$	continuity equation right hand side term
$\Gamma_{\mathbf{u}}$	momentum equation right hand side term
Γ_h	energy equation right hand side term
Γ_{Y_i}	i-th chemical species equation right hand side term
Ω_i	i-th chemical species equation chemical source term
Φ	equivalence ratio
$\widetilde{\Sigma}$	modification of Σ
Lower-	case Greek
α_j	coefficients of BDF method
β_j	j-th reaction temperature exponent
ϵ	vector with the local truncation errors
$\widetilde{oldsymbol{\phi}}$	transformed ϕ
ϕ	composition
$oldsymbol{\phi}_0$	initial composition
$oldsymbol{\phi}_q$	query composition
$oldsymbol{\phi}_{mix}$	solution of the mixing system
ζ	constant vector
$oldsymbol{\zeta}_1$	constant vector
$oldsymbol{\zeta}_2$	constant vector
$\delta oldsymbol{\phi}$	composition displacement
$\dot{\omega}_i$	i-th chemical species reaction rate
ϵ_i	<i>i</i> -th component of $\boldsymbol{\epsilon}$
ϵ_G	global error of ISAT
γ	rank-one modification constant
κ	lower bound
$ u_{ij}^{''}$	reverse stoichiometric coefficients

$ u_{ij}^{'}$	forward stoichiometric coefficients
$ u_{ij}$	overall stoichiometric coefficients
$\phi_i(t_n)$	<i>i</i> -th component of $\boldsymbol{\phi}(t_n)$
$\widetilde{\phi}_q$	Euclidean norm of $\widetilde{\phi}_q$
ψ	generic property
ρ	mixture density
$ ho_i$	i-th chemical species partial density
σ_i	singular values of \boldsymbol{A}
$ au_m$	mixing time scale
$ au_p$	pairwise time scale
$ au_r$	residence time
$ au_A$	average time spent at each addition
$ au_{DE}$	average time spent at each direct evaluation
$ au_{DI}$	average time spent at each direct integration
$ au_G$	average time spent at each growth
$ au_R$	average time spent at each retrieve
ε	local error of linear approximation
ε_{ψ_r}	relative local error of ψ
ε_{abs}	solver absolute tolerance
ε_g	absolute global error of ISAT
ε_{rel}	solver relative tolerance
ε_{tol}	error tolerance of ISAT
$\widetilde{\sigma}_i$	singular values of \widetilde{A}
Supersci	ripts
*	dimensionless quantity
Т	transposition operation
(j)	index of the <i>i</i> th particle

- $^{(j)}$ index of the *j*-th particle
- + forward reaction
- reverse reaction

m m-t	1 approx	imation
-------	----------	---------

Subscripts

0	initial condition
DI	direct integration calculation
eq	equilibrium condition
in	input condition
ISAT	ISAT calculation
st	stoichiometric condition

Other Symbols

$ceil(\cdot)$	ceil function	
\int	integral	
$\frac{\partial}{\partial t}$	partial derivative with respect to t	
Π	product	
\sum	summation	
$\frac{d}{dt}$	total derivative with respect to t	
≡	definition	
$\langle \cdot angle_\infty$	function maximum	
$\left<\cdot\right>_M$	function mean	
$\langle \cdot angle$	ensemble average	
$ \cdot _{wrms}$	weighted root mean square norm	
$ \cdot _2$	Euclidean norm	
#(data)	memory cost of data	
$\mathcal{O}(\cdot)$	big O notation	
$\langle \cdot'^2 \rangle$	ensemble variance	
Abbreviations		
4 N.T.N.T		

ANN	artificial neural network
CSP	computational singular perturbation

- DI direct integration
- DRG directed relation graph
- EOA ellipsoid of accuracy
- ICE-PIC invariant constrained equilibrium edge pre-image curve
- IEM interaction by exchange with the mean
- ILDM intrinsic low-dimensional manifold
- ISAT *in situ* adaptive tabulation
- LES large eddy simulation
- LUT look-up table
- ODE ordinary differential equation
- PaSR partially stirred reactor
- PDF probability density function
- PMSR pairwise mixing stirred reactor
- POD proper orthogonal decomposition
- PRISM piece-wise reusable implementation of solution mapping
- PSR perfect stirred reactor
- QSSA quasi-steady state approximation
- RANS Reynolds averaged Navier-Stokes
- RCCE rate-controlled constrained equilibrium
- RM repro-modelling
- S/M skeletal mechanism
- S/R storage/retrieval
- SA sensitive analysis
- SVD singular value decomposition

Chemical Species

- C_2H_2 acetylene
- C_2H_4 ethylene
- CH_2O formaldehyde

CH_3	methyl radical
CH_3O	methoxy radical
CH_4	methane
CO	carbon monoxide
CO_2	carbon dyoxide
Η	hydrogen atom
H_2	hydrogen
H_2O	water
H_2O_2	hydrogen peroxide
HCO	formyl radical
HO_2	hydroperoxy radical
M	third body
N_2	nitrogen
NO_x	nitrogen oxide
0	oxygen atom
O_2	oxygen
OH	hydroxyl radical

"In questions of science, the authority of a thousand is not worth the humble reasoning of a single individual."

Galileo Galilei (1564 - 1642), Third letter on sunspots to Mark Wesler.