

Liset Hurtado Espinoza

Avaliação do Potencial de Liquefação de Solos Coluvionares do Rio de Janeiro

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

Orientador: Tácio Mauro Pereira de Campos

Rio de Janeiro Setembro de 2010

Liset Oriana Hurtado Espinoza

Avaliação do Potencial de Liquefação de Solos Coluvionares do Rio de Janeiro

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Tácio Mauro Pereira de Campos Orientador Departamento de Engenharia Civil - PUC-Rio

Prof^a. Michele Dal Toé Casagrande Departamento de Engenharia Civil - PUC-Rio

Prof. Sergio Tibana Universidade Estadual do Norte Fluminense

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 24 de setembro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Liset Hurtado Espinoza

Graduou-se em Engenharia Civil pela Universidade Privada de Tacna em 2004 (Perú). Principais áreas de interesse: Mecânica dos Solos, Geotecnia Experimental e Geotecnia Ambiental.

Ficha Catalográfica
Hurtado Espinoza, Liset Oriana
Avaliação do potencial de liquefação de solos coluvionares do Rio de Janeiro / Liset Oriana Hurtado Espinoza ; orientador: Tácio Mauro Pereira de Campos. – 2010.
146 f : il (color): 30 cm
Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2010.
Inclui bibliografia
 Engenharia civil – Teses. 2. Resistência ao cisalhamento. 3. Solo coluvionar. 4. Poro-pressões. 5. Velocidade de deslocamento. I. Campos, Tácio Mauro Pereira de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Àquela que um dia foi minha mãe, e depois se tornou minha melhor amiga, em qualquer lugar deste Universo que esteja ou no que tenha se transformado, envio a minha gratidão.

Agradecimentos

Agradeço a Deus por ter me concedido a vida, a saúde, a família que tenho, por todas as bendições recebidas e por sua presença em todos os meus dias.

Ao meu orientador, professor Tácio Mauro Pereira de Campos, pela oportunidade, paciência, pelos conhecimentos transmitidos e orientação recebida ao longo da realização deste trabalho.

Ao professor Franklin Antunes, obrigada pela orientação e por todos os ensinamentos. Aos professores do Departamento de Engenharia Civil da PUC-Rio, pelos ensinamentos transmitidos.

Ao Engenheiro William, por ajudar na execução dos ensaios de resistência, e aos demais funcionários do laboratório de Geotecnia e Meio Ambiente da PUC-Rio: Amaury e Josué, por estarem disponíveis sempre que precisei.

Àos funcionarios da Pontificia Universidade Católica do Rio de Janeiro Rita, Lenilson e Fátima por me ajudarem sempre que foi necessário.

A minha família, que incessantemente ampara minhas dificultades. Em especial a minha tia Rosa, pelo inesgotável apoio e carinho.

Aos professores Carmen Ortiz Salas e Jorge E. Alva Hurtado, por ter me incentivado a iniciar o curso de Mestrado na PUC-Rio.

Ao grande amigo Ivan Benites, mais uma vez incansável no apoio, na colaboração e no carinho. Ao amigo Julio Bizarreta e a Taíse de Carvalho pelos conselhos.

Àos meus amigos: Alejandra, Anapaula, Anita, Claudia, Fernando, Gerardo, Igor, Liliana, Marlene e Roxana que estiveram do meu lado não só nos momentos bons, mas durante toda a execução deste trabalho, pelo incentivo, amizade e ajuda. A todos os amigos que fiz durante o mestrado, pelos momentos de descontração. Aos amigos que estão distante, mais nem por isso menos amados ou esquecidos.

À Pontificia Universidade Católica do Rio de Janeiro pela oportunidade de fazer o mestrado. Ao CNPq pelo apoio financeiro.

Aos componentes da banca, pelas sugestões e críticas construtivas feitas a este trabalho.

Resumo

Hurtado Espinoza, Liset; Campos, Tácio Mauro Pereira de (orientador) Avaliação do Potencial de Liquefação de Solos Coluvionares do Rio de Janeiro. Rio de Janeiro, 2010. 146 p. Dissertação de Mestrado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O fenômeno de liquefação está diretamente relacionado a uma diminuição acentuada da resistência não drenada em materiais saturados, induzida por uma redução significativa das tensões efetivas, em decorrência do desenvolvimento de elevadas poropressões. O mecanismo, em muitos casos, é associado a eventos sísmicos. Em regiões assísmicas, como no Rio de Janeiro, corridas de detritos deflagradas por chuvas intensas podem envolver este fenômeno, agora associado a carregamentos estáticos. Para a investigação da susceptibilidade à liquefação de solos coluvionares do Rio de Janeiro, foram coletadas amostras indeformadas de dois locais: Campo Experimental da PUC-Rio e bacia do rio Quitite. Na primeira fase do programa experimental desenvolvido foram realizados ensaios de caracterização física, química e mineralógica dos dois materiais. Após a caracterização, passou-se ao estudo da compressibilidade dos solos, através da realização de ensaios de velocidade de deslocamento constante (CRD) em corpos de prova indeformados, obtendo-se a tendência da linha virgem. Em seguida estudou-se o comportamento tensão-deformação e a resistência dos materiais com a execução de ensaios triaxiais de compressão, adensados isotropicamente e cisalhados na condição não drenada, com medida de poro-pressões à meia altura e na base dos corpos de prova. A influência da velocidade de cisalhamento foi analisada nesta fase das investigações. Com as análises dos resultados e entendimento do comportamento tensão-deformação destes materiais em condições de laboratório, concluiu-se que os mesmos não são susceptíveis à liquefação.

Palavras – chave:

Resistência ao Cisalhamento, Solo Coluvionar, Poro-Pressões, Velocidade de Deslocamento

Abstract

Hurtado Espinoza, Liset; de Campos, Tácio Mauro Pereira (advisor) **Evaluation of the Liquefaction Potential of Colluvionar Soils from Rio de Janeiro.** Rio de Janeiro, 2010. 146 p. M.Sc. Dissertation - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The liquefaction phenomenon is directly related to a remarkable decrease of undrained strength of saturated materials, induced by significant reduction of effective stress due to high pore-pressures development. In most of the cases, the mechanism is associated to seismic events. In non seismic areas, like Rio de Janeiro, debris flow triggered by heavy rainfalls may involve this phenomenon, now associated to static loading. For an investigation of liquefaction susceptibility of colluvium soils from Rio de Janeiro, undisturbed samples were collected from two sites: Campo Experimental of PUC-Rio and the basin of the Quitite river. In the first phase of this developed experimental program, physical characterization, chemical and mineralogical tests were performed. After characterization, soil compressibility was evaluated through constant rate of deformation tests (CRD) performed in undisturbed samples, resulting in definition of virgin line tendencies. Following that, the stress-strain behavior and strength were studied using triaxial compression tests, isotropically consolidated and sheared in undrained condition, with pore-pressure measured both at the middle and at the base of the samples. The shear rate influence was analyzed in this investigation phase. Based on the analysis of the obtained results and the understanding of the stress-strain behavior of the studied materials under laboratory condition, it was concluded that they are not susceptible to liquefaction.

Keywords:

Shearing strength; colluvium soil; pore-pressures; shearing rate.

Sumário

1. Introdução	21
1.1. Motivação e objetivos	21
1.2. Estrutura da dissertação	23
2. Revisão Bibliográfica	24
2.1. Colúvios	24
2.1.1. Definição de Colúvios	24
2.1.2. Formação dos Colúvios	25
2.1.3. Instabilidade de Colúvios	27
2.2. Liquefação	29
2.2.1. Critério de Composição de Matéria	30
2.2.2. Tipos de Resposta durante o Carregamento Não Drenado	32
2.2.3. Estado Crítico	34
3. Características da Área de Estudo	39
3.1. Campo Experimental II PUC-Rio	
3.1.1. Geologia e Geomorfologia	40
3.1.2. Aspectos Climáticos	42
3.1.3. Amostragem do Solo	42
3.2. Bacias do Quitite e Papagaio	44
3.2.1. Geologia e Geomorfologia	48
3.2.2. Aspectos Climáticos	51
3.2.3. Amostragem do Solo	52
4. Ensaios Realizados e Metodologias Empregadas	54
4.1. Ensaios de Caracterização	54
4.1.1. Granulometria	56
4.1.2. Limites de Atterberg	56
4.1.3. Densidade dos Grãos (Gs)	56

4.2. Caracterização Química	57
4.3. Caracterização Mineralógica	57
4.3.1. Difração por raios-X (DRX)	57
4.4. Ensaios Triaxiais	58
4.4.1. Equipamentos Utilizados	60
4.4.1.1. Prensa Triaxial	60
4.4.1.2. Sistema de Aquisição de pressão	62
4.4.1.3. Transdutores de Força, de Deslocamento e de Pressão	63
4.4.1.4. Medidores de Volume	63
4.4.1.5. Minitransdutor de Poro-Pressão no meio do Corpo de Prova	64
4.4.1.6. Acessórios: Membrana de Látex, Papel Filtro e Pedras Porosas	65
4.4.2. Procedimentos Adotados nos Ensaios	66
4.4.2.1. Confecção dos Corpos de Prova	66
4.4.2.2. Saturação das Linhas do Equipamento Triaxial	67
4.4.2.3. Montagem do Ensaio	67
4.4.2.4. Saturação dos Corpos de Prova	68
4.4.2.5. Adensamento	70
4.4.2.6. Fase de Cisalhamento	71
4.5. Ensaios de Adensamento com Deslocamento Controlado: CRD	
4.5.1. Equipamentos Utilizados	
4.5.2. Procedimento Adotado	76
4.5.2.1. Confecção dos Corpos de Prova	76
4.5.2.2. Saturação dos Corpos de Prova: Capilaridade e Sucção	77
4.5.2.3. Montagem do Ensaio	
5. Caracterização dos Solos	79
5.1. Determinação de Propriedades do Solo	79
5.2. Apresentação e Análise dos Resultados	79
5.2.1. Caracterização Física	79
5.2.1.1. Indices Fisicos	79
5.2.1.2. Analise Granulometrica	80
5.2.1.3. Limites de Atterberg	81
5.2.1.4. Classificação dos Solos	01
	ŏ∠
5.3. Caracienzação Química	δ4 0.4
	84 05
5.3.2. Capacidade de Troca Cationica (CTC)	85

6. Analise de Resultados e Discussão de Ensaios Mecânicos	86
6.1. Ensaios de Adensamento com Velocidade de Deslocamento Controlado	86
6.1.1. Apresentação e Análise dos Resultados	86
6.2. Ensaios Triaxiais de Deformação Controlada	90
6.2.1. Apresentação e Análise dos Resultados	92
6.2.2. Influência da Velocidade nos Ensaios Triaxiais	94
6.2.2.1. Dados na Ruptura	112
6.2.2.2. Módulos de Deformação	118
6.3. Avaliação do Potencial de Liquefação	120
6.3.1. Comportamento σ vs ϵ .	121
6.3.1.1.Definição de Mudança de Estrutura (Colapso)	121
6.3.1.2. Definição de Mudança de Fase	123
6.3.1.3. Resumo de Parâmetros Obtidos	125
6.4. Trajetória de Tensões	126
6.5. Avaliação de Liquefação de Acordo com Sandroni & de Campos (1991)	132
7. Conclusões e Sugestões	133
7.1. Conclusões	133
7.1.1. Caracterização Física, Química e Mineralógica	133
7.1.2. Adensamento com Velocidade Controlada	133
7.1.3. Ensaios Triaxiais de Deformação Controlada	133
7.1.4. Liquefação	134
7.2. Sugestões	134
Referências Bibliográficas	136

Lista de figuras

Figura 1.1: Parte da bacia do rio Quitite, onde podemos observar diversos escorregamentos próximos ao divisor de drenagem e na parte inferior a corrida de detritos (Fonte: Fernandes e Amaral, 1996). 22 Figura 2.1: Ilustração do processo de formação de um colúvio (Deere & Patton, 1971). 26 Figura 2.2: Faixas granulométricas (Tsuchida, 1970) 31 Figura 2.3: Indice de plasticidade, Ishihara e Koseki, (1989). 31 Figura 2.4: Respostas típicas de uma areia durante o carregamento não drenado (modificado de Sriskandakumar, 2004). 33 Figura 2.5: Comportamento de areias fofas e compactas durante o cisalhamento (modificado de Universidade de Washington, 2008) 33 36 Figura 2.6: Linha do índice de vazios crítico. Figura 2.7: Estado permanente de deformação obtido de ensaios não drenados (modificado de Poulos et al., 1985) 37 Figura 3.1: Localização do Campo Experimental II, PUC-Rio (Soares, 2005). 39 Figura 3.2: Perfil morfológico do local de estudo (Daylac, 1994). 41 43 Figura 3.3: Perfil do local de estudo. Figura 3.4: Mapa de localização da área de estudo. A porção em vermelho no interior do retângulo representa as bacias dos rios Quitite e Papagaio.. 45 Figura 3.5: Fotografia aérea mostrando a localização da área de estudo delimitada em vermelho (A), e representação tridimensional das bacias dos rios Quitite e Papagaio (B).. 46 Figura 3.6: Localização dos estragos causados pelos vários deslizamentos ocorridos após intensas chuvas em Fevereiro de 1996 ao longo das bacias dos rios Quitite e Papagaio em que podemos observar o os blocos movimentados na bacia do rio Quitite (A e B), na bacia do rio Papagaio (F) e finalmente os depósitos de blocos e lamas na região de baixada atingindo condomínios de alto 47 padrão (C, D e E).

Figura 3.7: Mapa geológico da bacia do rio Quitite, onde podemos observar a predominância do Gnaisse Archer na área (em verde). Esta predominância continua também na bacia do rio Papagaio, apesar de não ser mostrado na figura, conforme o relatório da GEORIO (1996). 50

Figura 3.8: Localização dos perfis transversais na área de estudo e seus gráficos correspondentes em que, podemos verificar a simetria das duas bacias no perfil A-A'. Entretanto, nos perfis da média e baixa encosta verifica-se que a bacia do Papagaio deixa de ser simétrica, conforme mostra os perfis B-B' e CC'. 51 Figura 3.9: Perfil do solo aonde foi tirado o bloco, apresentou-se uma casca que cobria o solo coluvial (A), moldagem do bloco de medidas 40 x 40 x 40 cm (B), bloco indeformado (C). 53 Figura 4.1: Prensa Triaxial de Deformação Controlada - Wykeham Farrance WF100072. 60 Figura 4.2: Cámara Triaxial.. 61 Figura 4.3: Sistema de Aquisição de Dados Orion. 62 Figura 4.4: Transdutor (a) e Câmara de acrílico para Saturação do Transdutor (b). 65 Figura 4.5: Moldagem do corpo de prova na prensa (a), amostrador utilizado na confecção dos corpos de prova (b). 66 Figura 4.6: Montagem do corpo de prova (a), Montagem final com o 68 minitransdutor e o látex liquido seco ao redor da borracha (b). Figura 4.7: Exemplo da equalização das poropressões na base e no meio do corpo de prova, após de 24 horas de adensamento. 70 Figura 4.8: Exemplo de gráfico utilizado no cálculo de t100 (ensaio triaxial CIU com σ'c igual a 200kPa). 71 Figura 4.9: Equipamento de ensaio de adensamento CRD. 75 Figura 4.10: Amostrador contendo o solo após de ser submetido a sucção e capilaridade para saturar-lo. 76 Figura 4.11: Equipamento de ensaio de adensamento CRD (a), corpo de prova colocado no anel (b). 78 Figura 5.1: Curvas Granulométricas. 80 Figura 5.2: Difratograma do Solo do Campo Experimental. 83 Figura 5.3: Difratograma do Solo do Quitite. 83 Figura 6.1: Variação do índice de vazios com a tensão efetiva das amostras CE E-1 e CE E-2. 87 Figura 6.2: Variação do índice de vazios com a tensão efetiva das amostras QUI E-3, QUI E-4 e QUI E-5. 88 Figura 6.3: Relação entre: σv'o – Wf (%) e Linha Virgem dos ensaios CRD no Solo do Campo Experimental. 95 Figura 6.4: Corpos de provas com oc'=20 kPa após os ensaios no solo do Campo Experimental. 97

Figura 6.5: Curvas (a) $\sigma d x \epsilon a$, (b) Δu (base) x $\epsilon a e$ (c) Δu (meio) x $\epsilon a \rho a r a$ σ 'c=20 kPa no solo do Campo Experimental. 98 Figura 6.6: Curvas (a) $\sigma d x \epsilon a$, (b) Δu (base) x $\epsilon a e$ (c) Δu (meio) x ϵa para σ 'c=70 kPa no solo do Campo Experimental. 100 Figura 6.7: Corpos de provas com $\sigma c'=70$ kPa após os ensaios no solo do Campo Experimental. 101 Figura 6.8: Corpos de provas com σ c'=200 kPa após os ensaios no solo do 102 Campo Experimental. Figura 6.9: Curvas (a) $\sigma d x \epsilon a$, (b) Δu (base) x $\epsilon a e$ (c) Δu (meio) x ϵa para σ 'c=200 kPa no solo do Campo Experimental. 103 Figura 6.10: Relação entre: p'o – Wf (%) e Linha Virgem dos ensaios CRD no Solo do Quitite. 105 Figura 6.11: Corpos de provas com σ c'=20 kPa após os ensaios no solo de 106 Quitite. Figura 6.12: Curvas (a) $\sigma d x \epsilon a$, (b) Δu (base) x $\epsilon a e$ (c) Δu (meio) x ϵa para σ 'c=20 kPa no solo do Quitite. 107 Figura 6.13: Corpos de provas com σ c'=70 kPa após os ensaios no solo do Quitite. 108 Figura 6.14: Curvas (a) $\sigma d x \epsilon a$, (b) Δu (base) x $\epsilon a e$ (c) Δu (meio) x ϵa para σ 'c=70 kPa no solo do Quitite. 109 Figura 6.15: Corpos de provas com σ c'=200 kPa após os ensaios no solo do 110 Quitite. Figura 6.16: Curvas (a) $\sigma d \propto \epsilon a$, (b) Δu (base) $\propto \epsilon a e$ (c) Δu (meio) $\propto \epsilon a$ para σ 'c=200 kPa no solo do Quitite. 111 Figura 6.17: Relação de Su e velocidade no solo do Campo Experimental. 114 Figura 6.18: Relação de Su e velocidade no solo do Quitite. 115 Figura 6.19: Diagrama p'-g dos estados críticos, a) Campo Experimental e b) Quitite. 117 Figura 6.20: Relação do Modulo $E_{s50\%}$ e da Velocidade de Cisalhamento a) 119 Campo Experimental e b) Quitite. Figura 6.21: L Relação do Modulo E_{\$50%} e da Velocidade de Cisalhamento para os Solos do Campo Experimental e Quitite. 120 Figura 6.22: Envoltórias de Mudança de estrutura para ensaios lentos (a) e rápidos (b) no solo do Campo Experimental. 122 Figura 6.23: Envoltórias de Mudança de estrutura para ensaios lentos (a) e 123 rápidos (b) no solo do Quitite.

Figura 6.24: Envoltórias de Mudança de Fase para ensaios lentos (a) e rápidos
(b) do solo do Campo Exprimental. 124
Figura 6.25: Envoltórias de Mudança de Fase para ensaios lentos (a) e rápidos
(b) no solo do Quitite. 125
Figura 6.26: Envoltórias de Mudança de Fase para ensaios lentos para os solos
do Campo Experimental. 126
Figura 6.27: Envoltórias de Mudança de Fase para ensaios rápidos para os solos
do Campo Experimental. 127
Figura 6.28: Envoltórias para ensaios lentos no solo de Quitite. 128
Figura 6.29: Envoltórias para ensaios rápidos no solo de Quitite. 128
Figura 6.30: Envoltórias das Fases de Liquefação para o solo do Campo
Experimental. 129
Figura 6.31: Envoltórias das Fases de Liquefação para o solo do Quitite. 130
Figura 6.32: Envoltórias das Fases de Liquefação para os solos do Campo
Experimental e Quitite. 130

Lista de tabelas

Tabela 3.1 – Resumo de Blocos Extraídos	43
Tabela 3.2 – Parâmetros do colúvio das encostas das bacias do Quitite e	
Papagaio	48
Tabela 3.3 – Quantidade de chuva ocorrida nos dias 13 e 14/02/96	
Tabela 4.1 - Tabela resumo das velocidades de cisalhamento utilizadas	s na
pesquisa	73
Tabela 5.1 – Índices físicos dos solos coluvionares	79
Tabela 5.2 – Resumo da Ánalise Granulometrica	80
Tabela 5.3 – Resumo dos Límites de Atterberg e da Actividade do Solo	81
Tabela 5.4 – Classificação SUCS do solo	82
Tabela 5.5 – Ensaios de difração por raios-X realizados	82
Tabela 5.6 – Valores de pH e condutividade elétrica	84
Tabela 5.7 – Valores de CTC e SB	85
Tabela 6.1 - Características iniciais dos corpos de prova do ensaio 0	CRD
	87
Tabela 6.2 – Linhas de Compressão virgem	89
Tabela 6.3 – Parâmetros do ensaio de adensamento	89
Tabela 6.4 – Coeficiente de condutividade hidráulica e coeficiente de	
adensamentos dos corpos de prova dos ensaios CRD	90
Tabela 6.5 – Resumo dos Ensaios Triaxiais	91
Tabela 6.6 - Características dos corpos de prova nos Ensaios Triaxiais	CIU
	94
Tabela 6.7 – Teor de Umidade final x tensão efetiva de adensamento	95
Tabela 6.8 - Teor de Umidade final x tensão efetiva de adensamento - Qu	uitite
	104
Tabela 6.9 – Dados Máximos e Normalizados na Ruptura	113
Tabela 6.10 – Valores obtidos no estado crítico	116
Tabela 6.11 – Módulos de Deformação Secante (E50%)	118
Tabela 6.12 – Parâmetros de Resistência	126
Tabela 6.13 - Avaliação de liquefação proposta de Sandroni & de Cam	npos
(1991)	132

Lista de Abreviaturas

ABNT	Asociação Brasileira de Normas Técnicas
ASTM	American Society for Testing and Materials
В	Parâmetro de Skempton;
BS	Norma Britanica (British Standard)
CE	Condutividade Elétrica
СН	Argila de Alta Plasticidade
CID	Ensaio Triaxial consolidado drenado
CIU	Ensaio Triaxial consolidado não drenado
CRD	Ensaio de Adensamento de Deslocamnto Constante
CRS	Ensaio de Adensamento de Deformação Constante
CTC	Capacidade de Troca Catónica
CO	Coluvio
DCMM	Departamento de Ciência dos Materiais e Metalurgia
DRX	Difração por Raios X
EC	Estado Crítico
la	Índice de Atividade
IP	Indice de Plasticidade
LL	Limite de Liquidez
LP	Limite de Plasticidade
LSCDT	Extensômetro
MF	Mudança de Fase
MH	Silte de Alta Plasticidade
MVV	Medidor de Variação de Volume
NBR	Norma Brasileira
PVC	Policloreto de Vinila
SR	Solo Residual
SRJ	Solo Residual jovem
SUCS	Sistema Unificado de Classificação de Solos
TEC	Teoria do Estado Crítico
UU	Ensaio Triaxial não consolidado não drenado
VDC	Voltio de Corrente contínua

Lista de Símbolos

c'	coesão efetiva
C _c	Coeficiente de contração do adensamento primário
C_r	Coeficiente de expansão do adensamento primário
Cs	Coeficiente de expansão do adensamento secundario
C_{α}	Coeficiente de adensamento Secundario
C_{v}	Coeficiente de adensamento
d	Distância interplanar
e	Relação de vazios
eo	Índice de vazios inicial
ес	Índice de vazios inicial para amostra de areia compacta
ecri	Índice de vazios crítico;
ef	Índice de vazios inicial para amostra de areia fofa
$E_{s50\%}$	Modulo de Deformão secante para 50% da tensão desviadora
F	Coeficiente que depende das condições de drenagem e do tipo de
	ensaio triaxial;
G_{s}	Densidade dos grãos;
\mathbf{k}_{i}	Relação molecular Silica-Alumina
$\mathbf{k}_{\mathbf{r}}$	Relação molecular Silica-Sesquióxidos
k	Coeficiente de permeabilidade
L	Altura do corpo de prova;
Lo	Altura do corpo de prova inicial;
n	Porosidade;
рН	Potencial hidrogênio;
p'	$(\sigma'_{vo} + \sigma'_{ho})/2$
p'o	$(\sigma'_{vo} + \sigma'_{ho})/2$
q	$(\sigma'_v - \sigma'_h)/2$
S	Stauração
t	Tempo
t _r	Tempo mínimo de ruptura
t ₁₀₀	Tempo para o qual ocoreu o 100% do adensamento

$t_{\rm f}$	Tempo final
V_{max}	Velocidade máxima de cisalhamento
Wo	Umidade inicial
W_{f}	Umidade final
W	Umidade no Ensaio CRD

Gregos

α	Ângulo de atrito no diagrama p'-q;
α_s	Ângulo de atrito de estado permanente no diagrama p'-q;
∆u	Incremento de poropressão
$\Delta \sigma_c$	Acréssimo de tensão confinante aplicado
ΔV	Variação de volume
Δh	Variação de altura
Δt_{p-s}	Diferença de chegada entre as onda $P \in S$
3	Deformação
E _{er}	Deformação axial estimada na ruptura
Ea	Deformação axial
φ_{cv}	Ângulo de atrito de volume constante
φ_{pt}	Ângulo de atrito mobilizado na transfonormacao de fase
$\varphi_{\scriptscriptstyle S}$	Ângulo de atrito de estado permanente
φ	Ângulo de atrito no diagrama de Mohr-Coloumb
γ	Peso específico
γd	Peso específico seco
Ynat	Peso específico natural
γ_s	Peso específico dos grãos
γ _t	Peso específico total
λ	Comprimento de onda dos raios X incidentes
u_b	Poropressão na base do corpo de prova no Ensaio Triaxial
σ'_{3c}	Tensão confinante efetiva
σ'_{l}	Tensão principal maior efetiva
σ'3, σ'2	Tensões principais intermediarias efetivas
σ'_c	Pressão confinante
σ'_d	Tensão desviadora
σ_l	Tensão principal maior
σ_2, σ_3	Tensões principais intermediarias
σ'_{3o}	Tensão primcipal menor efetiva
σ'_{vm}	Tensão de pré-adensamento

0
(

 θ Ângulo de difração