4 Apresentação e análise dos resultados

4.1. Modo de ruptura

A ruína de todos os pilares foi devido ao esmagamento do concreto na face mais comprimida, seguido do encurvamento das barras da armadura longitudinal.

A ruptura ocorreu na região central do pilar, exceto para o pilar B40 – 1,3 que apresentou uma ruptura na região inferior do pilar devido à pequena espessura da chapa de aço de apoio. Essa chapa foi substituída por outra com espessura maior nos demais ensaios. Apesar da ruptura deste pilar B40 - 1,3 ter ocorrido na base, a carga máxima que o pilar poderia suportar praticamente foi atingida, pois, como se observa na Figura 4.9, as deformações específicas de compressão no concreto e nas barras mais comprimidas já ultrapassavam 3‰.

A Tabela 4.1 apresenta os valores das principais respostas obtidas nos ensaios dos pilares correspondentes à força de ruptura F_u (valor máximo atingido), ε_{sc} e ε_{st} são as deformações especificas das armaduras longitudinais comprimidas e tracionadas, ε_c é a deformação especifica do concreto na face mais comprimida. A tabela mostra ainda os valores da resistência à compressão do concreto no dia de ensaio (f_c), da tensão de escoamento da armadura longitudinal (f_y) e das excentricidades de 1^ª ordem (e₁).

Sório	Dilor	f _c	fy	e ₁ (cm)	Fu	ε _c	E sc	E st
Serie	Filai	(MPa)	(MPa)	ex	ey	(kN)	(‰)	(‰)	(‰)
	B40 - 1,3	43,7	611,6	3,33	2	1625	-2,99	-3,23	-0,11
I	B40 - 2,1	45,4	547,5	3,33	2	1592	-2,35	-3,45	0,57
	B40 - 3,2	43,4	547,5	3,33	2	1587	-2,18	-2,74	0,13
	B40 - 4,3	42,4	547,5	3,33	2	1488	-3,16	-0,42	0,22
	U70 - 1,3	70,0	611,6	0	3	1002	-2,77*	-2,16*	1,94*
Ш	U70 - 2,1	67,3	547,5	0	3	1175	-1,99*	-2,20*	1,38*
	U70 - 3,2	73,4	547,5	0	3	1440	-2,39*	-2,12*	1,30*
	U70 - 4,3	71,3	547,5	0	3	1512	-3,43*	-2,83*	1,60*

Tabela 4.1 - Resultados gerais dos ensaios

 Valores médios das deformações do aço e concreto para cada face, correspondentes à Fu. Nas Figuras 4.1 a 4.4 são apresentadas as fotografias na face comprimida e tracionada da região de ruptura dos pilares da série I. Nesta série, os pilares foram ensaiados à flexão composta oblíqua.

Figura 4.1 – Fotografias do ensaio do pilar B40 – 1,3, após a ruptura

Face comprimida

Face Tracionada

Figura 4.2 - Fotografias do ensaio do pilar B40 - 2,1, após a ruptura

Figura 4.3 – Fotografias do ensaio do pilar B40 – 3,2, após a ruptura

Figura 4.4 – Fotografias do ensaio do pilar B40 – 4,3, após a ruptura

Da Figura 4.5 à Figura 4.8 são apresentadas as fotografias na face comprimida e tracionada da região de ruptura dos pilares da série II. Nesta série, os pilares foram ensaiados à flexão composta reta.

Figura 4.5 - Fotografias do ensaio do pilar U70 - 1,3, após a ruptura

Figura 4.6 - Fotografias do ensaio do pilar U70 - 2,1, após a ruptura

Figura 4.7 – Fotografias do ensaio do pilar U70 – 3,2, após a ruptura

Figura 4.8 - Fotografias do ensaio do pilar U70 - 4,3, após a ruptura

4.2. Diagramas força – deformação

Os gráficos apresentam as deformações especificas do concreto e aço na face comprimida e na face tracionada dos pilares ensaiados. Os valores foram registrados através de extensômetros colados na superfície do concreto e aço, na seção localizada à meia altura do pilar, conforme mostrado no item 3.6.

4.2.1. Pilares da série l

Os diagramas das deformações específicas no concreto e nas armaduras longitudinais dos pilares ensaiados da série I são apresentados nas Figuras 4.9 a 4.12.

Observa-se nos diagramas que a seção instrumentada permanece totalmente comprimida até a carga aplicada atingir aproximadamente 90% da carga de ruptura. A partir dessa carga, houve uma tendência acentuada de acréscimo da excentricidade de 2ª ordem e conseqüentemente uma das faces da seção passa a ser tracionada.

No final do ensaio, o pilar B40 – 1,3 teve uma tendência de inversão na curva referente aos valores do concreto e armadura longitudinal menos comprimidas, porém, não chegou a registrar valores de tração.

Nos pilares B40 – 2,1, B40 – 3,2 e B40 – 4,3, os extensômetros E-C-6 (no concreto) e E-A-1 (no aço) apresentaram uma tendência de inversão no comportamento e redução da compressão nas proximidades da ruptura.

No pilar B40 – 4,3 observou-se que a força de aplicação teve uma estabilização até a ruptura, como se observa na Figura 4.12. As deformações especificas de compressão no concreto apresentaram deformações maiores de 3‰, porém, a armadura longitudinal mais comprimidas apresentaram deformações de 1‰, está diferença é possível devido à falta de aderência entre o concreto e aço nesta região.

Figura 4.10 – Diagrama força-deformação no pilar B40 – 2,1

Uma representação em 3D das deformações na seção média dos pilares da série I, correspondentes à força de ruptura, é mostrada nas Figuras 4.13 e 4.14. Nessa representação, o sistema é constituído dos eixos x, y (que indicam a posição onde a deformação foi medida) e do eixo das deformações ε . Um dos planos corresponde à seção com carga nula e o outro corresponde à seção transversal sob a força de ruptura. A reta obtida pela interseção entre esses planos representa a linha neutra. A equação f(x,y, ε)=0 do plano da seção sob a força de ruptura foi obtido por meio de uma regressão linear múltipla pelo programa Mathcad. Os valores do coeficiente de determinação (r²) são os indicados na Tabela 4.2. Os valores da altura útil (*d*) foram obtidos a partir das Figuras 4.13 e 4.14 que correspondem à distância perpendicular à linha neutra

Sária	Dilor	b	h	l _e	d	e ₁ (cm)	" 2
Serie	Filar	(cm)	(cm)	(cm)	(cm)	ex	ey	ſ
	B40 - 1,3	05 15		325	26,6	3,33	2	0,91
	B40 - 2,1		15	329	21,5	3,33	2	0,83
I	B40 - 3,2	20	15	329	22,5	3,33	2	0,83
	B40 - 4,3			330	23,8	3,33	2	0,68

Tabela 4.2 - Características dos pilares ensaiados da série I

Figura 4.13 - Distribuição de deformações na região central dos pilares da série I

Figura 4.14 - Distribuição de deformações na região central dos pilares da série I

As Figuras 4.15 a 4.18 mostram a evolução das excentricidades totais medidas (soma das excentricidades de 1ª ordem com da 2ª ordem) na seção média dos pilares da série I, para diferentes carregamentos até atingir à carga de ruptura.

Tabel	la 4.3 -	- Dados	s das	excent	ricidad	les

totais no pilar B40 - 1,3

Dilor	Carga	Força	e _{total} (cm)		
Fildi	Carya	(kN)	ex	ey	
	0,0 F _u	0	3,33	-2,00	
	0,2 F _u	318	3,53	-1,99	
P40 1 2	0,4 F _u	647	3,67	-2,04	
D40 - 1,3	0,6 F _u	971	3,81	-2,12	
	0,8 F _u	1298	3,95	-2,23	
	1,0 F _u	1625	4,38	-2,61	

Figura 4.15 – Esquema da posição das excentricidades totais no pilar B40 – 1,3

Dilor	Carga	Força	e total (cm)		
Filai	Carya	(kN)	ex	ey	
	0,0 F _u	0	3,33	-2,00	
	0,2 F _u	316	3,40	-2,15	
D40 01	0,4 F _u	634	3,49	-2,28	
D40 - 2,1	0,6 F _u	952	3,62	-2,48	
	0,8 F _u	1267	3,80	-2,72	
	1,0 F _u	1592	4,36	-3,66	

Tabela 4.4 - Dados das excentricidades

totais no pilar B40 – 2,1

Figura 4.16 – Esquema da posição das excentricidades totais no pilar B40 – 2,1

totais no pilar B40 – 3,2						
Pilar	Carga	Força	e total (cm)			
i nai	Ourgu	(kN)	ex	ey		
	0,0 F _u	0	3,33	-2,00		
	0,2 F _u	313	3,42	-2,21		
P40 2.2	$0,4 \; F_u$	629	3,53	-2,30		
В40 - 3,2	0,6 F _u	951	3,69	-2,42		
	0,8 F _u	1265	3,91	-2,66		
	1,0 F _u	1587	5,08	-4,28		

Tabela 4.5 – Dados d	as excentricidades
----------------------	--------------------

♦ 0,0 Fu 📕 0,2 Fu ▲ 0,4 Fu • 1,0 Fu <mark>×</mark> 0,6 Fu **X** 0,8 Fu B40 - 3,2 γ 7,5 5,0 2,5 х -5,0 -7,5 -12,5 -10,0 -7,5 -5,0 -2,5 0,0 2,5 5,0 7,5 10,0 12,5 b (cm)

Figura 4.17 – Esquema da posição das excentricidades totais no pilar B40 – 3,2

e total (cm) Força Pilar Carga (kN) ex \mathbf{e}_{y} 0,0 F_u 0 3,33 -2,00 0,2 F_u 292 3,40 -2,01 595 3,50 -2,08 0,4 F_u B40 - 4,3 0,6 F_u 893 3,63 -2,20 0,8 F_u 1184 3,79 -2,47 1,0 F_u 1488 5,15 -4,28

Figura 4.18 – Esquema da posição das excentricidades totais no pilar B40 – 4,3

4.2.2. Pilares da série II

Nas Figuras 4.19 a 4.22 são apresentados os diagramas das deformações no concreto e nas armaduras longitudinais dos pilares da série II.

Os diagramas mostram que a seção instrumentada permanece completamente comprimida até a carga aplicada atingir aproximadamente 75% da carga de ruptura. A partir dessa carga, devido ao incremento da excentricidade de 2ª ordem, um das faces passa a ser tracionada.

Observa-se que as deformações no concreto medidas pelo extensômetro E-C-3 na face mais tracionada são válidas somente para valores inferiores ao correspondente ao início da fissuração (que podem variar de 0,002 a 0,004). A partir daí, os extensômetros mediram a abertura da fissura.

Nos pilares U70 – 2,1 e U70 – 3,2, os extensômetros E-C-5 (no concreto) e E-A-1 (no aço) apresentaram uma tendência de inversão no comportamento e redução da compressão nas proximidades da ruptura.

Tabela 4.6 – Dados das excentricidades

totais no pilar B40 – 4,3

Figura 4.20 – Diagrama força-deformação no pilar U70 – 2,1

Figura 4.22 – Diagrama força-deformação no pilar U70 – 4,3

Na Figura 4.23 é apresentada a distribuição das deformações na seção localizada à meia altura dos pilares desta série. Os diagramas foram traçadas com os valores das deformações:

- No concreto: na face mais comprimida (Extensômetros E-C-1, E-C-5 e E-C-6), faces adjacentes (E-C-2 e E-C-4).
- Nas armaduras longitudinais: na face tracionada (E-A-2 e E-A-3) e comprimida (E-A-1 e E-A-4).

Os diagramas dos pilares demonstram que as seções planas permanecem planas com a aplicação dos carregamentos, com exceção do pilar U70 – 2,1.

Figura 4.23 - Distribuição de deformações na região central do pilar da série II

Na Tabela 4.7 é apresentada os valores do comprimento de flambagem (l_e) e da altura útil da seção (d) dos pilares da série II.

Sária	Dilor	b	h	l_{e}	d	e1 (cm)	
Serie	Filai	(cm)	(cm)	(cm)	(cm)	ex	ey
	U70 - 1,3		15	317	13,0	0	3
	U70 - 2,1	25		318	12,7	0	3
	U70 - 3,2			318	12,7	0	3
	U70 - 4,3			316	12,7	0	3

Tabela 4.7 – Características dos pilares ensaiados da série II

4.3. Diagramas força – deslocamento

Os deslocamentos horizontais foram registrados pelos transdutores de deslocamento localizados à meia altura dos pilares. Nas Figuras 4.25 a 4.29 são mostrados os diagramas força-deslocamento das Séries I e II para as excentricidades de 2^{a} ordem (e_{2}).

O deslocamento aproximado ($\delta_{(L/2)}$) é calculado pela expressão 4.1 (que admite que a deformada do pilar é senoidal) a partir dos valores experimentais da deformação do concreto na face comprimida e da armadura longitudinal na face tracionada, para cada série.

O deslocamento aproximado é dado pela expressão:

$$\delta_{(L/2)} = \frac{l_e^2}{10} \cdot \frac{\varepsilon_c - \varepsilon_s}{d}$$
(4.1)

 l_e é o comprimento de flambagem dada nas Tabelas 4.2 e 4.7;

d é a altura útil da seção dada nas Tabelas 4.2 e 4.7;

 ε_c é a deformação do concreto na face mais comprimida;

 ε_s é a deformação média das barras tracionadas.

A Figura 4.24 ilustra graficamente o valor de $\delta_{T(L/2)}$ (deslocamentos experimentais), sendo δ_{topo} o deslocamento de corpo rígido no topo do pilar.

O deslocamento experimental é dado pela expressão:

$$\delta_{T(L/2)} = \delta_{central} - \frac{\delta_{topo}}{2}$$
(4.2)

Figura 4.24 – Esquema do deslocamento transversal no pilar

4.3.1. Pilares da série l

Os diagramas força-deslocamento transversal dos pilares desta série são apresentados nas Figuras 4.25 a 4.28. Para todos os pilares são mostrados um gráfico dos deslocamentos horizontais obtidas pela expressão 4.2 para cada eixo x,y e outro gráfico corresponde à comparação entre os deslocamentos aproximados obtidas pela expressão 4.1 (curva azul) e os deslocamentos experimentais calculada pela expressão 4.3 (curva vermelha).

$$e^2 = e_x^2 + e_y^2 \tag{4.3}$$

onde e é a resultante dos deslocamentos transversais nos eixos x, y.

O pilar B40 – 1,3 apresentou uma boa aproximação entre os valores experimentais e calculados, porém para o pilar B40 – 2,1 mostrou uma tendência de inversão nos deslocamentos calculados na proximidade da ruptura.

Nos pilares $B40 - 3,2 \in B40 - 4,3$, os deslocamentos medidos (experimentais) foram menores do que os calculados (aproximados).

Figura 4.26 - Diagrama força-deslocamento no pilar B40 - 2,1

Figura 4.28 – Diagrama força-deslocamento no pilar B40 – 4,3

4.3.2. Pilares da série II

A Figura 4.29 apresenta os diagramas força-deslocamento transversal dos pilares da série II. A curva azul representa os deslocamentos calculados pela expressão 4.1 e a curva vermelha representa os valores medidos pela expressão 4.2. Em todos os pilares desta série apresentaram valores próximos entre os experimentais e os aproximados dos deslocamentos (excentricidades de 2ª ordem).

Figura 4.29 - Diagrama força-deslocamento na região central do pilar da série II

4.4. Comparação entre resultados experimentais e teóricos

4.4.1. Excentricidades de 2ª ordem

As figuras seguintes apresentam uma comparação das excentricidades de 2ª ordem entre os resultados experimentais com os teóricos calculados pelos seguintes métodos aproximados:

- Método do pilar padrão com curvatura calculada pela expressão 4.1 (CA).
- Método do pilar padrão com curvatura aproximada da NBR 6118:2003 calculadas pelas expressões 2.6 e 2.7 (CA-NBR), analisada cada uma das direções principais simultaneamente.
- Método da rigidez aproximada da NBR 6118:2003 (RA-NBR), conforme ao item 2.6.3.

a) Pilares da série l submetidos à flexão composta oblíqua

Na Tabela 4.8 é feita a comparação das excentricidades de 2^a ordem experimentais com as teóricas obtidas pelos métodos citados anteriormente. As excentricidades do método de curvatura aproximada (CA – NBR) foram calculadas pela expressão 2.6 e consideraram-se três valores diferentes de *h* (altura útil), sendo:

- h₁ é a altura da seção na direção x,y (h_x=25 cm, h_y=15 cm), com esse dado calcula-se a excentricidade *e*₂, que é a resultante das excentricidades nos eixos x, y (equação 4.3);
- h_{LN} é a altura útil da seção dada nas Tabelas 4.2 e 4.7 (h_{LN}=d);
- h₂ é a diagonal da seção transversal do pilar (h₂=29,2 cm).

Pilar		Exp.	CA - NBR (h ₁)	RA-NBR	CA - NBR (h _{LN})	CA - NBR (h ₂)
R40 12	e ₂ (cm)	1,22	2,75	2,95	1,33	1,21
D40 - 1,3	e _{2,mét.cálc} /e _{2, Exp.}		2,25	2,42	1,09	0,99
B40 - 2,1	e ₂ (cm)	1,95	2,93	3,05	1,75	1,29
	e _{2,mét.cálc} /e _{2, Exp.}		1,50	1,56	0,90	0,66
P40 20	e ₂ (cm)	2,87	2,85	3,05	1,63	1,26
B40 - 3,2	e _{2,mét.cálc} /e _{2, Exp.}		0,99	1,06	0,57	0,44
B40 - 4,3	e ₂ (cm)	2,92	2,95	3,07	1,59	1,30
	e2,mét.cálc/e2, Exp.		1,01	1,05	0,54	0,44

Tabela 4.8 – Dados obtidos dos métodos de cálculo para os pilares da série I

A Figura 4.30 apresenta os valores da razão e_{2,mét.cálc}/e_{2,Exp} entre as excentricidades de 2ª ordem teóricas e experimentais. Observa-se, quanto maior é a excentricidade de 2ª ordem, menor é o valor da razão e_{2.mét.cálc}/e_{2.Exp}.

Os métodos de cálculo da Rigidez Aproximada (RA-NBR) e Curvatura Aproximada (CA-NBR (h₁)) apresentam os maiores valores da razão e₂₋,_{mét.cálc}/e_{2,Exp}, enquanto os demais métodos os valores da razão são próximos e inferiores a 1,0.

Figura 4.30 - Métodos de cálculo para excentricidades de 2ª ordem da série I

Os valores da excentricidade de 2^{a} ordem calculados pelos métodos aproximados da NBR 6118:2003 apresentam valores maiores (pilares B40 – 1,3 e B40 – 2,1) e próximos (pilares B40-3,2 e B40 4,3) comparados aos valores experimentais, como se observa na Figura 4.31. Por conseguinte, no dimensionamento de um pilar, estes métodos estariam a favor da segurança.

Na Figura 4.32 é possível observar a diminuição da diferença entre os resultados teóricos e experimentais ao considerar as excentricidades totais.

Cabe aclarar que os valores das excentricidades (CA-NBR e RA-NBR) destas gráficas foram calculados pela expressão 4.3.

Figura 4.31 - Comparação entre as excentricidades de 2ª ordem da série I

Figura 4.32 - Comparação entre as excentricidades totais da série I

Foi feita também a mesma análise entre as excentricidades de 2ª ordem teóricas calculadas pelos métodos aproximados da NBR 6118:2003 com as experimentais obtidas nos ensaios de PALLARES et al. (2008), como se observa na Figura 4.33.

O método de calculo da Curvatura Aproximada (CA-NBR (h_1)) apresenta os maiores valores da razão $e_{2,mét.cálc}/e_{2,Exp}$ para os pilares mais esbeltos (*Le*=3m), enquanto os demais métodos a maior parte dos valores da razão são inferiores a 1. Observa-se que o valor da razão $e_{2,mét.cálc}/e_{2,Exp}$ é menor ao incrementar as excentricidades de 2^ª ordem.

Figura 4.33 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de PALLARES et al. (2008)

Os valores da excentricidade de 2^{a} ordem calculado pelo método da curvatura aproximada para os pilares mais esbeltos (le=3m) e de esbeltez intermediária (le=2m) apresentam valores maiores, enquanto para os pilares menos esbeltos (le=1m) apresentam valores próximos comparados aos valores experimentais, como se mostra na Figura 4.34.

O método de calculo de rigidez aproximada para os pilares mais esbeltos apresentam valores muito próximos, enquanto para os pilares menos esbeltos e esbeltez intermediaria apresentam valores inferiores comparados aos experimentais.

Na Figura 4.35 é possível observar que os valores teóricos da excentricidade total apresentam uma boa aproximação aos valores experimentais.

Figura 4.35 – Comparação entre as excentricidades totais dos ensaios de PALLARES et al. (2008)

b) Pilares da série II submetidos à flexão composta reta

Os resultados obtidos neste trabalho complementou a pesquisa feita por OLARTE (2010), cabe indicar que foram utilizadas os dados da série de pilares de 40 MPa com a finalidade de ter um melhor análise.

Na Tabela 4.9 é feita a comparação das excentricidades de 2ª ordem experimentais com as teóricas obtidas pelos métodos citados ao inicio.

A Figura 4.36 apresenta os valores da razão e_{2,mét.cálo}/e_{2,Exp} entre as excentricidades de 2ª ordem teóricas e experimentais.

O método de cálculo da curvatura aproximada (CA-NBR) apresenta valores maiores da razão e_{2,mét.cálc}/e_{2,Exp} para concretos de resistência de 70 MPa, enquanto para concretos de 40 MPa a razão são próximos a 1,0.

Os valores da razão e_{2,mét.cálc}/e_{2,Exp} são inferiores (40 MPa) e próximos (70 MPa) a 1,0 para o método da rigidez aproximada (RA-NBR).

	Pilar	Exp.	CA - NBR	RA-NBR
$C_{40} = 1.3$	e ₂ (cm)	3,12	2,91	2,41
040 - 1,5	e _{2,mét.cálc} /e _{2, Exp.}		0,93	0,77
C40 21	e ₂ (cm)	3,50	2,86	2,41
040 - 2,1	e _{2,mét.cálc} /e _{2, Exp.}		0,82	0,69
C40 22	e ₂ (cm)	3,48	2,82	2,41
040 - 3,2	e2,mét.cálc/e2, Exp.		0,81	0,69
$C_{40} = 4.3$	e ₂ (cm)	4,18	2,55	2,41
040 - 4,3	e2,mét.cálc/e2, Exp.		0,61	0,58
1170 1 2	e2 (cm)	3,07	3,80	2,74
070 - 1,3	e _{2,mét.cálc} /e _{2, Exp.}		1,24	0,89
	e2 (cm)	3,01	3,49	2,76
070-2,1	e _{2,mét.cálc} /e _{2, Exp.}		1,16	0,92
1170 2.2	e ₂ (cm)	3,14	3,29	2,76
070-3,2	e _{2,mét.cálc} /e _{2, Exp.}		1,05	0,88
	e ₂ (cm)	3,80	3,13	2,73
U70 - 4,3	e2,mét.cálc/e2, Exp.		0,82	0,72

Tabela 4.9 – Dados obtidos dos métodos de cálculo para os pilares da série II

Figura 4.36 - Métodos de cálculo para excentricidades de 2ª ordem da série II

Os valores das excentricidades de 2ª ordem dos concretos de 40 MPa e 70 MPa obtidos pelo método de curvatura aproximada estão mais próximos dos valores experimentais, enquanto que o método da rigidez aproximada apresenta os menores valores comparados aos valores experimentais, como se observa na Figura 4.37. Por conseguinte, no dimensionamento de um pilar, este método pode levar a resultados contra a segurança.

Figura 4.37 - Comparação entre as excentricidades de 2ª ordem

Figura 4.38 - Comparação entre as excentricidades totais

Nas Figuras 4.39 a 4.53 são apresentados os gráficos comparativos entre as excentricidades de 2ª ordem experimentais obtidas nos ensaios de LLOYD e RANGAN (1996), de CLAESON e GYLLTOFT (1998), de LEE e SON (2000), de GALLANO e VIGNOLI (2008) e de AGUIRRE (2010) (Item 2.7) com as excentricidades teóricas calculadas pelos métodos da NBR 6118:2003.

Observou-se que os valores teóricos da excentricidade total apresentam uma boa aproximação aos valores experimentais (Figuras 4.40, 4.43 e 4.46), porém o método da rigidez aproximada apresentou valores menores do que os experimentais.

Para cada caso é apresentada as gráficas dos valores da razão $e_{2-,mét.cálc}/e_{2,Exp}$ entre as excentricidades de 2ª ordem teóricas e experimentais. Observa-se, quanto maior é a excentricidade de 2ª ordem, menor é o valor da razão $e_{2,mét.cálc}/e_{2,Exp}$.

Figura 4.39 – Comparação entre as excentricidades de 2ª ordem dos ensaios de LLOYD e RANGAN (1996)

Figura 4.40 – Comparação entre as excentricidades totais dos ensaios de LLOYD e RANGAN (1996)

Figura 4.41 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de LLOYD e RANGAN (1996)

Figura 4.42 – Comparação entre as excentricidades de 2ª ordem dos ensaios de CLAESON e GYLLTOFT (1998)

Figura 4.43 – Comparação entre as excentricidades totais dos ensaios de CLAESON e GYLLTOFT (1998)

Figura 4.44 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de CLAESON e GYLLTOFT (1998)

Figura 4.45 – Comparação entre as excentricidades de 2ª ordem dos ensaios de LEE e SON (2000)

Figura 4.46 – Comparação entre as excentricidades totais dos ensaios de LEE e SON (2000)

Figura 4.47 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de LEE e SON (2000)

Figura 4.48 – Comparação entre as excentricidades de 2ª ordem dos ensaios de GALANO e VIGNOLI (2008)

Figura 4.49 - Comparação entre as excentricidades totais dos ensaios de GALANO e VIGNOLI (2008)

Figura 4.50 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de GALANO e VIGNOLI (2008)

Figura 4.51 – Comparação entre as excentricidades de 2ª ordem dos ensaios de AGUIRRE (2010)

110

Figura 4.52 – Comparação entre as excentricidades totais dos ensaios de AGUIRRE (2010)

Figura 4.53 – Métodos de cálculo para excentricidades de 2ª ordem dos ensaios de AGUIRRE (2010)