

Roberto Carlos Chucuya Huallpachoque

Análise Numérica do Escoamento Bifásico Horizontal em Padrão de Golfadas Estatisticamente Permanente

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio.

Orientadora: Profa Angela Ourivio Nieckele

Rio de Janeiro Setembro 2010

Roberto Carlos Chucuya Huallpachoque

Análise Numérica do Escoamento Bifásico Horizontal em Padrão de Golfadas Estatisticamente Permanente

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Angela Ourivio Nieckele Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Alberto dos Reis Parise Departamento de Engenharia Mecânica – PUC-Rio

> **Prof. Antônio Carlos Bannwart** Universidade Estadual de Campinas

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 16 de setembro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Roberto Carlos Chucuya Hualipachoque

Graduou-se em Engenharia em Energia na Universidad Nacional del Santa (Chimbote – Ancash - Perú) no ano de 2006. Atualmente trabalhando na simulação de escoamento multifasico.

Ficha Catalográfica

Chucuya Huallpachoque, Roberto Carlos

Análise numérica do escoamento bifásico horizontal em padrão de golfadas estatisticamente permanente / Roberto Carlos Chucuya Huallpachoque ; orientadora: Angela Ourivio Nieckele. – 2010.

116 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2010.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Padrão golfadas. 3. Tubulação horizontal. 4. Analise estatística. I. Nieckele, Angela Ourivio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

"Si un hombre es perseverante, aunque sea duro de entendimiento, se hará inteligente; y aunque sea débil se transformará en fuerte" *Leonardo da Vinci*

Agradecimentos

À Profa. Angela Ourivio Nieckele, pela paciência, dedicação e por sempre ter me exigido o melhor de mim.

Às agências CAPES, CNPq e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

À minha família, Mãe e meus Irmãos: Gladys, Raquel, Claudia e Jorge pelo apoio incondicional e ânimos no transcurso destes dois anos, vocês são a referencia mais importante em minha vida.

À Sylvia que sempre esteve comigo todos os dias, com seu sorriso e brilho especial que a faz ser a pessoa cativante que me conquistou. Sua alegria e amor me fazem uma pessoa melhor a cada dia.

Aos meus amigos da favelinha andar 6, em especial a José F. e José M.

Resumo

Chucuya Huallpachoque, Roberto Carlos; Nieckele, Angela Ourivio. Análise Numérica do Escoamento Bifásico Horizontal em Padrão de Golfadas Estatisticamente Permanente. Rio de Janeiro, 2010. 116p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O escoamento bifásico no regime de golfadas é um padrão de escoamento que requer esforço em sua caracterização e modelagem, devido às características marcantes da distribuição espacial das fases, que gera intermitência ao escoamento. Este escoamento ocorre na presença de uma grande faixa de vazões de gás e líquido, em tubulações de diâmetro médio e pequeno, com variação periódica da densidade, fração de vazio e pressões na seção transversal da tubulação. No presente trabalho estuda-se numericamente o regime de golfadas ao longo de tubulações horizontais utilizando-se o Modelo de Dois Fluidos. Uma análise detalhada das estatísticas do escoamento é realizada com a caracterização dos principais parâmetros de uma golfada, como comprimento, velocidade da frente e cauda e frequência de passagem das golfadas ao longo da tubulação. Os dados obtidos das simulações são analisados através de histogramas de distribuição assim como de funções densidade de probabilidade (PDF) das variáveis hidrodinâmicas, destacando-se o caráter estocástico do escoamento no padrão de golfadas. Adicionalmente, comparações com dados de trabalhos experimentais da literatura foram realizadas com concordância muito boa.

Palayras-chave

Padrão Golfadas; Tubulação Horizontal; Analise Estatística.

.

Abstract

Chucuya Huallpachoque, Roberto Carlos; Nieckele, Angela Ourivio (Advisor). Numerical Analysis of Flow Pattern in Horizontal Two-phase slug flow Statistically Permanent, Rio de Janeiro, 2010. 116p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Slug flow is a two-phase flow pattern that requires large effort in its characterization and modeling, due to special characteristics of the phase's spatial distribution, which causes flow intermittency. This flow occurs in a wide range of gas and liquid flow rates in pipes of medium and small diameters, with periodic variation of density, void fraction and pressures in pipe-cross-section. This work presents a numerical study of the slug regime through horizontal pipes using the Two-Fluid Model. A detailed statistical analysis of the flow was carried out with characterization of main slug parameters, such as slug length, front and tail velocities and slug frequency along the pipeline. The numerical results were analyzed through distribution histograms as well as probability density function (PDF) of the hydrodynamic variables, showing the stochastic characteristic of slug flow pattern. Further, comparisons with experimental data from the literature were performed, showing very good agreement.

Keywords

Slug Flow; Horizontal Pipeline; Statistical Analysis

Sumário

1.	Introdução	18
	1.1. Regime de Golfadas	21
	1.2. Objetivo	23
	1.3. Organização do Trabalho	24
2.	Revisão Bibliográfica	25
	2.1. Mapas de Padrão de Escoamento	25
	2.2. Estudos Experimentais	28
	2.3. Estudos Numéricos	32
3.	Modelagem Matemática	35
	3.1. Modelo de Dois Fluidos	35
	3.2. Condições de Contorno e Iniciais	41
	3.2.1. Mapa de Padrão e Condição para Sistema Bem Posto	42
	3.3. Variáveis do Escoamento Estatisticamente Permanente	45
	3.3.1. Função Densidade de Probabilidade: PDF	45
4.	Método Numérico	50
	4.1. Fração Volumétrica	51
	4.2. Velocidades	52
	4.3. Pressão	54
	4.4. Condições de Contorno	56
	4.5. Malha Computacional e Passo de Tempo	57
	4.6. Critério de Convergência	58
	4.7. Procedimento de Solução	59

4.7.1 Procedimento Seqüencial	59
4.7.2 Procedimento em Bloco	60
4.7.3. Algoritmo TDMA	60
4.7.4. Algoritmo TDMA em Blocos	61
4.8. Formação da Golfada	62
4.9. Cálculo dos Parâmetros Médios das Golfadas	63
5. Resultados	66
5.1. Configuração 1	67
5.1.1. Comprimento das Golfadas	70
5.1.2. Velocidade de Translação das Golfadas	80
5.1.3. Freqüência das Golfadas	83
5.1.4. Distribuição de Pressão	85
5.1.5. Distribuição de Velocidades	87
5.2. Configuração 2	88
5.2.1. Velocidade de Translação das Golfadas	92
5.2.2. Comprimento da Golfada Líquida e da Bolha de Taylor	95
5.2.3. Freqüência das Golfadas	100
5.2.4. Distribuição de Pressão	103
6. Comentários Finais	105
Referências Bibliográficas	108
Apêndice A	112

Lista de tabelas

Tabela 2.1 - Comprimento da Golfada Liquida	31
Tabela 3.1 - Fórmulas para o cálculo do fator de atrito	39
Tabela 5.1 – Propriedades dos Fluidos	66
Tabela 5.2 – Condições Experimentais de Operação	67
Tabela 5.3 – Comprimentos Médios das Golfadas em Cada	
Coordenada	74
Tabela 5.4 – Determinação do Erro Padrão. Configuração 1	80
Tabela 5.5 – Valores dos Parâmetros C_0 e U_d	81
Tabela 5.6 – Correlações de Lockhart-Martinelli	86
Tabela 5.7 – Parâmetros de Lockhart-Martinelli.	87
Tabela 5.8 – Queda de Pressão Média. Configuração 1	87
Tabela 5.9 – Condições Experimentais de Operação	89
Tabela 5.10 – Velocidade Média da Frente e Cauda da Golfada	
Líquida	92
Tabela 5.11 – Relação entre a Velocidade Média da Cauda e Frente	
da Golfada	93
Tabela 5.12 – Comprimento da Golfada líquida e Bolha de Taylor	95
Tabela 5.13– Determinação do Erro Padrão. Configuração 2	99
Tabela 5.14 – Queda de Pressão Média. Configuração 2	104

Lista de figuras

Figura 1.1 -	Padrões de escoamento para os fluxos horizontal e	
	vertical.	19
Figura 1.2 -	Sistema de produção de óleo na indústria do Petróleo.	20
Figura 1.3 -	Unidade básica de uma golfada.	21
Figura 1.4 -	Escoamento em golfada em tubulação horizontal e	
	vertical.	22
Figura 1.5 -	Formação de golfada em tubulação inclinada.	23
Figura 2.1 -	Mapa dos padrões de escoamento, Mandhane (1974)	26
Figura 2.2 -	Mapa dos padrões de escoamento, Taitel e Dukler	
	(1976)	27
Figura 3.1 -	Esquema da tubulação e seção transversal.	41
Figura 3.2 -	Condições de contorno utilizadas.	42
Figura 3.3 -	A Função Densidade de Probabilidade Normal.	48
Figura 3.4 -	A Função Densidade de Probabilidade Log-Normal.	48
Figura 4.1 -	Volumes de controle. (a) fração volumétrica e pressão	
	(b) velocidades.	50
Figura 4.2 -	Volume de controle da fronteira do domínio: (a) na	
	entrada (b) saída.	57
Figura 4.3 -	Ilustração da medição da velocidade cada golfada. (a)	
	frente (b) calda.	64
Figura 5.1 -	Mapa de Padrões de Escoamento da Configuração 1.	68
Figura 5.2 -	Evolução do <i>Hold-up</i> Líquido em Espaço e Tempo.	
	Caso 1: $U_{sL} = 0.41$ m/s e $U_{sG} = 2.36$ m/s.	69
Figura 5.3 -	Evolução do <i>Hold-up</i> Líquido em Espaço e Tempo.	
	Caso 2: $U_{sL} = 0.61$ m/s e $U_{sG} = 2.55$ m/s.	69
Figura 5.4 -	Evolução do <i>Hold-up</i> Líquido em Espaço e Tempo.	
	Caso 3: $U_{SL} = 0.61$ m/s e $U_{SG} = 4.64$ m/s.	70
Figura 5.5 -	Histograma do Comprimento das Golfadas ao Longo da	

	Tubulação. Caso 1: $U_{sL} = 0.41 \text{ m/s}$ e $U_{sG} = 2.36 \text{ m/s}$.	71
Figura 5.6 -	Histograma do Comprimento das Golfadas ao Longo da	
	Tubulação. Caso 2: U_{sL} = 0,61 m/s e U_{sG} = 2,55 m/s.	72
Figura 5.7 -	Histograma do Comprimento das Golfadas ao Longo da	
	Tubulação. Caso 3: $U_{sL} = 0.61 \text{ m/s e } U_{sG} = 4.64 \text{ m/s}.$	73
Figura 5.8 -	Distribuição do Comprimento Medio das Golfadas ao	
	Longo da Tubulação. Casos 1, 2 e 3	75
Figura 5.9 -	Evolução do Comprimento da Golfada Ajustado por	
	Funções de Densidade de Probabilidade (PDF).	
	Caso 1: $U_{SL} = 0.41$ m/s e $U_{SG} = 2.36$ m/s.	77
Figura 5.10 -	Evolução do Comprimento da Golfada Ajustado por	
	Funções de Densidade de Probabilidade (PDF).	
	Caso 2: $U_{sL} = 0.61$ m/s e $U_{sG} = 2.55$ m/s.	78
Figura 5.11	Evolução do Comprimento da Golfada Ajustado por	
	Funções de Densidade de Probabilidade (PDF).	
	Caso 3: $U_{sL} = 0.61$ m/s e $U_{sG} = 4.64$ m/s.	79
Figura 5.12 -	Evolução da Velocidade Média da Frente e Cauda das	
	Golfadas ao Longo da Tubulação.	82
Figura 5.13 -	· Variação do hold-up do Líquido com o Tempo para	
	Duas Posições. Caso 2: U_{sL} = 0,61 m/s, U_{sG} = 2,55 m/s	83
Figura 5.14	Distribuição da Freqüência com o Tempo para duas	
	Posições. Caso 2: $U_{sL} = 0.61$ m/s, $U_{sG} = 2.55$ m/s.	84
Figura 5.15 -	.Distribuição da Freqüência Média no Domínio para os	
	casos 1, 2 e 3, em função da Velocidade de Mistura e	
	da Velocidade Superficial do Líquido	84
Figura 5.16 -	Perfil Instantâneo de Pressão ao Longo do Duto.	
	Caso 2: $U_{sL} = 0.61 \text{ m/s}, U_{sG} = 2.55 \text{ m/s}$	85
Figura 5.17	· Coeficiente de Pressão ao Longo do Duto	86
Figura 5.18 -	Perfil Instanteneo de Velocidade do Gas e do Líquido	
	ao Longo do Canal.	88
Figura 5.19	Mapa de Padrões de Escoamento da Configuração 2.	90
Figura 5.20 -	Evolução Espacial e Temporal do <i>holdup</i> . Configuração	
	2. (a) Caso 1: $U_{st} = 0.295$ m/s. $U_{sc} = 0.475$ m/s. (b) Caso	

4: $U_{sL} = 0.295 \text{ m/s}, U_{sG} = 0,$	788 m/s.	91
Figura 5.21 - Evolução Espacial e Temp	ooral do <i>holdup</i> . Configuração	
2. (a) Caso 2: $U_{sL} = 0.393$	m/s, U_{sG} = 0,475 m/s. (b) Caso	
5: $U_{sL} = 0.393 \text{ m/s}, U_{sG} = 0,$	788 m/s.	91
Figura 5.22 - Evolução Espacial e Temp	ooral do <i>holdup</i> . Configuração	
2. (a) Caso 3: $U_{sL} = 0,516$	m/s, U_{sG} = 0,475 m/s. (b) Caso	
6: $U_{sL} = 0.516 \text{ m/s}, U_{sG} = 0,$	788 m/s.	91
Figura 5.23 - Comparação da Velocidad	de de Translação da Frente e	
Cauda da Golfada com a 0	Correlação de Bendiksen	
(1984).		93
Figura 5.24 - Evolução da Velocidade M	lédia da Frente e Cauda das	
Golfadas ao Longo da Tub	oulação. (a) Caso 1: <i>U_{sL}</i> =	
0,295 m/s, $U_{\rm sG}$ = 0,475 m/s	s. (b) Caso 4: $U_{sL} = 0.295$	
m/s, U_{sG} = 0,788 m/s (c) Ca	so 2: $U_{sL} = 0.393 \text{ m/s}, U_{sG} =$	
0,475 m/s. (d) Caso 5: U_{sL}	$= 0.393 \text{ m/s}, U_{sG} = 0.788 \text{ m/s}$	
(e) Caso 3: <i>U_{sL}</i> = 0,516 m/	s, U_{sG} = 0,475 m/s. (f) Caso 6:	
$U_{sL} = 0.516 \text{ m/s}, U_{sG} = 0.78$	8 m/s.	94
Figura 5.25 - Distribuição do Comprime	nto da Golfada Líquida e da	
Bolha na Coordenada x =	9 m. (a) Golfada Líquida (b)	
Bolha.		96
Figura 5.26 - Distribuição PDF do Comp	orimento da Golfada para <i>U_{sL}</i>	
= 0,295 m/s. (a) Caso 1: <i>U</i>	$J_{\rm SL} = 0.295 \text{ m/s}, \ U_{\rm SG} = 0.475$	
m/s. (b) Caso 4: $U_{sL} = 0.29$	$95 \text{ m/s}, U_{sG} = 0,788 \text{ m/s}.$	98
Figura 5.27 - Distribuição PDF do Comp	orimento da Golfada para <i>U_{sL}</i>	
= 0,393 m/s. (a) Caso 2: <i>U</i>	$J_{\rm SL} = 0.393 \text{ m/s}, \ U_{\rm SG} = 0.475$	
m/s. (b) Caso 5: $U_{sL} = 0.39$	93 m/s, <i>U</i> _{sG} = 0,788 m/s	98
Figura 5.28 - Distribuição PDF do Comp	orimento da Golfada para $U_{ extsf{ iny SL}}$	
= 0,393 m/s. (a) Caso 3: <i>U</i>	$J_{sL} = 0.516 \text{ m/s}, \ U_{sG} = 0.475$	
m/s. (b) Caso 6: $U_{sL} = 0.51$	16 m/s, <i>U_{sG}</i> = 0,788 m/s.	99
Figura 5.29 - Distribuição do Comprime	nto das Golfadas Líquidas ao	
Longo da Tubulação. <i>U</i> _{sG} =	= 0,475 m/s. (a) Caso 1: U_{sL} =	
0,295 m/s (b) Caso 2: <i>U</i> _{sL}	= 0,393 m/s (c) Caso 3: U_{sL} =	
0,516 m/s.		100

Figura 5.30 -	· Distribuição do Comprimento das Golfadas Líquidas ao	
	Longo da Tubulação. U_{sG} = 0,788 m/s. (a) Caso 4: U_{sL} =	
	0,295 m/s (b) Caso 5: U_{sL} = 0,393 m/s (c) Caso 6: U_{sL} =	
	0,516 m/s.	100
Figura 5.31 -	Variação do <i>Hold-up</i> do Líquido com o Tempo em x = 9	
	m. (a) Caso 1: U_{sL} = 0,41 m/s e U_{sG} = 2,36 m/s (b) Caso	
	3: $U_{sL} = 0.61$ m/s e $U_{sG} = 4.64$ m/s (c) Caso 5: $U_{sL} =$	
	$0,393 \text{ m/s}, U_{sG} = 0,788 \text{ m/s}.$	101
Figura 5.32 -	Distribuição da Freqüência com o Tempo Obtido em x =	
	9 m. (a) Caso 1: $U_{sL} = 0.41$ m/s e $U_{sG} = 2.36$ m/s (b)	
	Caso 3: $U_{sL} = 0.61 \text{ m/s e } U_{sG} = 4.64 \text{ m/s (c)}$ Caso 5: U_{sL}	
	$= 0.393 \text{ m/s}, U_{sG} = 0.788 \text{ m/s}.$	102
Figura 5.33 -	Distribuição da Freqüência Média no Dominio para os	
	Casos da Configuração 2, em Função da Velocidade de	
	Mistura e da Velocidade Superficial do Líquido.	103
Figura 5.34 -	Coeficiente de Pressão ao Longo do Duto.	
	Casos 1, 2 e 3	104

Lista de Símbolos

4	Á		~				~
\boldsymbol{A}	Area	da	secao	transversal	da	tubulaca	ЭO

- A Matriz Jacobiana do sistema característico
- **B** Matriz Jacobiana do sistema característico
- D Diâmetro da tubulação
- D Vetor coluna do sistema característico
- C Matriz Jacobiana do sistema característico
- C Número de Courant
- *C_o* Parâmetro de distribuição
- f Fator de fricção
- F Parâmetro adimensional
- \tilde{F} Pseudo fluxo convectivo
- Fr Número de Froude
- g Aceleração da gravidade
- h_L Altura da superfície do líquido
- K Parâmetro adimensional
- L Comprimento da unidade básica de golfada
- L_f Comprimento do filme líquido
- L_s Comprimento das golfadas
- n Número de elementos da mostra
- m Número de parâmetros de probabilidade
- P Pressão interfacial e da fase gasosa
- R Constate do gás
- *P_i* Valores do algoritmo TDMA
- Q_i Valores do algoritmo TDMA
- Re Número de Reynolds
- S Perímetro molhado
- s Coeficiente de correção
- t Tempo

- T Temperatura de referência / Parâmetro adimensional
- U Velocidade
- U_d Velocidade de "driff"
- U_{κ} Velocidade da fase K
- U_M Velocidade da mistura
- U_{sK} Velocidade superficial da fase K
- y Variável aleatória Log-Normal
- x Coordenada axial
- X Espaço de amostragem
- X² Parâmetro de Lockhart Martinelli

Símbolos gregos

- α Fração volumétrica da fase
- β Ângulo de inclinação da tubulação com respeito à horizontal
- ∠ Variação de uma grandeza
- ϕ Grandeza a ser calculada
- Φ Vetor solução do sistema de autovalores
- γ Fator de subrelaxação
- φ Variável aleatória normal
- φ_K Valor médio de uma função relativa à fase K
- ε Erro Padrão
- μ Viscosidade dinâmica / Media das variáveis aleatórias
- v Viscosidade cinemática
- v_s Freqüência das golfadas
- π Constante Pi
- ξ Parâmetro geométrico auxiliar
- ρ Massa específica
- σ Tensão superficial / Desvio padrão das variáveis aleatórias
- τ Tensão de cisalhamento
- ∀ Volume

Subscritos

b	Transl	lação	da	cauda	a da	gol	fad	а

- *e,w* Faces leste e oeste do volume de controle principal
- E Referente ao centro do volume principal de controle a leste

entrada Entrada da tubulação

- G Fase gasosa
- I lésimo ponto nodal
- *i* Interface
- L Fase líquida
- M Mistura
- max Máximo valor
- N Número total de nós no domínio / medidas realizadas
- n n-ésima medida
- P Referente ao centro do volume de controle principal
- r Relativa
- ref Referência
- s Referente a "slug", ou golfada
- saída Saída da tubulação
- t Translação da frente da golfada
- w Parede da tubulação
- W Referente ao centro do volume principal de controle a leste

Sobrescritos

- Referente ao passo de tempo anterior
- Referente à iteração anterior
- flag Indicador de formação de slug
- ref Referência
- ^ Referente a uma grandeza aproximada mediante esquema Upwind
- Referente a uma grandeza aproximada
- * Referente à iteração anterior