Referências Bibliográficas

- [1] BANACH, S. Mechanics. Warzawa, 1951.
- [2] BATHE, K. J. Finite Element Procedures. Prentice Hall, 1996.
- [3] BELLOMO, N., LODS, B., REVELLI, R., AND RIDOLFI, L. Generalized Collocation Methods: Solutions to Nonlinear Problems. Birkh 2008.
- [4] BOYD, J. P. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc, 2000.
- [5] BRUNNER, H. Collocation Methods for Volterra Integral and Related Functional Differential. Cambridge University Press, 2004.
- [6] CALFEM. A Finite Element Toolbox to MATLAB, Version 3.3. Department of Mechanics and Materials, Lund University, 1999.
- [7] DHATT, G., AND TOUZOT, G. Une présentation de la méthode des éléments finis. Prenctice Hall, 1984.
- [8] DONALDSON, B. K. Introduction to Structural Dynamics. Cambridge University Press, 2006.
- [9] FELLIPA, C. A. Introduction to finite element methods (asen 5007). Department of Aerospace Engineering Sciences University of Colorado at Boulder (2008).
- [10] GOULD, S. H. Variational Methods for Eigenvalue Problems An Introduction to The Weinstein Method of Intermediate Problems. Oxford University Press, 1966.
- [11] GOURGOULHON, E. An introduction to polynomial interpolation. School on Spectral Methods: Application to General Relativity and Field Theory, 2005.
- [12] HAGEDORN, P., AND DASGUPTA, A. Vibrations and Waves in Continuous Mechanical Systems. John Wiley & Sons, Ltd, 2007.
- [13] HUGHES, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000.

- [14] JOHNSON, S. G. Notes on function spaces, hermitian operators, and fourier series. *MIT Applied Mathematics* (2007).
- [15] KOMZSIK, L. Applied Calculus of Variations for Engineers. CRC Press, 2009.
- [16] LEE, J., AND SCHULTZ, W. W. Eigenvalue analysis of timoshenko beams and axisymmetric mindlin plates by the pseudospectral method. *Journal of Sound and Vibration 609-621* (2004).
- [17] LEMONS, D. S. Perfect Form Variational Principles, Methods, and Applications in Elementary Physiscs. Princeton University Press, 1997.
- [18] LIEW, K. M., WANG, C. M., XIANG, Y., AND KITIPORNCHAI, S. Vibration of Mindlin Plates. Elsevier, 1998.
- [19] MASON, J. C., AND HANDSCOMB, D. C. Chebyshev Polynomials. Chapman & Hall/CRC, 2003.
- [20] MEIROVITCH, L. Computational Methods in Structural Dynamics. Sijthoff & Noordhoff, 1980.
- [21] MEIROVITCH, L. Principles and Techniques of Vibrations. Prentice Hall, 1997.
- [22] MEIROVITCH, L. Fundamentals of Vibrations. McGraw Hill, 2001.
- [23] PRENTER, P. M. Splines and Variational Methods. John Wiley & Sons, 1989.
- [24] REDDY, J. N. Energy Principles and Variational Methods in Applied Mechanics. John Wiley & Sons, 1984.
- [25] RITTO, T. G., AND SAMPAIO, R. Introdução à análise de vibrações de estruturas flexíveis. Apostila de Aula, PUC-Rio (2010).
- [26] SAMPAIO, R., AND RITTO, T. G. Short course on dynamics of flexible structures deterministic and stochastic analysis. *Seminar on Uncertainty Quantification and Stochastic Modeling* (2008).
- [27] SOEDEL, W. Vibrations of Shells and Plates. Marcel Dekker, Inc, 2005.
- [28] STRANG, G. Linear Algebra and its Applications. Thomson Learning, Inc, 1988.
- [29] STRANG, G., AND FIX, G. J. An Analyses of the Finite Element Method. Prenctice Hall, 1973.

- [30] YONG, D. Strings, chains, and ropes. Society for Industrial and Applied Mathematics (2006).
- [31] ZIENKIEWICZ, C. O., AND TAYLOR, R. L. The Finite Element Method for Solid and Structural Mechanics. Elsevier, 2005.

A Básico de Álgebra Linear

A maior parte dos temas estudados neste trabalho utilizam conceitos importantes da Álgebra Linear aplicados a funções. É sabido que a teoria aplicável a vetores e matrizes se estende a essas. Alguns deles serão brevemente discutidos nesta seção.

Produto interno

Um produto interno atende às seguintes propriedades:

- 1. <(f+g), h> = < f, g> + < g, h>;
- 2. $< \alpha x_1, x_2 >= \alpha < x_1, x_2 >;$
- 3. $< x_1, x_2 > = < x_2, x_1 >;$
- 4. $< x_1, x_2 > \ge 0, < x_1, x_2 > = 0 \Leftrightarrow x_1 = 0 \text{e/ou} x_2 = 0$

onde $\langle x_1, x_2 \rangle$ definie o produto interno entre x_1 e x_2 e α é uma constante arbitrária. Um exemplo de produto interno é dado abaixo:

$$\langle f,g \rangle = \int_{0}^{1} \mu(x) f(x) g(x) dx$$
 (A.0.1)

onde $\mu(x)$ é uma função de ponderação. Este produto interno é usado em diversas partes deste trabalho. Um exemplo ainda mais simples seria:

$$\langle f,g \rangle = \int_{0}^{1} f(x)g(x)dx$$
 (A.0.2)

Dois vetores ou funções são ortogonais quando um produto interno entre eles é igual a zero.

Norma de uma função

Da definição de produto interno, emerge o conceito de norma de uma função que quantifica o tamanho desta, sendo dada por:

$$\langle f, f \rangle = ||f||^2 = \int_0^1 |f(x)|^2 dx$$
 (A.0.3)

Como a definição da Eq. (A.0.2) que foi usada para exemplificar o conceito de norma não é a única que atende às propriedades do produto interno, diversas outras normas poderiam ser enumeradas. Sendo assim, outras normas

também podem ser definidas. A combinação de um espaço vetorial completo e um produto interno é chamada de espaço de Hilbert.

Operador linear

A operação linear y = Bx produz, dado um vetor x, um vetor y no mesmo espaço vetorial, sendo a matriz B chamada de operador linear. O mesmo tipo de operador também pode ser definido para funções. Como exemplo estão as derivadas e integrais. Af = df/dx = f' ou $Af = \int_0^x f' dx'$ produzem novas funções (excluindo alguns casos de funções não diferenciáveis ou integrais que não convergem ou não existem). Para que o operador seja linear requere-se que $A[\alpha f_1 + \beta f_2] = \alpha A f_1 + \beta A f_2$.

Adjunto

A definição de adjunto B^H de uma matriz pode ser dada simplesmente como sendo o conjugado complexo de sua transposta. Uma definição mais abrangente deve ser dada para que se incluam os operadores lineares de funções, sendo dada por:

$$f[Ag] = [A^H f]g \tag{A.0.4}$$

Se for tomado como exemplo o operador d/dx, qual seria então o seu adjunto? Da definição acima, escreve-se:

$$f\left[\frac{d}{dx}g\right] = \int_0^1 fg' dx = fg|_0^1 - \int_0^1 f'g dx$$
$$= -\int_0^1 f'g dx = \left[-\frac{d}{dx}f\right]g \quad (A.0.5)$$

lembrando as condições de contorno f(0) = f(1) = g(0) = g(1) = 0 e que as funções são reais. Da equação acima e de (A.0.4) conclui-se que o adjunto de d/dx é -d/dx. Assim como com as normas, o adjunto também dependerá do produto interno escolhido e ainda do espaço de funções.

Operador autoadjunto

Quando o adjunto do operador é igual ao operador $(A = A^H)$, a este dá-se o nome de operador autoadjunto ou hermitiano, que é análogo no caso de matrizes às matrizes simétricas $B = B^T$. Abaixo um exemplo de operador autoadjunto:

$$f\left[\frac{d^2}{dx^2}g\right] = \int_0^1 fg''dx = fg'|_0^1 - \int_0^1 f'g'dx$$
$$= -\int_0^1 f'gdx = -f'g|_0^1 + \int_0^1 f''gdx$$
$$\int_0^1 f''gdx = \left[\frac{d^2}{dx^2}f\right]g \quad (A.0.6)$$

ou seja $(d^2/dx)^H = (d^2/dx)$

Autofunção

A definição de autofunção é dada por $Af(x) = \lambda f(x)$. Para o operador autoadjunto como d^2/dx^2 , quer se conhecer $f \in \lambda$ para $f''(x) = \lambda f(x)$, ou seja, qual função possui a segunda derivada igual à uma constante vezes ela mesma. Uma função que satisfaz é:

 $f_n = sen(n\pi x)$ sendo que $\lambda_n = -(n\pi)^2$ (A.0.7)

onde $n = 1, 2, 3, \ldots$ Assim como as matrizes simétricas possuem os autovalores reais, também o possuirão os operadores hermitianos. Uma importante propriedade que se estende à esses operadores, diz respeito às suas autofunções. Observe abaixo:

$$\int_{0}^{1} sen(n\pi x) sen(m\pi x) dx = \int_{0}^{1} \frac{cos[(n-m)\pi x] - cos[(n+m)\pi x]}{2} dx$$
$$= \left(\frac{sen[(n-m)\pi x]}{2(n-m)\pi} - \frac{sen[(n+m)\pi x]}{2(n+m)\pi}\right) \Big|_{0}^{1} = 0 \quad (A.0.8)$$

Não por acaso o produto interno entre as duas autofunções é igual a zero. O produto interno das autofunções de um operador hermitiano será sempre igual a zero, como acontece com as matrizes simétricas. Este é um resultado de grande importância para este trabalho.

B Vibração de uma placa retangular

Considere a equação da placa de Kirchhoff dada abaixo:

$$\rho h w_{,tt} + D_E \nabla^4 w = 0 \tag{B.0.1}$$

Propõe-se a solução modal na forma:

$$w(x, y, t) = W(x, y)e^{i\omega t}$$
(B.0.2)

onde ω é a frequência natural. Substituindo a proposta de solução na Eq. (B.0.1), chega-se à equação abaixo, escrita na forma do operador:

$$(\nabla^4 - \gamma^4)W(x, y) = (\nabla^2 + \gamma^2)(\nabla^2 + \gamma^2)W(x, y) = 0$$
 (B.0.3)

onde $\gamma = \omega^2 \rho h/D$. A forma acima permite escrever:

$$(\nabla^2 + \gamma^2)W_1 = 0 (B.0.4)$$

$$(\nabla^2 - \gamma^2)W_2 = 0 (B.0.5)$$

Como γ^2 é constante, demonstra-se que a solução da equação acima e logo da Eq. (B.0.3) é:

$$W(x,y) = W_1(x,y) + W_2(x,y)$$
(B.0.6)

Iniciando pela solução da Eq. (B.0.4), esta é reconhecida como uma equação de Helmholtz, cuja solução é:

$$W_1(x,y) = A_1 sen \,\alpha x \, sen \,\beta y + A_2 sen \,\alpha x \cos \beta y + A_3 cos \,\alpha x \, sen \,\beta y + A_4 cos \,\alpha x \cos \beta y \quad (B.0.7)$$

onde A_i são constantes a serem determinadas e $\alpha^2 + \beta^2 = \gamma^2$.

Já para solução da Eq. (B.0.5) começa-se assumindo uma solução separável da forma:

$$W_2(x,y) = X(x)Y(y)$$
 (B.0.8)

que substituindo na Eq. (B.0.5) leva a:

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} - \gamma^2 = 0$$
(B.0.9)

Uma solução não trivial existe se e somente se:

$$\frac{1}{X}\frac{d^2X}{dx^2} = \bar{\alpha}^2 \implies \frac{d^2X}{dx^2} - \bar{\alpha}^2 X = 0 \tag{B.0.10}$$

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = \bar{\beta}^2 \implies \frac{d^2Y}{dy^2} - \bar{\beta}^2Y = 0 \tag{B.0.11}$$

onde $\bar{\alpha}^2 + \bar{\beta}^2 = \gamma^2$. As soluções das equações acima são dadas por:

$$X(x) = C_1 \operatorname{senh} \bar{\alpha} x + C_2 \cosh \bar{\alpha} x \tag{B.0.12}$$

$$Y(y) = C_3 \operatorname{senh} \beta x + C_4 \cosh \beta x \tag{B.0.13}$$

que substituindo na Eq. (B.0.8) e então na Eq. (B.0.6) leva à solução W(x, y), conforme abaixo:

$$W(x,y) = A_{1} sen \alpha x sen \beta y + A_{2} sen \alpha x \cos \beta y + A_{3} cos \alpha x sen \beta y + A_{4} cos \alpha x \cos \beta y + A_{5} senh \overline{\alpha} x senh \overline{\beta} y + A_{6} senh \overline{\alpha} x cosh \overline{\beta} y + A_{7} cosh \overline{\alpha} x senh \overline{\beta} y + A_{8} cosh \overline{\alpha} x cosh \overline{\beta} y$$
(B.0.14)

As constantes A_1 a A_8 são determinadas através das condições iniciais. Por exemplo, placas simplesmente apoiadas com condições de contorno dadas pelas Eqs. (2.2.23) possuem a seguinte solução:

$$W(x, y, t) = \sum_{m,n=1}^{\infty} A_{(m,n)} sen \, \frac{m\pi x}{a} sen \, \frac{n\pi y}{b} sin \, \left[t\pi^2 \omega_{(m,n)} + \psi_{(m,n)} \right] \quad (B.0.15)$$

onde a frequência $\boldsymbol{\omega}_{(m,n)}$ é dada por:

$$\omega_{(m,n)} = \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \sqrt{\frac{D_E}{\rho h}}$$
(B.0.16)

e $A_{(m,n)}$ e $\psi_{(m,n)}$ são constantes arbitrárias a serem determinadas pelas condições iniciais.

Demonstra-se que as autofunções do problema de autovalor de uma placa engastada ou simplesmente apoiada em seus contornos são ortogonais.

C Manual de utilização dos programas

Este apêndice inclui o manual de utilização dos programas citados neste trabalho:

São eles:

- $1. \ Ritz_Galerkin_cabo$
- 2. Colocacao_cabo e Colocacao_cabo_Chebyshev
- $3. \ MEF_\, cabo$
- $4. \ MEF_placa$
- $5. \ Cond_cont_col$

C.1 MEF_cabo

Propósito:

Este programa aproxima os modos de vibração e as frequências naturais de um cabo fixo na vertical através do MEF, para uma precisão especificada.

Através dele a dinâmica de um sistema pode ser aproximada. Isto é feito através do cálculo das matrizes de rigidez e massa e a aproximação do problema de autovalor. Após gerado o vetor carregamento e das condições iniciais, a aproximação dos modos é utilizada para a redução do sistema e posterior aproximação da dinâmica.

Estrutura:

Figura C.1: Estrutura do programa MEF_cabo

Exemplo de aplicação:

Ver seção 8.4.

Dados de Saída:

Dados de saída				
	Nome	Descrição	Unidade	
1	R_Freq	frequências naturais	[Hz]	
2	RMat_modo	funções modais aproximadas	[-]	
3	NE_prec	número de elementos necessários para a pre-	[-]	
		cisão		
4	DsnapR	aproximação da solução	[-]	

Dados de entrada				
	Nome	Descrição	Unidade	
1	L	Comprimento do cabo	[m]	
2	А	Área da seção do cabo	$[m^2]$	
3	N	Número de modos que se quer obter com a	[-]	
		precisão especificada		
4	rho	Densidade linear	[kg/m]	
5	е	Precisão especificada da frequência	[%]	
6	e_w	Precisão especificada da resposta dinâmica	[%]	
		Condições de contorno		
7.1	$cond{=}0$	cabo fixo-livre	[-]	
7.2	cond=1	cabo fixo-mola	[-]	
7.3	cond=2	cabo fixo-massa	[-]	
7.4	kk	constante elástica da mola	[N/m]	
7.5	mm	massa na extremidade	[kg]	
		Tipo de análise		
8.1	analise=1	aproxima modos e frequência	[-]	
8.2	analise=2	aproxima modos, frequência e deslocamento	[-]	
8.3	carreg=1	carregamento estático	[-]	
8.4	carreg=2	carregamento dinâmico	[-]	
8.5	ti	instante de início da análise	$[\mathbf{s}]$	
8.6	tf	instante de término da análise	$[\mathbf{s}]$	
8.7	dt	passo no tempo	$[\mathbf{s}]$	
8.8	w0	função de deslocamento inicial	[-]	
8.9	v0	função da velocidade inicial	[-]	
		Carregamento		
9.1	fx	carregamento ao longo do cabo	[-]	
9.2	ft	carregamento variável no tempo ao longo do	[-]	
		cabo		
9.3	fcx	carregamento concentrado	[N]	
9.4	pax	ponto de aplicação do carregamento concen-	[m]	
		trado		
9.5	fci	impacto	[N]	
9.6	pai	ponto de aplicação do impacto	[m]	
9.7	tai	instante de aplicação do impacto	s	

C.2 MEF_placa

Propósito:

Este programa aproxima os modos de vibração e as frequências naturais de uma placa simplesmente apoiada ou engastada através do MEF, para uma precisão especificada.

Através dele a dinâmica de um sistema pode ser aproximada. Isto é feito através do cálculo das matrizes de rigidez e massa e a aproximação do problema de autovalor. Após gerado o vetor carregamento e das condições iniciais, a aproximação dos modos é utilizada para a redução do sistema e posterior aproximação da dinâmica.

Estrutura:

Figura C.2: Estrutura do programa MEF_placa

Exemplo de aplicação:

Ver seção 8.4.

Dados de Saída:

Dados de saída				
	Nome	Descrição	Unidade	
1	R_Freq	frequências naturais	[Hz]	
2	RMat_modo	aproximação dos modos	[-]	
3	NE_prec	número de elementos necessários para a pre-	[-]	
		cisão		
4	DsnapR	aproximação da solução	[-]	

Dados de entrada				
	Nome	Descrição	Unidade	
1	La	Comprimento da placa	[m]	
2	Lb	Largura da placa	[m]	
3	h	Espessura da placa	[m]	
4	Е	Módulo de Elasticidade	[Pa]	
5	rho	Densidade	$[\mathrm{kg}/m^3]$	
6	N	Número de modos que se quer obter com a	[-]	
		precisão especificada		
7	e	Precisão especificada da frequência	[%]	
8	e_w	Precisão especificada da resposta dinâmica	[%]	
		Condições de contorno		
9.1	cc=0	placa simplesmente apoiada	[-]	
9.2	cc=1	placa engastada	[-]	
		Tipo de análise		
10.1	analise=1	aproxima modos e frequência	[-]	
10.2	analise=2	aproxima modos, frequência e deslocamento	[-]	
10.3	carreg=1	carregamento estático	[-]	
10.4	carreg=2	carregamento dinâmico	[-]	
10.5	ti	instante de início da análise	[s]	
10.6	tf	instante de término da análise	S	
10.7	dt	passo no tempo	S	
10.8	w0	função de deslocamento inicial	[-]	
10.9	v0	função da velocidade inicial	[-]	
		Carregamento		
11.1	op_carreg=1	normal	[-]	
11.2	op_carreg=2	jateamento (para aproximação do problema	[-]	
		de jateamento de uma placa)		
11.3	fxy	função de carregamento	[-]	
11.4	ft	função de carregamento variável no tempo	[-]	
11.5	fcx	carregamento concentrado constante no	[N]	
		tempo		
11.6	pax	ponto de aplicação do carregamento concen-	[m,m]	
		trado		
11.7	fci	impacto	[N]	
11.8	pai	ponto de aplicação do impacto	[m,m]	
11.9	tai	instante de aplicação do impacto	[s]	
11.10	NE_ini	número de elementos iniciais (número par)	[-]	
11.11	NE ini	passo do número de elementos (número par)	[-]	

C.3 Ritz_Galerkin_cabo

Propósito:

Este programa aproxima os modos de vibração e as frequências naturais de um cabo fixo na vertical através do Método de Ritz (que neste caso é equivalente ao Método de Galerkin), para uma precisão especificada.

Estrutura:

Figura C.3: Estrutura do programa Ritz_Galerkin_cabo

Exemplo de aplicação:

Ver seção 6.2.2.

Dados de Saída:

	Dados de saída				
	Nome	Descrição	Unidade		
1	R_Freq	frequências naturais	[Hz]		
2	W	funções modais aproximadas	[-]		
3	NE_prec	número de elementos necessários para a pre-	[-]		
		cisão			

Dados de entrada			
	Nome	Descrição	Unidade
1	L	Comprimento do cabo	[m]
2	N	Número de modos que se quer obter com a	[-]
		precisão especificada	
3	е	Precisão especificada da frequência	[%]
		Condições de contorno	
1.1	cond=1	cabo fixo-livre	[-]
1.2	cond=2	cabo fixo-massa	[-]
1.3	cond=3	cabo fixo-mola	[-]
1.4	k_mola	constante elástica da mola	[N/m]
1.5	m_massa	massa na extremidade	[kg]

C.4 Colocacao_cabo e Colocacao_cabo_Chebyshev

Propósito:

Este programa aproxima os modos de vibração e as frequências naturais de um cabo fixo na vertical através do Método da Colocação, para uma precisão especificada.

Estrutura:

Figura C.4: Estrutura do programa Colocacao_cabo e Coloca-cao_cabo_Chebyshev

Exemplo de aplicação:

Ver seção 6.4.1.

Dados de Saída:

Dados de saída				
	Nome	Descrição	Unidade	
1	R_Freq	frequências naturais	[Hz]	
2	W	funções modais aproximadas	[-]	
3	NE_prec	número de elementos necessários para a pre-	[-]	
		cisão		

Dados de entrada				
	Nome	Descrição	Unidade	
1	L	Comprimento do cabo	[m]	
2	N	Número de modos que se quer obter com a precisão especificada	[-]	
3	e	Precisão especificada da frequência	[%]	

C.5 Cond_cont_cont

Propósito:

Este programa proxima a solução de um problema de valor de contorno através dométodo da colocação, usando Polinômios de Chebyshev modificados.

Os problemas são da forma:

$$D2(x)u_{xx} + D1(x)u_x + D0(x) = f(x)x \in]-1,1[$$
(C.5.1)

$$u(-1) = \alpha e u(1) = \beta, \qquad (C.5.2)$$

onde D2,D1 e D0 são coeficiente variáveis e f um forçamento.

Estrutura:

O programa se inicia com o cálculo dos pontos de colocação e do novo vetor de forçamento devido à homogeneização das condições de contorno. A função *basis* fornece os polinômios de Chebyshev modificados.

Exemplo de aplicação:

Ver seção 9.2.1.1

Dados de Saída:

	Dados de saída			
	Nome	Descrição	Unidade	
1	Ux	aproximação da solução	[-]	

Dados de entrada				
	Nome	Descrição	Unidade	
1	D0,D1,D2	coeficientes variáveis	[-]	
2	F	função de forçamento	[-]	
3	alp	condição de contorno em $x = -1$	[-]	
4	alp	condição de contorno em $x = 1$	[-]	