

Rodrigo Silva Mello

Codificação Distribuída de Vídeo com Modelagem do Canal de Correlação no Domínio da Transformada

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Marco Antonio Grivet Mattoso

Rio de Janeiro, Dezembro de 2010

Pontifícia Universidade **L**ATÓLICA DO RIO DE JANEIRO

Rodrigo Silva Mello

Codificação Distribuída de Vídeo com Modelagem do Canal de Correlação no Domínio da Transformada

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marco Antonio Grivet Mattoso Maia Orientador Centro de Estudos em Telecomunicações /PUC-Rio

> > Profa Carla Liberal Pagliari IME

> > > Prof. Lisandro Lovisolo UERJ

Prof. Marcelo Roberto P. Baptista Jimenez Centro de Estudos em Telecomunicações /PUC-Rio

Prof. Weiler Alves Finamore Centro de Estudos em Telecomunicações /PUC-Rio

> Prof. Rodolfo Sabóia Lima de Souza Inmetro

> > Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 16 de dezembro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Rodrigo Silva Mello

possui curso técnico em Mecânica Industrial pelo Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (1997), graduação em Engenharia Elétrica com ênfase em Telecomunicações pela Universidade do Estado do Rio de (2002),mestrado Engenharia Janeiro em Elétrica (Telecomunicações) pela Pontifícia Universidade Católica do Rio de Janeiro (2005) e doutorado em Engenharia Elétrica (Telecomunicações) pela Pontifícia Universidade Católica do Rio de Janeiro (2010). Tem experiência na área de Engenharia Elétrica, com ênfase em Sistemas de Telecomunicações e Processamento de Sinais, atuando principalmente nos seguintes temas: Codificação de Vídeo Digital, Sistemas Móveis Celulares e Rádio Troncalizado, Telefonia IP e Comunicação de Dados pela Rede Elétrica (PLC).

Ficha Catalográfica

Mello, Rodrigo Silva

Codificação distribuída de vídeo com modelagem do canal de correlação no domínio da transformada / Rodrigo Silva Mello; orientador: Marco Antonio Grivet Mattoso. – 2010.

209 f. il. (color.); 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2010.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Codificação distribuída de vídeo. 3. Teorema de Slepian-Wolf. 4. Teorema de Wyner-Ziv. 5. Informação lateral. 6. Quadro Wyner-Ziv. 7. Código de canal. 8. Plano de bits. 9. Canal de correlação. 10. Interpolação de quadros. I. Mattoso, Marco Antonio Grivet. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

Agradecimentos

A Deus e à Nossa Senhora, pelas bênçãos e graças que me sustentaram em todos os momentos, ajudando-me a superar obstáculos para a realização deste estudo.

Aos meus pais Fernando e Bernardete, pelo amor, carinho educação, empenho e pelo sustento proporcionados ao longo dessa difícil jornada.

Aos meus irmãos, Fernanda e Ramon e demais familiares, pelo apoio, compreensão e incentivo durante todo este tempo.

Ao meu orientador, Professor Marco Antonio Grivet Mattoso, pela sua competência e por seu papel fundamental na estruturação deste trabalho, com sua orientação e dedicação incansáveis.

Aos professores Carla Liberal Pagliari e Lisandro Lovisolo, pela cooperação nos estudos desenvolvidos.

À professora Ana Pavani, pela amizade e grande parceria no encaminhamento das questões para alcance dos objetivos.

À PUC-Rio, e em especial ao corpo docente do CETUC, pela contribuição dada ao meu aprendizado profissional na Área de Telecomunicações.

Aos colegas do CETUC pelo apoio em todos os momentos.

Aos meus amigos em geral, pela amizade e estímulo constantes.

Resumo

Mello, Rodrigo Silva; Mattoso, Marco Antonio Grivet. **Codificação distribuída de vídeo com modelagem do canal de correlação no domínio da transformada.** Rio de Janeiro, 2010. 209p. Tese de Doutorado -Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A codificação distribuída de vídeo é um novo paradigma de codificação de vídeo que permite explorar a estatística da fonte apenas no decodificador. Nesse cenário, duas fontes correlatadas são independentemente codificadas usando codificadores distintos e os fluxos binários associados a cada uma são conjuntamente decodificados, explorando a correlação entre eles. A resiliência a erros é uma importante funcionalidade deste novo paradigma uma vez que a tradicional malha de predição no codificador e a propagação de erros associada a esta malha não existe ao não se explorar a correlação do sinal no codificador. Desta forma, esta tese tem como objetivo apresentar uma nova arquitetura de codificação distribuída de vídeo, desenvolvendo e analisando algoritmos mais eficientes para a mesma, reduzindo, desta forma, o gap de desempenho quando comparado aos sistemas tradicionais de codificação de vídeo [68]. Assim, o codec proposto nesta tese proporcionou: a otimização da arquitetura DVC (Distributed Vídeo Coding), o desenvolvimento de novas ferramentas para a geração da informação lateral, a inclusão de um módulo de medida de correlação entre quadros para auxiliar na decodificação, a utilização de um processo de quantização Wyner-Ziv variável, a opção de uma codificação parcial de bitplanes, uma modelagem do canal de correlação baseada na estimação de parâmetros em nível de banda e de coeficientes da transformada DCT (Discrete Cosine Transform), a inclusão de um módulo de normalização da informação lateral e o desenvolvimento de um código de canal mais adequado à arquitetura proposta.

Palavras-chave

Codificação Distribuída de Vídeo; Teorema de Slepian-Wolf; Teorema de Wyner-Ziv; Informação Lateral; Quadro Wyner-Ziv; Código de Canal; Plano de bits; Canal de Correlação; Interpolação de Quadros.

Mello, Rodrigo Silva; Mattoso, Marco Antonio Grivet (Advisor). **Distributed video coding with correlation channel modeling in the transform domain.** Rio de Janeiro, 2010. 209p. Dsc. Thesis - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Distributed video coding is a new video coding paradigm that allows exploiting the source statistics at the decoder only. In this scenario, two correlated sources are independently encoded using separated encoders and the bit streams associated to each one are jointly decoded exploiting the correlation between them. Improved error resilience is another major functionality of this new video coding paradigm since the usual encoder prediction loop and the associated error propagation do not exist anymore, because the signal correlation is not explored in the encoder. Therefore, this thesis aims to present a new architecture for distributed video coding, analyzing and developing more efficient algorithms for it, thus reducing the gap in performance when it is compared to traditional video coding [68]. Therefore, the codec proposed in this thesis provided: a DVC architecture optimization; the development of new tools for side information generation process; inclusion of a module for measuring correlation between frames in order to assist in the Wyner-Ziv frame reconstruction; the use of a Wyner-Ziv variable quantization process; the option of partial coding of bitplanes; a correlation channel model based on the estimation of parameters in band and DCT coefficient levels; an inclusion of a normalization stage to the side information; and the development of a channel code more appropriate to the proposed architecture.

Keywords

Distributed Video Coding; Slepian-Wolf Theorem; Wyner-Ziv Theorem; Side Information; Wyner-Ziv frame; Channel Code; Bitplanes; Correlation Channel; frame interpolation.

Sumário

1 Introdução	25
1.1. Fundamentos da Codificação Distribuída	26
1.2. Teorema de Slepian-Wolf para Codificação Distribuída	28
1.3. Codificação de Síndrome	30
1.4. Principais Objetivos da Tese	33
1.5. Apresentação do Trabalho	36
1.6. Publicações	37
2 Anlicação da Codificação Wyner-Ziy para Vídeo	38
2.1. Cálculo de Taxa-Distorção para Codificação com Informação	00
Lateral no Receptor	38
2.2. Revisão de literatura sobre codificação Wyner-Ziv	40
2.3. Funcionamento da Codificação de Vídeo de Baixa Complexidade	41
2.4. Arquitetura-padrão para Codec DVC	43
3 Código de Baixa Densidade, Irregular e com Taxa Variável	49
3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código	49 49
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 	49 49 49
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 	49 49 49 51
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 	49 49 49 51 52
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 	49 49 51 52 53
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 	49 49 51 52 53 54
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 	 49 49 51 52 53 54 57
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 	 49 49 51 52 53 54 57 60
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 3.3.6. Algoritmo de Produto-e-Máximo 	 49 49 51 52 53 54 57 60 62
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 3.3.6. Algoritmo de Produto-e-Máximo 3.3.6.1. Codificação com o Código LIA 	 49 49 51 52 53 54 57 60 62 63
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 3.3.6. Algoritmo de Produto-e-Máximo 3.3.6.1. Codificação com o Código LIA 3.3.6.2. Decodificação com o Código LIA 	 49 49 51 52 53 54 57 60 62 63 65
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 3.3.6.1. Codificação com o Código LIA 3.3.6.2. Decodificação com o Código LIA 3.4. Considerações sobre o Código Proposto 	 49 49 51 52 53 54 57 60 62 63 65 68
 3 Código de Baixa Densidade, Irregular e com Taxa Variável 3.1. Escolha do código 3.2. DVC baseado em Síndromes 3.3. Escolha do código 3.3.1. Fundamentos da Codificação LDPC Irregular 3.3.2. Probabilidades e LLR <i>a posteriori</i> 3.3.3. Transferência de Probabilidades entre Nós dos Grafos 3.3.4. Regras de Atualização de Mensagens Probabilísticas 3.3.5. Método para Síntese de nós de Síndrome 3.3.6. Algoritmo de Produto-e-Máximo 3.3.6.1. Codificação com o Código LIA 3.3.6.2. Decodificação com o Código Proposto 3.4.1.1. Avaliação da influência das Iterações do Decodificador 	 49 49 51 52 53 54 57 60 62 63 65 68

4 Codificador WZ-LIA	75
4.1. Motivação	75
4.2. Arquitetura do Codec WZ-LIA	76
4.3. Procedimento de Codificação	77
4.4. Procedimento de Decodificação	80
4.5. Métodos e Técnicas do Codec Proposto	83
4.5.1. Transformada DCT no Codec WZ-LIA	83
4.5.2. Quantizador do Codec WZ-LIA	87
4.5.2.1. Quantização dos Coeficientes DC	87
4.5.2.2. Quantização do Coeficiente AC	91
4.5.3. Número de Níveis de Quantização	97
4.5.4. Abordagem sobre a Faixa Dinâmica	98
4.5.5. Cálculo do Passo de Quantização do Coeficiente DC	100
4.5.6. Cálculo do Passo de Quantização dos Coeficientes AC	102
4.5.7. Descrição do Método Proposto para Quantização	104
4.5.8. Avaliação do Método de Quantização Proposto	107
4.5.9. Procedimento de Geração dos Bitplanes	114
4.5.9.1. Avaliação Objetiva da Transmissão Parcial dos Bitplanes	114
4.5.9.2. Avaliação Subjetiva da Transmissão Parcial dos Bitplanes	117
4.5.10. Procedimento de Geração das Síndromes	118
4.6. Técnicas Propostas para Decodificação	119
4.6.1. Decodificação Iterativa LIA	119
4.6.2. Buffer e Transmissão Parcial das Síndromes	120
4.6.3. Estimação de Taxa Mínima	121
4.6.3.1. Medida de Confiança	125
4.6.4. Modelagem do Canal de Correlação	126
4.6.4.1. Estimação do Ruído de Correlação em nível de	
Sequência (<i>offline</i>)	128
4.6.5. Modelos de Ruído de Correlação Estimados Online	129
4.6.5.1. Estimação do Ruído de Correlação em nível de Frame	129
4.6.5.2. Estimação Proposta para o Ruído de Correlação:	
em Nível de Banda	131

4.6.5.3. Estimação do Ruído de Correlação em Nível de Bloco	132
4.6.5.4. Estimação Proposta para o Ruído de Correlação:	
em Nível de Coeficiente	133
4.6.6. Avaliação da Modelagem do canal de Correlação	134
4.6.7. Geração da Informação Lateral	139
4.6.8. Método Proposto para Geração da Informação Lateral	143
4.6.8.1. Estimação Direta de Movimento	143
4.6.8.2. Estimação Reversa do Movimento	148
4.6.9. Avaliação dos Métodos de Estimação Bidirecional	
de Movimento	149
4.6.9.1. Problemas da Compensação de Frames Interpolados	159
4.6.9.2. Interpolação com base na Correlação entre Frames	161
4.6.9.3. Interpolação baseada na Estimativa de movimento	162
4.6.9.4. Extrapolação	163
4.6.10. Avaliação Subjetiva do Módulo Proposto para Geração da	
Informação Lateral	164
4.7. Avaliação Objetiva das Ferramentas Propostas para o Módulo	
de Geração da Informação Lateral	167
4.7.1. Avaliação Objetiva do módulo de Normalização	173
4.7.2. Avaliação Subjetiva Conjunta do processo de Normalização	
e de geração da Informação Lateral	177
4.7.3. Verificador de Falha	178
4.7.4. Reconstrução dos Coeficientes DCT	179
4.7.5. Simulações Gerais com o Codec WZ-LIA	183
4.7.5.1. PSNR média em função do Tempo de Processamento	183
4.7.5.2. PSNR ao longo da sequência para Diferentes Taxas de	
Compressão	184
4.7.5.3. Avaliação da influência da substituição das bandas	
zeradas do Frame WZ pela informação Lateral	185
5 Conclusões e Trabalhos Futuros	187
5.1. Sugestões para Trabalhos Futuros	190

193

7 Apêndice A – Construção do Código LDPC	202
8 Apêndice B – Opções de Configuração do Codec Proposto	207
9 Apêndice C – Algoritmo Proposto para Decodificação	
dos Bitplanes	208

Lista de figuras

Figura 1.1: Codificação distribuída de duas sequências aleatórias	
estatisticamente dependentes, $X \in Y$.	26
Figura 1.2: Teorema de Slepian-Wolf: Região de taxa admissível para	
codificação distribuída de duas fontes estatisticamente dependentes e	
igualmente distribuídas.	27
Figura 1.3: Codificação de uma sequência de símbolos aleatórios X utilizando	
na decodificação a informação lateral Y correlacionada a X.	28
Figura 1.4: (a) Codificador e decodificador utilizam a informação lateral <i>Y</i> ,	
a qual é correlatada a X. Aqui, X pode ser codificado com 2 bits.	
(b) Aqui, somente o decodificador tem acesso a Y e ainda assim X	
pode ser codificado usando apenas 2 bits.	31
Figura 2.1: Compressão com perdas de uma sequência X utilizando a	
informação lateral Y (relacionada estatisticamente a X) no decodificador.	38
Figura 2.2: Um codificador Wyner-Ziv prático é obtido cascateando	
um quantizador e um codificador Slepian-Wolf.	39
Figura 2.3: Arquitetura de transcodificação de vídeo para transmissão	
wireless, utilizada na rede móvel celular [68].	42
Figura 2.4: Codificador de vídeo de baixa complexidade e	
decodificador correspondente.	43
Figura 2.5: Frames da sequência Salesman, QCIF: (a) Informação lateral	
\hat{S} no decodificador, gerada por interpolação compensada do movimento	
(b) Frame reconstruído S' depois da decodificação conjunta Wyner-Ziv.	46
Figura 2.6: Desempenho taxa-distorção de um codec de vídeo	
Wyner-Ziv, comparado à codificação de vídeo intraframe	
e interframe convencional, para sequência Salesman.	47
Figura 2.7: Desempenho taxa-distorção de um codec de vídeo	
Wyner-Ziv, comparado à codificação de vídeo intraframe	
e interframe convencional, para sequência Hall Monitor.	47
Figura 3.1: Cenário resumido de codificação assimétrica da fonte.	49
Figura 3.2: Início da difusão de mensagens dos nós de variáveis para	

os nós de paridade.	56
Figura 3.3: Exemplo de transferência de mensagens entre os nós	
de grafos bipartidos.	56
Figura 3.4: As funções VAR e PAR em nós de grau 3.	60
Figura 3.5: Síntese de nó de paridade de grau 3.	62
Figura 3.6: Codificador de baixa densidade, irregular e acumulado.	64
Figura 3.7: Grafo de decodificação das variáveis com o codificador	
transmitindo todas as síndromes acumuladas.	65
Figura 3.8: Grafo de codificação com o codificador transmitindo	
somente as síndromes acumuladas de índice par.	66
Figura 3.9: Grafo de decodificação com o codificador transmitindo	
os bits das síndromes de índice par.	67
Figura 3.10: PSNR do frame Wyner-Ziv para diferentes números de	
iterações do decodificador LIA, para sequência Foreman, com	
QP = 25 (intra) e TQ = 18 (WZ).	70
Figura 3.11: Diferença entre a PSNR do frame Wyner-Ziv utilizando	
uma e cinquenta iterações, para a sequência Foreman, com QP = 25 (intra)	
e TQ = 18 (WZ).	70
Figura 3.12: PSNR do frame Wyner-Ziv para números diferentes de	
iterações do decodificador LIA, para sequência <i>News</i> , com QP = 25 (intra)	
e TQ = 18 (WZ).	71
Figura 3.13: PSNR do frame Wyner-Ziv para números diferentes de	
iterações do decodificador LIA, para sequência <i>News</i> , com QP = 25 (intra)	
e TQ = 18 (WZ), em uma escala maior (melhor visualização).	71
Figura 3.14: Diferença entre a PSNR do frame Wyner-Ziv utilizando	
uma e cinquenta iterações, para a sequência News, com QP = 25 (intra)	
e TQ = 18 (WZ).	72
Figura 3.15: PSNR do frame Wyner-Ziv para números diferentes de	
iterações do decodificador LIA, para sequência <i>Foreman</i> , com QP = 26	
(intra) e TQ = 7 (WZ).	72
Figura 3.16: Diferença entre a PSNR do frame Wyner-Ziv utilizando	
uma e cinquenta iterações, para a sequência Foreman, com QP = 26 (intra)	
e TQ = 7 (WZ).	73

Figura 3.17: PSNR do frame Wyner-Ziv para números diferentes de	
iterações do decodificador LIA, para sequência News, com QP = 26 (intra)	
e TQ = 7 (WZ).	73
Figura 3.18: Diferença entre a PSNR do frame Wyner-Ziv utilizando	
uma e cinquenta iterações, para a sequência <i>News</i> , com QP = 26 (intra)	
e TQ = 7 (WZ).	74
Figura 4.1: Diagrama de blocos da arquitetura de codificação distribuída	
proposta.	77
Figura 4.2: Ordem das posições (frequências espaciais) dentro de um	
bloco 4x4 de coeficientes DCT.	85
Figura 4.3: Quantizador escalar uniforme para o coeficiente DC com	
largura W do intervalo de quantização.	88
Figura 4.4: Distribuição dos coeficientes DCT para a banda DC (b_1)	
da sequência Foreman.	89
Figura 4.5: Distribuição dos coeficientes DCT para a banda DC (b_1)	
da sequência News.	89
Figura 4.6: Distribuição dos coeficientes DCT para a banda DC (b_1)	
da sequência Coastguard.	90
Figura 4.7: Distribuição dos coeficientes DCT para a banda DC (b_1)	
da sequência Soccer.	90
Figura 4.8: Distribuição dos coeficientes DCT para a banda AC (b_2)	
de mais baixa frequência espacial da sequência Foreman, QCIF.	91
Figura 4.9: Distribuição dos coeficientes DCT para a banda AC (b_2)	
de mais baixa frequência espacial da sequência News, QCIF.	92
Figura 4.10: Distribuição dos coeficientes DCT para a banda AC (b_2)	
de mais baixa frequência espacial da sequência Coastguard, QCIF.	92
Figura 4.11: Distribuição dos coeficientes DCT para a banda AC (b ₂)	
de mais baixa frequência espacial da sequência Soccer, QCIF.	93
Figura 4.12: Distribuição dos coeficientes DCT para a banda AC (b_3)	
de mais alta frequência espacial da sequência Foreman QCIF.	93
Figura 4.13: Distribuição dos coeficientes DCT para a banda AC (b_3)	
de mais alta frequência espacial da sequência News, QCIF.	94
Figura 4.14: Distribuição dos coeficientes DCT para a banda AC (b_3)	

de mais alta frequência espacial da sequência Coastguard, QCIF.	94
Figura 4.15: Distribuição dos coeficientes DCT para a banda AC (b_3)	
de mais alta frequência espacial da sequência Soccer, QCIF.	95
Figura 4.16: Quantizador escalar uniforme sem um intervalo de	
quantização simétrico em torno da amplitude zero.	95
Figura 4.17: problema de quantização dos coeficientes AC usando um	
quantizador sem um intervalo de quantização simétrico em torno da	
amplitude zero.	96
Figura 4.18: Quantizador escalar uniforme com um intervalo de	
quantização simétrico em torno da amplitude zero.	97
Figura 4.19: 18 matrizes de quantização associadas a diferentes	
desempenhos taxa-distorção, onde cada elemento da mesma é o número	
de níveis de quantização da banda correspondente àquela posição.	106
Figura 4.20: 8 matrizes de quantização associadas a diferentes	
desempenhos taxa-distorção, onde cada elemento da mesma é o número	
de níveis de quantização da banda correspondente àquela posição.	106
Figura 4.21: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Foreman, com QP = 26 (intra)	
e TQ = 18 (nível de qualidade).	110
Figura 4.22: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência <i>News</i> , com QP = 26 (intra)	
e TQ = 18 (nível de qualidade).	110
Figura 4.23: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Coastguard, com QP = 26 (intra)	
e TQ = 18 (nível de qualidade).	111
Figura 4.24: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Soccer, com QP = 26 (intra)	
e TQ = 18 (nível de qualidade).	111
Figura 4.25: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Foreman, com QP = 36 (intra)	
e TQ = 7 (nível de qualidade).	112
Figura 4.26: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência <i>News</i> , com QP = 36 (intra)	

e TQ = 7 (nível de qualidade).	112
Figura 4.27: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Coastguard, com QP = 36 (intra)	
e TQ = 7 (nível de qualidade).	113
Figura 4.28: PSNR do frame Wyner-Ziv utilizando diferentes	
técnicas de quantização, para sequência Soccer, com QP = 36 (intra)	
e TQ = 7 (nível de qualidade).	113
Figura 4.29: PSNR do frame Wyner-Ziv codificando-se diferentes	
quantidades de bitplanes, para sequência <i>Foreman</i> , com $QP = 27$ (intra)	
e TQ = 18 (nível de qualidade).	116
Figura 4.30: PSNR do frame Wyner-Ziv codificando-se diferentes	
quantidades de bitplanes, para sequência News, com $QP = 27$ (intra)	
e TQ = 18 (nível de qualidade).	116
Figura 4.31: (a) frame WZ original da sequência <i>Foreman</i> ; (b)	
frame WZ reconstruído considerando todos os bitplanes; (c)	
excluindo-se o bitplane menos significativo; (d) excluindo-se os dois	
bitplanes menos significativos; (e) excluindo-se os três bitplanes	
menos significativos.	117
Figura 4.32: (a) frame WZ original da sequência News; (b) frame	
WZ reconstruído considerando todos os bitplanes; (c) excluindo-se	
o bitplane menos significativo; (d) excluindo-se os dois bitplanes menos	
significativos; (e) excluindo-se os três bitplanes menos significativos.	118
Figura 4.33: Probabilidade condicional do bit $x_{2,j}$ dada a informação	
lateral y_j e que o bit anterior, $x_{l,j}$, foi estimado com valor igual 1.	124
Figura 4.34: PSNR para diferentes níveis de estimação do parâmetro	
laplaciano, para a sequência Foreman, QCIF, com QP = 32 (intra)	
e TQ = 9 (WZ).	136
Figura 4.35: PSNR para diferentes níveis de estimação do parâmetro	
laplaciano, para a sequência <i>News</i> , QCIF, $QP = 32$ (intra) e TQ = 9 (WZ).	136
Figura 4.36: PSNR para diferentes níveis de estimação do parâmetro	
laplaciano, sequência <i>Coastguard</i> , QCIF, $QP = 32$ (intra) e TQ = 9 (WZ).	137
Figura 4.37: PSNR para diferentes níveis de estimação do parâmetro	
laplaciano, para a sequência <i>Soccer</i> , QCIF, QP = 32 (intra) e TQ = 9 (WZ).	137

Figura 4.38: PSNR para decodificação com e sem a utilização da	
modelagem do canal de correlação, para a sequência Foreman, QCIF,	
com QP = 32 (intra) e TQ = 9 (WZ).	138
Figura 4.39: PSNR para decodificação com e sem a utilização da	
modelagem do canal de correlação, para a sequência News, QCIF,	
$\operatorname{com} QP = 32 \text{ (intra) e } TQ = 9 \text{ (WZ).}$	138
Figura 4.40: hipóteses de estimação de movimento do frame atual.	141
Figura 4.41: Processo de geração da informação lateral Proposto	142
Figura 4.42: Componentes básicos do processo de estimação direta	
de movimento	144
Figura 4.43: (a) estimação direta do movimento passando pelo frame	
interpolado Y_{2i} . (b) projeção dos blocos utilizados na estimação	
do movimento.	145
Figura 4.44: interpolação a partir do processo de compensação	
do movimento, apresentando várias estimações associadas a um único	
ponto do frame interpolado.	147
Figura 4.45: Sentido e direção dos vetores de movimento na estimação	
reversa.	149
Figura 4.46: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência Foreman,	
$\operatorname{com} \operatorname{QP} = 40$ (intra), macrobloco 8x8.	151
Figura 4.47: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência News,	
$\operatorname{com} \operatorname{QP} = 40$ (intra), macrobloco 8x8.	151
Figura 4.48: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência <i>Foreman</i> , com $QP = 40$ (intra), macrobloco 8x8.	152
Figura 4.49: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência News, com QP = 40 (intra), macrobloco 8x8.	152
Figura 4.50: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência Foreman,	
$\operatorname{com} \operatorname{QP} = 26$ (intra), macrobloco 8x8.	153
Figura 4.51: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência News, com	

QP = 26 (intra), macrobloco 8x8.	153
Figura 4.52: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência <i>Foreman</i> , com QP = 26 (intra), macrobloco 8x8.	154
Figura 4.53: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência News, com QP = 26 (intra), macrobloco 8x8.	154
Figura 4.54: PSNR da informação lateral para diferentes métodos de	
estimação de movimento, sequência Foreman, com $QP = 40$ (intra),	
macrobloco 16x16.	155
Figura 4.55: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência News,	
$\operatorname{com} \operatorname{QP} = 40$ (intra), macrobloco 16x16.	155
Figura 4.56: Número médio de buscas por macrobloco, para diferentes	
métodos, sequência Foreman, com QP = 40 (intra), macrobloco 16x16.	156
Figura 4.57: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência <i>News</i> , com $QP = 40$ (intra), macrobloco 16x16.	156
Figura 4.58: PSNR da informação lateral para diferentes métodos de	
estimação de movimento, sequência Foreman, com QP = 26 (intra),	
macrobloco 16x16.	157
Figura 4.59: PSNR da informação lateral ao longo da sequência para	
diferentes métodos de estimação de movimento, sequência News, com	
QP = 26 (intra), macrobloco 16x16.	157
Figura 4.60: Número médio de buscas por macrobloco, para diferentes	
métodos, sequência Foreman, com QP = 26 (intra), macrobloco 16x16.	158
Figura 4.61: Número médio de buscas por macrobloco, para diferentes	
métodos, para a sequência News, com QP = 26 (intra), macrobloco 16x16.	158
Figura 4.62: Pixels descobertos no frame interpolado devido à estimação	
de movimento não partir do centro dos blocos do frame interpolado [70].	159
Figura 4.63: Exemplo de disposição de blocos resultantes da	
estimação e compensação do movimento no frame interpolado.	160
Figura 4.64: Disposição dos blocos resultantes da compensação de	
movimento, no frame interpolado: (a) utilizando blocos 8x8; (b) utilizando	
blocos 16x16.	160
Figura 4.65: Método de extrapolação proposto neste trabalho.	163

Figura 4.66: Frame WZ reconstruído utilizando a seguinte técnica de	
geração da informação lateral: (a) Interpolação simples;	
(b) Interpolação ponderada (proposta); (c) Método proposto	
(d) Frame WZ original da sequência Foreman.	165
Figura 4.67: Frame WZ 138 reconstruído utilizando a seguinte técnica	
de geração da informação lateral: (a) interpolação simples;	
(b) Interpolação ponderada (proposta); (c) Método proposto	
(d) Frame WZ original da sequência News.	166
Figura 4.68: Frame WZ 138 reconstruído utilizando a seguinte técnica	
de geração da informação lateral: (a) interpolação simples;	
(b) Interpolação ponderada (proposta); (c) Método proposto	
(d) Frame WZ original da sequência Soccer.	166
Figura 4.69: Frame WZ 138 reconstruído utilizando a seguinte técnica	
de geração da informação lateral: (a) interpolação simples;	
(b) Interpolação ponderada (proposta); (c) Método proposto	
(d) Frame WZ original da sequência Coastguard.	167
Figura 4.70: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Foreman, QCIF, com passo de	
quantização $QP = 24$ (intra).	169
Figura 4.71: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência News, QCIF, com passo de	
quantização $QP = 24$ (intra).	170
Figura 4.72: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Coastguard, QCIF, com passo de	
quantização $QP = 24$ (intra).	170
Figura 4.73: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Soccer, QCIF, com passo de	
quantização $QP = 24$ (intra).	171
Figura 4.74: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Foreman, QCIF, com passo de	
quantização $QP = 38$ (intra).	171
Figura 4.75: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência News, QCIF, com passo de	

quantização QP = 38 (intra).	172
Figura 4.76: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Coastguard, QCIF, com passo de	
quantização QP = 38 (intra).	172
Figura 4.77: PSNR para as diversas etapas do processo de geração da	
informação lateral, para a sequência Soccer, QCIF, com passo de	
quantização QP = 38 (intra).	173
Figura 4.78: PSNR do frame Wyner-Ziv utilizando diferentes	
fatores de normalização, para sequência Foreman, com QP = 38 (intra)	
e TQ = 7 (WZ).	174
Figura 4.79: PSNR do frame Wyner-Ziv utilizando diferentes	
fatores de normalização, para sequência News, com QP = 38 (intra)	
e TQ = 7 (WZ).	175
Figura 4.80: PSNR do frame Wyner-Ziv utilizando diferentes	
fatores de normalização, para sequência Coastguard, com QP = 38 (intra)	
e TQ = 7 (WZ).	175
Figura 4.81: PSNR do frame Wyner-Ziv utilizando diferentes	
fatores de normalização, para sequência Soccer, com QP = 38 (intra)	
e TQ = 7 (WZ).	176
Figura 4.82: Comparação entre o valor médio dos pixels do frame	
WZ e da informação lateral, para sequência News.	176
Figura 4.83: Comparação entre o valor médio dos pixels do frame	
WZ e da informação lateral, para sequência Foreman.	177
Figura 4.84: Frames resultantes do processo de: (a) interpolação	
ponderada da estimação bidirecional de movimento 8x8;	
(b) interpolação ponderada da estimação bidirecional de movimento	
16x16; (c) extrapolação do frame interpolado; (d) normalização da	
informação lateral; (e) frame WZ original.	178
Figura 4.85: Procedimento de reconstrução de cada coeficiente DCT da	
banda b_k : (a) Caso I, (b) Caso II, (c) Caso III.	182
Figura 4.86: PSNR média para a sequência Foreman, para 3 níveis	
diferentes de qualidade (QP, TQ) versus tempo de processamento.	184
Figura 4.87: Variação da PSNR do frames WZ, ao longo dos da	

sequência *Foreman*, para diferentes passos de quantização *intraframe* e diferentes qualidades: {QP=24, TQ=18}, {QP=28, TQ=10}, {QP=32, TQ=4}. 185 Figura 4.88: PSNR do frame Wyner-Ziv, substituindo-se as bandas com número de níveis igual a zero pelas correspondentes da informação lateral, para sequência *News*, com QP = 28 (intra) e TQ = 13 (WZ). 186 Figura 4.89: PSNR do frame Wyner-Ziv, substituindo-se as bandas com número de níveis igual a zero pelas correspondentes da informação lateral, para sequência *News*, com QP = 28 (intra) e TQ = 13 (WZ). 186

Lista de Tabelas

Tabela 4.1: Métodos de cálculo da faixa dinâmica do coeficiente DC	105
Tabela 4.2: Composição dos bitplanes da k-ésima banda.	112
Tabela 4.3: número total de bits transmitidos por banda, conforme o	
número de bitplanes codificados.	113
Tabela 4.4: PSNR média e número de parâmetros laplacianos que	
necessitam ser calculados em função do nível de granularidade.	133

Lista de Algoritmos

Algoritmo 4.1: cálculo do passo de quantização baseado no método dvc	106
Algoritmo 4.2: cálculo do passo de quantização para o método proposto	107
Algoritmo 4.3: verificação do grau de confiabilidade em relação aos bits	
decodificados	124
Algoritmo 4.4: cálculo do frame interpolado	145
Algoritmo 4.5: interpolação baseada na quantidade de movimento	161
Algoritmo 4.6: extrapolação de pixels	162
Algoritmo 4.7: reconstrução dos coeficientes DCT	180

Lista de Siglas e Abreviaturas

ADSL	Asynchronous Digital Subscriber Line
APP	A Posteriori Probability
ARPS	Adaptive Rood Pattern Search
AVC	Advanced Video Coding
BCJR	Bahl-Cocke-Jelinek-Raviv
BP	Belief Propagation
Codec	Codificador e decodificador
Coset	Codeword set
CRC	Cyclic Redundancy Check
DCT	Discrete Cosine Transform
DS	Diamond Search
DSC	Distributed Source Coding
DVC	Distributed Video Coding
eIRA	extended Irregular Repeat Accumulate
ES	Exhaustive Search
GOP	Group of Pictures
HVS	Human Visual System
IDCT	Inverse Discrete Cosine Transform
ITU-T	International Telecommunication Union - Telecomunications
KLT	Transformada de Karhunen-Loève
LDPC	Low Density Parity-Check
LDPCA	LDPC Acumulado
LIA	LDPC Irregular, Acumulado e Adaptativo
LLR	Log-Likelihood Ratio
LSB	Least Significant Bits
MAD	Mean Absolute Difference
MAP	Maximum A Posteriori
ML	Maximum Likelihood
ML MMS	Maximum Likelihood Multimedia Messaging Service

MSB	Most Significant Bits
MSE	Mean Square Error
MV	Motion Vector
NCC	Número de Casos Confiáveis
NTSS	New Three Step Search
PDWZ	Pixel Domain Wyner-Ziv
PRISM	Power-efficient, Robust, high compression, Syndrome-based
	Multimedia (coding)
PSNR	Peak Signal-to-Noise Ratio
QCIF	Quarter Common International Format
QP	Quantization Parameter
RCPT	Rate-Compatible Punctured Turbo
RD	Rate-Distortion
SISO	Soft Input-Soft Output
SP	Sum-Product
SES	Simple and Efficient TSS
4SS	Four Step Search
TDWZ	Transform Domain Wyner-Ziv
TQ	Tabela de Quantização
TSS	Three Step Search
WZ	Wyner-Ziv