3 Modelagem Matemática

O objetivo desta dissertação, é estabelecer restrições ao comportamento estatístico das parcelas individuais de interferências externas presentes em um enlace de comunicações, de modo a garantir que, independentemente das características específicas do sistema interferente considerado, as condições de desempenho em (2-1) sejam satisfeitas. Como a ocorrência de interferências está estreitamente relacionada com a degradação y devida às mesmas, define-se inicialmente, neste capítulo, um problema de otimização com restrições, cuja solução permite estabelecer as restrições a serem impostas ao comportamento estatístico da degradação y devida às parcelas individuais de interferências externas de forma que as condições em (2-1) sejam atendidas. As restrições a serem impostas ao comportamento estatístico das parcelas individuais de interferências podem ser obtidas, conforme será mostrado na Seção 3.1, a partir das restrições impostas à degradação y.

As seções que se seguem abordam o relacionamento entre os comportamentos estatísticos das parcelas individuas de interferência e da degradação devida a interferências, a função objetivo, e as restrições correspondentes ao problema de otimização a ser solucionado.

3.1

Relacionamento entre os comportamentos estatísticos das parcelas de interferências e da degradação devida a interferências

A razão interferência agregada-ruido térmico num sistema de comunicações sujeita à K parcelas de interferência externas, se escreve:

$$\frac{i}{N} = \sum_{k=1}^{K} \frac{i_k}{N} \tag{3-1}$$

onde i representa a interferência total presente no sistema, i_k representa cada uma das parcelas de interferência externa presentes no sistema, K repre-

senta o número total de interferências externas e N representa o ruido térmico.

Esta interferência agregada provoca um fator de degradação u do sinal transmitido em um enlace de comunicação, denotado por

$$u = \frac{\frac{E_b}{N_0}}{\frac{E_b}{N_0 + \frac{i}{B}}}$$
(3-2)

onde i é a potência do sinal interferente (em Watts) e B é a de banda de frequências (em Hz) considerada, e consequentemente, a razão i/B representa o nível espectral da interferência.

Reescrevendo (3-2), tem-se,

$$u = 1 + \frac{i}{BN_0} \tag{3-3}$$

ou ainda,

$$u = 1 + \frac{i}{N} \tag{3-4}$$

onde *u* representa o fator de degradação da razão E_b/N_0 devido à interferências, e $N = BN_0$ é a potência de ruido térmico.

A partir de (3-4) tem-se

$$\frac{i}{N} = u - 1 \tag{3-5}$$

que representa a relação entre a razão potência interferente-ruido térmico i/N e o fator de degradação u devido às interferências externas. Este relacionamento permite obter as restrições a serem impostas ao comportamento estatístico da razão interferência - ruido térmico, a partir das restrições impostas ao fator de degradação u.

Considerando-se (3-4) tem-se que a relação entre as funções densidade de probabilidade da razão i/N e do fator de degradação u é dada por,

$$p_u(U) = \frac{p_{\frac{i}{N}}(V)}{|J_g(V)|}\Big|_{V=U-1} = p_{\frac{i}{N}}(U-1)$$
(3-6)

Note que se as parcelas de interferência externa são estatisticamente independentes, é possível obter a função densidade de probabilidade da razão i/N a partir das funções densidade de probabilidade das parcelas individuais de interferência utilizando-se a relação:

$$p_{\frac{i}{N}}(V) = p_{\frac{i_1}{N}}(V) * p_{\frac{i_2}{N}}(V) * \dots * p_{\frac{i_K}{N}}(V)$$
(3-7)

Neste ponto vale lembrar que a degradação y definida no capitulo anterior refere-se à degradação devida a interferências externas, expressa em dB, assim,

$$y = 10\log(u) \tag{3-8}$$

e conseqüentemente,

$$p_y(Y) = \frac{p_u(U)}{\left|\frac{10\log e}{U}\right|}_{U=10^{Y/10}}$$
(3-9)

obtendo-se finalmente

$$p_y(Y) = \frac{10^{Y/10} p_u(10^{Y/10})}{10 \log \mathsf{e}}$$
(3-10)

onde e representa o número de Neper (e = 2,71828).

3.2 Definição das restrições do problema

Conforme mencionado anteriormente, considera-se, nesta dissertação, que os modelos para a caracterização da degradação x devida a chuvas são conhecidos.

Para o cálculo da degradação y da razão E_b/N_0 , devida às interferências causadas por outros sistemas, as parcelas individuais de interferência são representadas parametricamente, assumindo as seguintes hipóteses:

(i) As parcelas individuas de interferências i_k/N são limitadas ao intervalo $[V_{min}, V_{max}]$.

- (ii) Permite-se a existência de uma probabilidade diferente de zero para as interferências iguais a V_{min} e V_{max} , ou seja, $P(i_k/N = V_{min})$ e $P(i_k/N = V_{max})$ diferentes de zero.
- (iii) No intervalo aberto (V_{min}, V_{max}) , a função densidade de probabilidade das interferências $p_{\frac{i_k}{N}}(V)$ é contínua e diferenciável, e será representada por uma expansão em série em uma base de funções ortonormais contínuas e diferenciáveis no intervalo (V_{min}, V_{max}) .

De acordo com a Recomendação S.1323 [11] estas hipóteses refletem o comportamento típico das interferências externas presentes em um sistema de comunicação e devidas às emissões de outros sistemas que com ele compartilham a mesma faixa de freqüências. Sob estas hipóteses, a função densidade de probabilidade $p_{\frac{i}{k}}(V)$ pode ser escrita como

$$p_{\frac{i_k}{N}}(V) = \alpha_0 \ \delta(V - V_{min}) + \alpha_{n+1} \ \delta(V - V_{max}) + \sum_{i=1}^n \alpha_i \ \phi_i(V)$$
(3-11)

onde $\delta(.)$ é a função impulso, $\{\phi_i(Y), i = 1, ..., n\}$ é o conjunto de funções ortonormais contínuas e diferenciáveis no intervalo (V_{min}, V_{max}) e $\{\alpha_0, ..., \alpha_{n+1}\}$ o conjunto de parâmetros utilizados para representar a função $p_{\frac{i_k}{N}}(V)$. A Figura 3.1 ilustra a função densidade de probabilidade $p_{\frac{i_k}{N}}(V)$.

Figura 3.1: Função densidade de probabilidade das parcelas individuais de interferências externas

Sabe-se de (3-7) que a função densidade de probabilidade da razão i/Né dado por

$$p_{\frac{i}{N}}(V) = p_{\frac{i_1}{N}}(V) * p_{\frac{i_2}{N}}(V) * \dots * p_{\frac{i_K}{N}}(V)$$
(3-12)

o procedimento para calcular esta função densidade de probabilidade, quando as funções densidade de probabilidade de $p_{\frac{i_k}{N}}(V)$ têm a estrutura em (3-11) é apresentado no apêndice D.

Considerando o resultado em (D-10), para o caso particular em que m = 1, $x_k = i_k/N$, x = i/N, $\theta_0 = \alpha_0$ e $\theta_1 = \alpha_{n+1}$, obtém-se para a função densidade de probabilidade em (3-12)

$$p_{\frac{i}{N}}(V) = \sum_{\ell=1}^{K} \binom{K}{\ell} \left\{ \left[\sum_{i=0}^{1} \alpha_{i(n+1)} \ \delta(V - \gamma_{i}) \right]^{[K-\ell]} * \left[\sum_{i=1}^{n} \alpha_{i} \ \phi_{i}(V) \right]^{[\ell]} \right\}$$
(3-13)

com $\gamma_0 = V_{min}$ e $\gamma_1 = V_{max}$. Considerando a relação entre as funções densidade de probabilidade da razão i/N e do fator de degradação u mostrada em (3-6), tem-se.

$$p_u(U) = \sum_{\ell=1}^{K} \binom{K}{\ell} \left\{ \left[\sum_{i=0}^{1} \alpha_{i(n+1)} \, \delta(U-1-\gamma_i) \right]^{[K-\ell]} * \left[\sum_{i=1}^{n} \alpha_i \, \phi_i(U-1) \right]^{[\ell]} \right\}$$
(3-14)

A partir de (3-10) e (3-14), a função densidade de probabilidade da degradação devida a interferências expressa em dB, se escreve:

$$p_{y}(Y) = \left\{ \sum_{\ell=1}^{K} \binom{K}{\ell} \left[\sum_{i=0}^{1} \alpha_{i(n+1)} \delta(10^{Y/10} - 1 - \gamma_{i}) \right]^{[K-\ell]} \\ * \left[\sum_{i=1}^{n} \alpha_{i} \phi_{i}(10^{Y/10} - 1) \right]^{[\ell]} \right\} \frac{10^{Y/10}}{10 \log e}$$
(3-15)

Observe que a expressão $p_y(Y)$ é complicada. Para facilitar o entendimento do modelo proposto, a Seção 3.2.1 apresenta o modelo para o caso particular em que existe apenas uma parcela de interferência (K = 1). Este caso particular possibilitará ainda uma comparação entre os resultados obtidos utilizando-se o modelo apresentado em [12] para a obtenção de máscaras de interferência agregada e o modelo aqui proposto para a obtenção de máscaras de interferência de entrada única.

Embora a expressão em (3-15) seja válida para K parcelas, o modelo apresentado se torna extremadamente complexo para K > 2. Assim, na Seção 3.2.2 apresenta-se o modelo para o caso particular em que existem duas parcelas de interferência (K = 2). Este caso particular possibilitará ainda uma comparação entre os resultados obtidos utilizando-se o modelo proposto neste trabalho, e o método aproximado que foi utilizado em [12] para a obtenção de máscaras de interferência única.

3.2.1 Caso particular em que existe apenas uma parcela de interferência (K=1)

Neste caso,

$$\frac{i}{N} = \frac{i_1}{N} \tag{3-16}$$

obtendo-se, a partir de (3-13) e lembrando que $f(V)^{[0]} = \delta(V), \ \gamma_0 = V_{min}$ e $\gamma_1 = V_{max}$.

$$p_{\frac{i}{N}}(V) = \alpha_0 \ \delta(V - V_{min}) + \alpha_{n+1} \ \delta(V - V_{max}) + \sum_{i=1}^n \alpha_i \ \phi_i(V)$$
(3-17)

A função densidade de probabilidade do fator de degradação u, obtida a partir de (3-14), é dada por

$$p_u(U) = \alpha_0 \ \delta(U - 1 - V_{min}) + \alpha_{n+1} \ \delta(U - 1 - V_{max}) + \sum_{i=1}^n \alpha_i \ \phi_i(U - 1) \ (3-18)$$

esta função densidade de probabilidade é ilustrada na figura 3.2.

Considerando-se (3-15), a degradação devida a interferências externas expressa em dB, se escreve:

$$p_y(Y) = \alpha_0 \ \delta(Y - Y_{min}) + \alpha_{n+1} \ \delta(Y - Y_{max}) + \sum_{i=1}^n \alpha_i \ \psi_i(Y)$$
(3-19)

onde

$$Y_{min} = 10\log(V_{min} + 1) \tag{3-20}$$

Figura 3.2: Função densidade de probabilidade do fator de degradação devido a interferências externas

$$Y_{max} = 10\log(V_{max} + 1) \tag{3-21}$$

 \mathbf{e}

$$\psi_i(Y) = \frac{10^{Y/10}\phi_i(10^{Y/10} - 1)}{10\log \mathsf{e}}$$
(3-22)

Em (3-22), $\{\phi_i, i = 1, ..., N\}$ é o conjunto de funções ortonormais continuas e diferenciáveis que foi utilizado para representar a função densidade de probabilidade de u em (3-18). A função densidade de probabilidade em (3-19) é ilustrada na figura 3.3.

Note que, como

$$\int_{V_{min}}^{V_{max}} p_{\frac{i}{N}}(V) \ dV = 1, \tag{3-23}$$

é possível expressar o valor do parâmetro α_{n+1} como função dos demais parâmetros { $\alpha_0, \alpha_1, \ldots, \alpha_n$ }. Tem-se assim,

$$\alpha_{n+1} = 1 - \alpha_0 - \sum_{i=1}^n \alpha_i c_i$$
(3-24)

25

Figura 3.3: Função densidade de probabilidade da degradação devida a inter-ferências externas em dB

onde

$$c_i = \int_{V_{min}}^{V_{max}} \phi_i(V) \ dV \ ; \ i = 1, 2, \dots, n$$
 (3-25)

Conseqüentemente, $p_y(Y)$ pode ser escrita como função dos n + 1 primeiros parâmetros { $\alpha_0, ..., \alpha_n$ }, obtendo-se de (3-19),

$$p_{y}(Y) = \delta(Y - Y_{max}) + \alpha_{0} \left[\delta(Y - Y_{min}) - \delta(Y - Y_{max}) \right] + \sum_{i=1}^{n} \alpha_{i} \left[\psi_{i}(Y) - c_{i} \, \delta(Y - Y_{max}) \right]$$
(3-26)

com os coeficientes c_i dados por (3-25).

No capítulo anterior verificamos que as restrições a serem impostas à degradação total z devida à ocorrência de chuva e interferência (z = x + y), podem ser expressas por

$$P(z > Z_j) \le p_j \; ; \; j = 1, 2, \dots, m$$
 (3-27)

onde $\{Z_j, j = 1, ..., m\}$ são valores de degradação total associados aos níveis pré-estabelecidos $\{(E_b/N_0)_j, j = 1, ..., m\}$ através de (2-10) e $\{p_j, j = 1, ..., m\}$ são probabilidades correspondentes a percentagens de tempo pré-fixadas.

Verificou-se também que, no caso particular em que as variáveis aleatórias

xeysão estatisticamente independentes, a função distribuição de probabilidade de zé dado por

$$F_z(Z) = p_y(Z) * F_x(Z)$$
 (3-28)

o que, considerando-se (3-26), se escreve

$$F_{z}(Z) = F_{x}(Z - Y_{max}) + \alpha_{0} \left[F_{x}(Z - Y_{min}) - F_{x}(Z - Y_{max}) \right] + \sum_{i=1}^{n} \alpha_{i} \left[M_{i}(Z) - c_{i} F_{x}(Z - Y_{max}) \right]$$
(3-29)

onde

$$M_i(Z) = \psi_i(Z) * F_x(Z) \tag{3-30}$$

Por outro lado, as desigualdades em (3-27) podem ser expressas como

$$P(z > Z_j) = 1 - F_z(Z_j) \le p_j \quad ; \quad j = 1, 2, \dots, m$$
(3-31)

com os valores $\{F_z(Z_j) : j = 1, 2, ..., m\}$ obtidos a partir de (3-29), ou seja,

$$F_{z}(Z_{j}) = F_{x}(Z_{j} - Y_{max}) + \alpha_{0} \left[F_{x}(Z_{j} - Y_{min}) - F_{x}(Z_{j} - Y_{max}) \right] \\ + \sum_{i=1}^{n} \alpha_{i} \left[M_{i}(Z_{j}) - c_{i} F_{x}(Z_{j} - Y_{max}) \right] ; \ j = 1, 2, \dots, m \quad (3-32)$$

onde

$$M_i(Z_j) = \psi_i(Z) * F_x(Z) \Big|_{Z=Z_j}$$
; $j = 1, 2, \dots, m$, $i = 1, 2, \dots, n$ (3-33)

Em notação mais compacta, (3-32) se escreve

$$F_z(Z_j) = f_j^{max} + \mathbf{k}_j^T \boldsymbol{\alpha} \quad ; \qquad j = 1, 2, \dots, m \tag{3-34}$$

onde

$$f_j^{max} = F_x(Z_j - Y_{max}) ; \quad j = 1, 2, \dots, m$$
 (3-35)

$$\boldsymbol{\alpha} = (\alpha_0 \ \alpha_1 \cdots \alpha_n)^T \tag{3-36}$$

$$\mathbf{k}_j = \mathbf{m}_j - f_j^{max} \mathbf{c} \tag{3-37}$$

 com

$$\mathbf{c} = (1 \ c_1 \ \cdots \ c_n)^T \tag{3-38}$$

e { c_i ; $i = 1, \dots n$ } dado por (3-25). Ainda em (3-37),

$$\mathbf{m}_{j} = (f_{j}^{min} \ M_{1}(Z_{j}) \cdots M_{n}(Z_{j}))^{T} ; \quad j = 1, 2, \dots, m$$
 (3-39)

com $\{M_i(Z_j); i = 1, \dots, n\}$ dado por (3-33) e

$$f_j^{min} = F_x(Z_j - Y_{min}) \tag{3-40}$$

Observe que, como $F_z(Z_j)$ é uma função distribuição de probabilidade, tem-se

$$0 \le F_z(Z_j) \le 1$$
; $j = 1, 2, \dots, m$ (3-41)

Por outro lado, as restrições em (3-31) impõem a condição

$$F_z(Z_j) \ge 1 - p_j \; ; \; j = 1, 2, \dots, m$$
 (3-42)

Considerando (3-41) e (3-42), verifica-se que os valores $\{F_z(Z_j); j = 1, 2, ..., m\}$ devem satisfazer à condição

$$1 - p_j \le F_z(Z_j) \le 1$$
; $j = 1, 2, \dots, m$ (3-43)

ou ainda, considerando (3-34),

$$1 - p_j \le f_j^{max} + \mathbf{k}_j^T \boldsymbol{\alpha} \le 1 \; ; \; j = 1, 2, \dots, m,$$
 (3-44)

ou, de outra forma,

$$1 - p_j - f_j^{max} \le \mathbf{k}_j^T \boldsymbol{\alpha} \le 1 - f_j^{max} \; ; \; j = 1, 2, \dots, m,$$
 (3-45)

Note que (3-45) caracteriza um conjunto inicial de 2m restrições para os parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$.

Para que $p_y(Y)$ tenha as características próprias de uma função densidade de probabilidade, restrições adicionais têm que ser impostas aos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$. Tem-se, então, considerando-se (3-19), as restrições

$$0 \le \alpha_0 \le 1; \tag{3-46}$$

$$0 \le \alpha_{n+1} \le 1; \tag{3-47}$$

levando em conta (3-24), a restrição em (3-47) pode ser escrita como

$$0 \le 1 - \alpha_0 - \sum_{i=1}^n \alpha_i c_i \le 1$$
(3-48)

o que, em notação matricial se escreve como

$$0 \le \mathbf{c}^T \boldsymbol{\alpha} \le 1 \tag{3-49}$$

com α e c dados respectivamente por (3-36) e (3-38).

Além disso, como $p_y(Y) \ge 0$ para $Y \in (Y_{min}, Y_{max})$, tem-se, a partir de (3-19),

$$\sum_{i=1}^{n} \alpha_i \ \psi_i(Y) \ge 0, \quad \forall \ Y \in (Y_{min}, Y_{max}) \quad ; \quad i = 1, 2, \dots, n$$
(3-50)

o que, em notação matricial se escreve como

$$\Psi^{T}(Y)\boldsymbol{\alpha} \ge 0 , \quad \forall \ Y \in (Y_{min}, Y_{max})$$
(3-51)

onde $\Psi(Y)$ é o vetor de dimensão (n+1) definido por

$$\Psi(Y) = (0 \ \psi_1(Y) \ \cdots \ \psi_n(Y))^T \tag{3-52}$$

Assim, (3-46), (3-49) e (3-51) constituem um conjunto adicional de restrições a serem satisfeitas pelos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$.

A restrição em (3-51) pode ser mais facilmente implementada no modelo se o intervalo $[Y_{min}, Y_{max}]$ é aproximado por um conjunto de N_p pontos igualmente espaçados, dadas por

$$Y_k = Y_{min} + k \frac{Y_{max} - Y_{min}}{N_p - 1} \quad ; \quad k = 0, 1, \dots, N_p - 1 \tag{3-53}$$

A restrição em (3-51) é então implementada através da inequação

$$\boldsymbol{\Psi}_{k}^{T}\boldsymbol{\alpha} \geq 0 \quad ; \qquad k = 0, 1, \dots, N_{p} - 1 \tag{3-54}$$

onde $\Psi_k = \Psi(Y_k) \operatorname{com} \Psi(Y_k)$ dado por (3-52).

Finalmente, o conjunto total de restrições a serem satisfeitas pelos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$, no problema de otimização associado ao caso de uma única parcela de interferência é dado por

$$\mathbf{k}_{j}^{T} \boldsymbol{\alpha} \geq 1 - p_{j} - f_{j}^{max} ; \quad j = 1, 2, \dots, m$$
 (3-55)

$$\mathbf{k}_j^T \boldsymbol{\alpha} \leq 1 - f_j^{max} \qquad ; \quad j = 1, 2, \dots, m \tag{3-56}$$

$$\mathbf{c}^T \boldsymbol{\alpha} \geq 0 \tag{3-57}$$

$$\mathbf{c}^T \boldsymbol{\alpha} \leq 1 \tag{3-58}$$

$$\alpha_0 \ge 0 \tag{3-59}$$

$$\alpha_0 \leq 1 \tag{3-60}$$

$$\Psi_{\mathbf{k}}^{T} \boldsymbol{\alpha} \geq 0$$
 ; $k = 0, 1, ..., N_{p} - 1$ (3-61)

com $f_j^{max}, \alpha, \mathbf{k}_j, \mathbf{c} \in \Psi_{\mathbf{k}}$ dados por (3-35), (3-36), (3-37), (3-38), e (3-52), respectivamente.

Observe que, estas restrições definem um espaço de soluções viáveis dado pela intersecção de regiões limitadas por hiperplanos, sendo portanto, convexo.

3.2.2 Caso particular em que existem duas parcelas de interferência (K=2)

Neste caso,

$$\frac{i}{N} = \frac{i_1}{N} + \frac{i_2}{N}$$
(3-62)

Obtendo-se a partir de (3-7)

$$p_{\frac{i}{N}}(V) = p_{\frac{i_1}{N}}(V) * p_{\frac{i_2}{N}}(V)$$
(3-63)

e, parametrizando i_1 e i_2 da mesma forma, tem-se de (3-11),

$$p_{\frac{i_k}{N}}(V) = \alpha_0 \ \delta(V - V_{min}) + \alpha_{n+1} \ \delta(V - V_{max}) + \sum_{i=1}^n \alpha_i \ \phi_i(V) \ ; \ k = 1,2 \ (3-64)$$

considerando (3-13), com $\gamma_0 = V_{min}$, $\gamma_1 = V_{max}$ e lembrando que $f(X)^{[0]} = \delta(X)$, a função densidade de probabilidade da razão i/N se escreve, neste caso particular

$$p_{\frac{i}{N}}(V) = \alpha_0^2 \delta(V - 2V_{min}) + \alpha_{n+1}^2 \delta(V - 2V_{max}) + 2\alpha_0 \alpha_{n+1} \delta(V - V_{min} - V_{max}) + 2\alpha_0 \sum_{i=1}^n \alpha_i \phi_i (V - V_{min}) + 2\alpha_{n+1} \sum_{i=1}^n \alpha_i \phi_i (V - V_{max}) + \sum_{i=1}^n \sum_{\ell=1}^n \alpha_i \alpha_\ell [\phi_i(V) * \phi_\ell(V)]$$
(3-65)

A função densidade de probabilidade do fator de degradação u, obtida a partir de (3-14), é então dada por

$$p_{u}(U) = \alpha_{0}^{2}\delta(U - 1 - 2V_{min}) + \alpha_{n+1}^{2}\delta(U - 1 - 2V_{max}) + 2\alpha_{0}\alpha_{n+1}\delta(U - 1 - V_{min} - V_{max}) + 2\alpha_{0}\sum_{i=1}^{n}\alpha_{i}\phi_{i}(U - 1 - V_{min}) + 2\alpha_{n+1}\sum_{i=1}^{n}\alpha_{i}\phi_{i}(U - 1 - V_{max}) + \sum_{i=1}^{n}\sum_{\ell=1}^{n}\alpha_{i}\alpha_{\ell}[\phi_{i}(U - 1) * \phi_{\ell}(U - 1)]$$

$$(3-66)$$

Esta função densidade de probabilidade é ilustrada na Figura 3.4.

Figura 3.4: Função densidade de probabilidade da soma de duas parcelas individuais de interferência

Considerando-se (3-15), a degradação devida a interferências externas

expressa em dB, se escreve

$$p_{y}(Y) = \alpha_{0}^{2}\delta(Y - Y_{2min}) + \alpha_{n+1}^{2}\delta(Y - Y_{2max}) + 2\alpha_{0}\alpha_{n+1}\delta(Y - Y_{minmax}) + 2\alpha_{0}\sum_{i=1}^{n}\alpha_{i}\psi_{i}^{min}(Y) + 2\alpha_{n+1}\sum_{i=1}^{n}\alpha_{i}\psi_{i}^{max}(Y) + \sum_{i=1}^{n}\sum_{\ell=1}^{n}\alpha_{i}\alpha_{\ell}\psi_{i\ell}(Y)$$
(3-67)

onde

$$Y_{2min} = 10\log(2V_{min} + 1) \tag{3-68}$$

$$Y_{2max} = 10\log(2V_{max} + 1) \tag{3-69}$$

$$Y_{minmax} = 10\log(V_{min} + V_{max} + 1)$$
(3-70)

$$\psi_i^{min}(Y) = \frac{10^{Y/10}\phi_i(10^{Y/10} - (V_{min} + 1))}{10\log e}$$
(3-71)

$$\psi_i^{max}(Y) = \frac{10^{Y/10}\phi_i(10^{Y/10} - (V_{max} + 1))}{10\log \mathsf{e}}$$
(3-72)

е

$$\psi_{i\ell}(Y) = \frac{10^{Y/10} [\phi_i (10^{Y/10} - 1) * \phi_\ell (10^{Y/10} - 1)]}{10 \log \mathbf{e}}$$
(3-73)

Em (3-73), $\{\phi_i, i = 1, ..., N\}$ é o conjunto de funções ortonormais continuas e diferenciáveis que foi utilizado para representar a função densidade de probabilidade de $p_{\frac{i_k}{N}}$ em (3-64). A densidade de probabilidade em (3-67) é ilustrada na Figura 3.5.

Note que, como

$$\int_{V_{min}}^{V_{max}} p_{\frac{i_k}{N}}(V) \ dV = 1, \tag{3-74}$$

é possível expressar o valor do parâmetro α_{n+1} em (3-64) como função dos demais parâmetros { $\alpha_0, \alpha_1, \ldots, \alpha_n$ }. Tem-se assim,

Figura 3.5: Função densidade de probabilidade da degradação devida à interferência agregada de duas parcelas de interferência externa em dB

$$\alpha_{n+1} = 1 - \alpha_0 - \sum_{i=1}^n \alpha_i c_i$$
(3-75)

onde

$$c_i = \int_{V_{min}}^{V_{max}} \phi_i(Y) \ dY \ ; \ i = 1, 2, \dots, n$$
(3-76)

Conseqüentemente, $p_y(Y)$ pode ser escrita como função dos n + 1primeiros parâmetros { $\alpha_0, ..., \alpha_n$ }, obtendo-se de (3-67),

$$p_{y}(Y) = \delta(Y - Y_{2max}) + 2\alpha_{0} \left[\delta(Y - Y_{minmax}) - \delta(Y - Y_{2max})\right] + \alpha_{0}^{2} \left[\delta(Y - Y_{2max}) + \delta(Y - Y_{2min}) - 2\delta(Y - Y_{minmax})\right] + 2\alpha_{0} \sum_{i=1}^{n} \alpha_{i} \left[\psi_{i}^{min}(Y) - c_{i}\delta(Y - Y_{minmax}) - \psi_{i}^{max}(Y) + c_{i}\delta(Y - Y_{2max})\right] + 2\sum_{i=1}^{n} \alpha_{i} \left[\psi_{i}^{max}(Y) - c_{i}\delta(Y - Y_{2max})\right] + \sum_{i=1}^{n} \sum_{\ell=1}^{n} \alpha_{i}\alpha_{\ell} [\psi_{i\ell}(Y) - c_{i}\psi_{\ell}^{max}(Y) - c_{\ell}\psi_{i}(Y) + c_{i}c_{\ell}\delta(Y - Y_{2max})$$
(3-77)

Como na seção anterior, se verifica que as restrições a serem impostas à

degradação total z devida à ocorrência de chuva e interferência (z = x + y) podem ser expressas por

$$P(z > Z_j) \le p_j \; ; \; j = 1, 2, \dots, m$$
 (3-78)

onde $\{Z_j, j = 1, ..., m\}$ são valores de degradação total associados aos níveis pré-estabelecidos $\{(E_b/N_0)_j, j = 1, ..., m\}$ através de (2-10) e $\{p_j, j = 1, ..., m\}$ são probabilidades correspondentes a percentagens de tempo pré-fixadas.

Considerando-se (3-28), tem-se de (3-77)

$$F_{z}(Z) = F_{x}(Z - Y_{2max}) + 2\alpha_{0} [F_{x}(Z - Y_{minmax}) - F_{x}(Z - Y_{2max})] + \alpha_{0}^{2} [F_{x}(Z - Y_{2max}) + F_{x}(Z - Y_{2min}) - 2F_{x}(Z - Y_{minmax})] + 2\alpha_{0} \sum_{i=1}^{n} \alpha_{i} [M_{i}^{min}(Z) - M_{i}^{max}(Z) - c_{i}F_{x}(Z_{j} - Y_{minmax}) + c_{i}F_{x}(Z_{j} - Y_{2max})] + 2\sum_{i=1}^{n} \alpha_{i} [M_{i}^{max}(Z) - c_{i}F_{x}(Z - Y_{2max})] + \sum_{i=1}^{n} \sum_{\ell=1}^{n} \alpha_{i}\alpha_{\ell} [M_{i\ell}(Z) - c_{i}M_{\ell}^{max}(Z) - c_{\ell}M_{i}^{max}(Z_{j}) + c_{i}c_{\ell}F_{x}(Z_{j} - Y_{2max})]$$
(3-79)

onde

$$M_i^{min}(Z) = \psi_i^{min}(Z) * F_x(Z)$$
(3-80)

$$M_i^{max}(Z) = \psi_i^{max}(Z) * F_x(Z)$$
(3-81)

$$M_{i\ell}(Z) = \psi_{i\ell}(Z) * F_x(Z) \tag{3-82}$$

com $\psi_i^{min}(Z), \psi_i^{max}(Z)$
e $\psi_{i\ell}(Z)$ dados por (3-71),(3-72) e (3-73) respectivamente.

Por outro lado, as desigualdades em (3-78) podem ser expressas como

$$P(z > Z_j) = 1 - F_z(Z_j) \le p_j \quad ; \quad j = 1, 2, \dots, m$$
(3-83)

com os valores $\{F_z(Z_j) \ ; \ j=1,2,\ldots,m\}$ obtidos a partir de (3-79), ou seja,

$$F_{z}(Z_{j}) = F_{x}(Z_{j} - Y_{2max}) + 2\alpha_{0}[F_{x}(Z_{j} - Y_{minmax}) - F_{x}(Z_{j} - Y_{2max})] + \alpha_{0}^{2}[F_{x}(Z_{j} - Y_{2max}) + F_{x}(Z_{j} - Y_{2min}) - 2F_{x}(Z_{j} - Y_{minmax})] + 2\alpha_{0} \sum_{i=1}^{n} \alpha_{i}[M_{i}^{min}(Z_{j}) - M_{i}^{max}(Z_{j}) - c_{i}F_{x}(Z_{j} - Y_{minmax}) + c_{i}F_{x}(Z_{j} - Y_{2max})] + 2\sum_{i=1}^{n} \alpha_{i}[M_{i}^{max}(Z_{j}) - c_{i}F_{x}(Z_{j} - Y_{2max})] + \sum_{i=1}^{n} \sum_{\ell=1}^{n} \alpha_{i}\alpha_{\ell}[M_{i\ell}(Z_{j}) - c_{i}M_{\ell}^{max}(Z_{j}) - c_{\ell}M_{i}^{max}(Z_{j}) + c_{i}c_{\ell}F_{x}(Z_{j} - Y_{2max})]$$
(3-84)

onde

$$M_i^{min}(Z_j) = \psi_i^{min}(Z) * F_x(Z) \bigg|_{Z = Z_j} ; \ j = 1, 2, \dots, m \ , \ i = 1, 2, \dots, n \ (3-85)$$

$$M_i^{max}(Z_j) = \psi_i^{max}(Z) * F_x(Z) \Big|_{Z=Z_j} ; \ j = 1, 2, \dots, m , \ i = 1, 2, \dots, n \ (3-86)$$

$$M_{i\ell}(Z_j) = \psi_{i\ell}(Z) * F_x(Z) \Big|_{Z=Z_j} ; \quad j = 1, 2, \dots, m , \quad i, \ell = 1, 2, \dots, n \quad (3-87)$$

Em notação mais compacta, $(3\mathchar`-84)$ se escreve

$$F_z(Z_j) = f_j^{2max} + 2\boldsymbol{q}_j^T\boldsymbol{\alpha} + \boldsymbol{\alpha}^T\boldsymbol{Q}_j\boldsymbol{\alpha} \quad ; \qquad j = 1, 2, \dots, m \quad (3-88)$$

onde

$$f_j^{2max} = F_x(Z_j - Y_{2max}) ; \quad j = 1, 2, \dots, m$$
 (3-89)

$$\boldsymbol{\alpha} = (\alpha_0 \ \alpha_1 \cdots \alpha_n)^T \tag{3-90}$$

е

$$\mathbf{q}_j = \mathbf{m}_{1j} - f_j^{2max} \mathbf{c} \tag{3-91}$$

 com

$$\mathbf{m}_{1j} = (F_x(Z_j - Y_{minmax}) \quad M_1^{max}(Z_j) \cdots M_n^{max}(Z_j))^T ; \quad j = 1, 2, \dots, m$$
(3-92)

onde $\{M_i^{max}(Z_j); i = 1, \dots, n\}$ esta dado por (3-86) e

$$\mathbf{c} = (1 \ c_1 \ \cdots \ c_n)^T \tag{3-93}$$

com $\{c_i; i = 1, \dots, n\}$ dado por (3-76).

Em (3-88),

$$\mathbf{Q}_{j} = \begin{pmatrix} F_{x}^{total}(Z_{j} - Y) & \mathbf{w}_{j}^{T} \\ & & \\ \mathbf{w}_{j} & \mathbf{G}_{j} \end{pmatrix}$$
(3-94)

onde

$$\mathbf{w}_j = \mathbf{m}_{2j} - [F_x(Z_j - Y_{minmax}) - f_j^{2max}]\mathbf{\tilde{c}}$$
(3-95)

 com

$$\mathbf{m}_{2j} = \left(M_1^{min}(Z_j) - M_1^{max}(Z_j) \cdots M_n^{min}(Z_j) - M_n^{max}(Z_j) \right)^T; \ j = 1, 2, \dots, m$$
(3-96)

onde $\{M_i^{min}(Z_j); i = 1, \dots, n\}$ e $\{M_i^{max}(Z_j); i = 1, \dots, n\}$ estão dados por (3-85) e (3-86) respectivamente e

$$\tilde{\mathbf{c}} = (c_1 \ c_2 \ \cdots \ c_n)^T \tag{3-97}$$

com $\{c_i; i = 1, \dots, n\}$ dado por (3-76).

Finalmente em (3-94), \mathbf{G}_j é uma matriz simétrica dada por:

$$\mathbf{G}_{j} = M_{i\ell}(Z_{j}) + c_{i}c_{\ell}f_{j}^{2max} - c_{i}M_{\ell}^{max}(Z_{j}) - c_{\ell}M_{i}^{max}(Z_{j})$$
(3-98)

com $c_i, M_i^{max}(Z_j), M_{i\ell}(Z_j)$
e f_j^{2max} dados por (3-76), (3-86), (3-87) e (3-89) respectivamente, e

$$F_x^{total}(Z_j - Y) = f_j^{2max} + F_x(Z_j - Y_{2min}) - 2F_x(Z_j - Y_{minmax})$$
(3-99)

com Y_{2min}, Y_{minmax} e f_j^{2max} dados por (3-68), (3-70) e (3-89) respectivamente.

Observe que, como $F_z(Z_j)$ é uma função distribuição de probabilidade, tem-se

$$0 \le F_z(Z_j) \le 1$$
; $j = 1, 2, \dots, m$ (3-100)

Por outro lado, as restrições em (3-78) impõem a condição

$$F_z(Z_j) \ge 1 - p_j \; ; \; j = 1, 2, \dots, m$$
(3-101)

Considerando (3-100) e (3-101), verifica-se que os valores $\{F_z(Z_j) : j = 1, 2, ..., m\}$ devem satisfazer à condição

$$1 - p_j \le F_z(Z_j) \le 1$$
; $j = 1, 2, \dots, m$ (3-102)

ou ainda, considerando (3-88),

$$1 - p_j \le f_j^{2max} + 2\boldsymbol{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \boldsymbol{Q}_j \boldsymbol{\alpha} \le 1 \quad ; \quad j = 1, 2, \dots, m,$$
(3-103)

Note que (3-103) caracteriza um conjunto inicial de 2m restrições Quadráticas para os parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$.

Para que $p_{\frac{i_k}{N}}(V)$ tenha as características próprias de uma função densidade de probabilidade, restrições adicionais têm que ser impostas aos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$. Tem-se, então, considerando-se (3-64), as restrições

$$0 \le \alpha_0 \le 1; \tag{3-104}$$

$$0 \le \alpha_{n+1} \le 1;$$
 (3-105)

levando em conta (3-75), a restrição em (3-105) pode ser escrita como

$$0 \le 1 - \alpha_0 - \sum_{i=1}^n \alpha_i c_i \le 1 \tag{3-106}$$

o que, em notação matricial se escreve como

$$0 \le \mathbf{c}^T \boldsymbol{\alpha} \le 1 \tag{3-107}$$

com α e c dados respectivamente por (3-90) e (3-93).

Além disso, como $p_{\frac{i_k}{N}}(V) \ge 0$ para $V \in (V_{min}, V_{max})$, tem-se, a partir de (3-64),

$$\sum_{i=1}^{n} \alpha_i \ \phi_i(V) \ge 0, \quad \forall \ V \in (V_{min}, V_{max}) \quad ; \quad i = 1, 2, \dots, n$$
(3-108)

o que, em notação matricial se escreve como

$$\boldsymbol{\Phi}^{T}(V)\boldsymbol{\alpha} \ge 0 , \quad \forall \ V \in (V_{min}, V_{max})$$
(3-109)

onde $\Phi(V)$ é o vetor de dimensão (n+1) definido por

$$\mathbf{\Phi}(V) = (0 \ \phi_1(V) \ \cdots \ \phi_n(V))^T \tag{3-110}$$

Assim, (3-104), (3-107) e (3-109) constituem um conjunto adicional de restrições a serem satisfeitas pelos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$.

A restrição em (3-109) pode ser mais facilmente implementada no modelo se o intervalo $[V_{min}, V_{max}]$ é aproximado por um conjunto de N_p pontos igualmente espaçados, dadas por

$$V_k = V_{min} + k \frac{V_{max} - V_{min}}{N_p - 1} \quad ; \quad k = 0, 1, \dots, N_p - 1 \tag{3-111}$$

A restrição em (3-109) é então implementada através da inequação

$$\Phi_k^T \alpha \ge 0$$
; $k = 0, 1, \dots, N_p - 1$ (3-112)

onde $\mathbf{\Phi}_k = \mathbf{\Phi}(V_k) \operatorname{com} \mathbf{\Phi}(V_k)$ dado por (3-110).

Finalmente, o conjunto total de restrições a serem satisfeitas pelos parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$, no problema de otimização associado ao caso de duas parcelas de interferência é dado por:

$$f_j^{2max} + 2\mathbf{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{Q}_j \boldsymbol{\alpha} \geq 1 - p_j \quad ; \quad j = 1, 2, \dots, m \qquad (3-113)$$
$$f_j^{2max} + 2\mathbf{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{Q}_j \boldsymbol{\alpha} \leq 1 \qquad ; \quad j = 1, 2, \dots, m \qquad (3-114)$$

$$\mathbf{c}^T \boldsymbol{\alpha} \geq \mathbf{0} \tag{3-115}$$

$$\mathbf{c}^T \boldsymbol{\alpha} \leq 1 \tag{3-116}$$

$$\alpha_0 \geq 0 \tag{3-117}$$

$$\alpha_0 \leq 1 \tag{3-118}$$

$$\Phi_{\mathbf{k}}^{T} \boldsymbol{\alpha} \geq 0 \; ; \; k = 0, 1, ..., N_{p} - 1$$
 (3-119)

com f_j^{2max} , α , \mathbf{q}_j , \mathbf{c} , \mathbf{Q}_j e $\Phi_{\mathbf{k}}$ dados por (3-89), (3-90), (3-91), (3-93), (3-94) e (3-110) respectivamente.

Pode ser facilmente verificado que

(i)

$$x^T \mathbf{Q}_j x \le 0 \; ; \; \forall x \tag{3-120}$$

(ii)

$$\max(2\mathbf{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{Q}_j \boldsymbol{\alpha}) \ge 1 - f_j^{2max}$$
(3-121)

são condições suficientes para garantir a convexidade do espaço de soluções viáveis.

3.3 Definição da função objetivo

A definição da função objetivo nesta dissertação é feita visando aumentar a possibilidade de ocorrência de valores altos da razão i_k/N .

Isto pode ser feito, por exemplo, ao se maximizar a probabilidade de ocorrência de valores de i_k/N em um subconjunto S do intervalo (V_{min}, V_{max}) . Esta probabilidade se escreve como

$$P(i_k/N \in \mathcal{S}) = \int_{\mathcal{S}} p_{i_k/N}(V) dV$$
(3-122)

ou, considerando (3-11),

$$P(i_k/N \in \mathcal{S}) = \sum_{i=1}^n \alpha_i \int_{\mathcal{S}} \phi_i(V) dV$$
 (3-123)

ou ainda, em notação mas compacta

$$P(i_k/N \in \mathcal{S}) = \mathbf{d}^T \boldsymbol{\alpha} \tag{3-124}$$

onde α é dado por (3-36) e **d** é o vetor de dimensão (n+1) definido por

$$\mathbf{d} = (0 \ d_1, \dots, d_n)^T \tag{3-125}$$

onde

$$d_i = \int_{\mathcal{S}} \phi_i(V) dV \; ; \; i = 1, ..., n$$
 (3-126)

Deseja-se então maximizar a função objetivo

$$f(\boldsymbol{\alpha}) = P(i_k/N \in \mathcal{S}) = \mathbf{d}^T \boldsymbol{\alpha}$$
(3-127)

com d e α dados por (3-125) e (3-36), respectivamente.

3.4 Definição do problema de otimização

A partir do conjunto de restrições estabelecidas na Seção 3.2 para os parâmetros $\alpha_0, \alpha_1, \ldots, \alpha_n$ da função $p_{\frac{i_k}{N}}(V)$ e da função objetivo estabelecida na Seção 3.3, pode-se definir um problema de otimização cuja solução permite estabelecer as restrições a serem impostas ao comportamento estatístico da degradação da razão E_b/N_0 devida a interferências externas, e também ao comportamento estatístico das parcelas individuais de interferência, de modo que as condições de desempenho em (2-11) sejam garantidas.

Dessa forma, os problemas de otimização com restrições que permitem estabelecer as condições a serem impostas ao comportamento estatístico das parcelas individuais de interferência, de modo que as condições de desempenho em (2-11) sejam satisfeitas, podem ser resumidos como:

Para o caso de apenas uma interferência (K = 1), definido na Seção 3.2.1

$$\max_{\boldsymbol{\alpha}} \mathbf{d}^T \boldsymbol{\alpha} \tag{3-128}$$

sujeito a

$$\mathbf{k}_{j}^{T} \boldsymbol{\alpha} \geq 1 - p_{j} - f_{j}^{max} ; \quad j = 1, 2, ..., m$$
$$\mathbf{k}_{j}^{T} \boldsymbol{\alpha} \leq 1 - f_{j}^{max} ; \quad j = 1, 2, ..., m$$
$$\mathbf{c}^{T} \boldsymbol{\alpha} \geq 0$$
$$\mathbf{c}^{T} \boldsymbol{\alpha} \leq 1$$
$$\alpha_{0} \geq 0$$
$$\alpha_{0} \leq 1$$
$$\Psi_{\mathbf{k}}^{T} \boldsymbol{\alpha} \geq 0 ; \quad k = 0, 1, ..., N_{p} - 1$$

com f_j^{max} , $\boldsymbol{\alpha}$, \mathbf{k}_j , \mathbf{c} , $\Psi_{\mathbf{k}}$ e \mathbf{d}^T dados por (3-35), (3-36), (3-37), (3-38), (3-52) e (3-125), respectivamente.

Observe que o espaço de soluções viáveis é a intersecção de regiões limitadas por hiperplanos, sendo, portanto, convexo. Além disso, a função objetivo é linear, sendo suas curvas de nível hiperplanos perpendiculares ao vetor **d**. Isto significa que a solução do problema é um máximo global e se encontra na fronteira do espaço de soluções viáveis.

Conforme mencionado anteriormente, as soluções deste problema de otimização permitem estabelecer as restrições a serem impostas ao comportamento estatístico das parcelas individuais de interferência, que neste caso em particular é igual a um, e por tanto igual ao comportamento estatístico da interferência agregada.

Para o caso de duas interferências (K = 2), definido na Seção 3.2.2

$$\max_{\boldsymbol{\alpha}} \mathbf{d}^T \boldsymbol{\alpha} \tag{3-129}$$

1

sujeito a

$$\begin{aligned} f_j^{2max} + 2\mathbf{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{Q}_j \boldsymbol{\alpha} &\geq 1 - p_j \; ; \; j = 1, 2, \dots, m \\ f_j^{2max} + 2\mathbf{q}_j^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{Q}_j \boldsymbol{\alpha} &\leq 1 \; ; \; j = 1, 2, \dots, m \\ \mathbf{c}^T \boldsymbol{\alpha} &\geq 0 \\ \mathbf{c}^T \boldsymbol{\alpha} &\leq 1 \\ \alpha_0 &\geq 0 \\ \alpha_0 &\leq 1 \\ \mathbf{\Phi}_{\mathbf{k}}^T \boldsymbol{\alpha} &\geq 0 \; ; \; k = 0, 1, ..., N_p - 1 \end{aligned}$$

com f_j^{2max} , $\boldsymbol{\alpha}$, \mathbf{q}_j , \mathbf{c} , \mathbf{Q}_j , $\boldsymbol{\Phi}_{\mathbf{k}} \in \mathbf{d}^T$ dados por (3-89), (3-90), (3-91), (3-93), (3-94), (3-110) \in (3-125), respectivamente.

Como foi dito na Seção 3.2.2, as condições suficientes para garantir a convexidade do espaço de soluções viáveis são dadas por (3-120) e (3-121). Além disso, a função objetivo é linear, sendo suas curvas de nível hiperplanos perpendiculares ao vetor **d**. Isto significa que a solução do problema é um máximo global e se encontra na fronteira do espaço de soluções viáveis.

Conforme mencionado anteriormente, e dito no caso anterior, as soluções deste problema de otimização permitem estabelecer as restrições a serem impostas ao comportamento estatístico das parcelas individuais de interferência, que neste caso em particular são duas, limites a ser impostos ao comportamento estatísticos da interferência agregada também pode ser calculada, desde que a função densidade de probabilidade da interferência agregada é dado por (3-7).