

Betzabet Evelin Vilavila Noriega

Comportamento de Pilares Esbeltos de Concreto de Alta Resistência sob Flexão Composta Reta e Oblíqua

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

Orientador: Prof. Giuseppe Barbosa Guimarães

Rio de Janeiro Janeiro de 2011

Betzabet Evelin Vilavila Noriega

Comportamento de Pilares Esbeltos de Concreto de Alta Resistência sob Flexão Composta Reta e Oblíqua

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Giuseppe Barbosa Guimarães** Orientador Departamento de Engenharia Civil – PUC-Rio

> **Prof. Raul Rosas e Silva** Departamento de Engenharia Civil – PUC-Rio

Prof^a. Lídia da Conceição Domingues Shehata Universidade Federal Fluminense

Prof. Guilherme Sales Soares de Azevedo Melo Universidade de Brasília

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de Janeiro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Betzabet Evelin Vilavila Noriega

Graduou-se em Engenharia Civil na UNSAAC (Universidad Nacional de San Antonio Abad Del Cusco – Peru) em 2006. Ingressou no Mestrado em Engenharia Civil na PUC-Rio, na área de Estruturas em 2008, desenvolvendo dissertação na linha de pesquisa de Concreto Armado.

Ficha Catalográfica

Vilavila Noriega, Betzabet Evelin

Comportamento de Pilares Esbeltos de Concreto de Alta Resistência sob Flexão Composta Reta e Oblíqua / Betzabet Evelin Vilavila Noriega; orientador: Giuseppe Barbosa Guimarães. – 2011.

118 f. : il. (color.) ; 30 cm.

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2011.

Inclui bibliografia

1. Engenharia Civil – Teses. 2. Pilares Esbeltos. 3. Concreto de Alta Resistência. 4. Flexo Compressão. I. Giuseppe Barbosa Guimarães. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título. PUC-Rio - Certificação Digital Nº 0821351/CA

Aos meus pais. Aos meus irmãos

Agradecimentos

A Deus por estar sempre na minha vida, pela iluminação e força para continuar nos momentos difíceis.

Ao meu orientador Prof. Giuseppe Barbosa Guimarães, pela oportunidade, apoio, orientação e paciência no desenvolvimento deste trabalho.

A meus queridos pais, Hector e Julia, pelo eterno amor, conselhos e incentivos para alcançar meus sonhos.

Aos meus irmãos, Fernando, Moises, Valia, a minha cunhada Very, pelas conversas, brincadeiras e conselhos, e a minha sobrinha Leonor que trouxe muita alegria para minha família.

A meu querido Rafael pela paciência, compreensão e carinho constante em todo momento.

Aos amigos do curso de pós-graduação da PUC-Rio das turmas de 2008 a 2010, pela amizade e companheirismo.

Aos professores do curso de pós-graduação do departamento de Engenharia Civil da PUC-Rio pelos esclarecimentos, e aos funcionários do laboratório de Estruturas, pelo apoio e grande amizade.

À empresa Tecnosil – Sílica Ativa, pela doação da sílica ativa.

Á CAPES pela bolsa de estudos e a oportunidade para o desenvolvimento deste trabalho.

Noriega, Betzabet Evelin Vilavila; Guimarães, Giuseppe Barbosa. **Comportamento de Pilares Esbeltos de Concreto de Alta Resistência sob Flexão Composta Reta e Oblíqua.** Rio de Janeiro, 2011. 118p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Trata-se de um estudo experimental do comportamento de pilares de alta resistência submetidos à flexão composta reta e oblíqua. Foram ensaiados oito pilares com seção transversal de 25x15 cm e comprimento de 300 cm, compondo duas séries de 4 pilares cada uma. Na primeira série, a resistência do concreto foi de 40 MPa e os quatro pilares foram ensaiados à flexão composta oblíqua. Na segunda série, a resistência do concreto foi de 70 MPa e os quatro pilares foram ensaiados à flexão composta reta. Em cada série, a variável foi a taxa de armadura longitudinal que assumiu os valores 1,3%, 2,1%, 3,2% e 4,3%. A finalidade foi verificar os valores da excentricidade de segunda ordem que devem ser considerados no dimensionamento de pilares de concreto de alta resistência. Os resultados experimentais foram comparados com os obtidos pelos métodos do Pilar Padrão com Curvatura Aproximada e do Pilar Padrão com Rigidez Aproximada que constam na NBR 6118:2003. Essa comparação mostrou que o método da curvatura aproximada apresenta valores das excentricidades de 2ª ordem próximos dos reais no caso de pilares submetidos à flexão composta reta e oblíqua, enquanto que o método da rigidez aproximada é contra a segurança só na maioria dos ensaios de pilares submetidos à flexão composta reta.

Palavras-chave

Pilares esbeltos; concreto de alta resistência; flexo-compressão.

Abstract

Noriega, Betzabet Evelin Vilavila; Guimarães, Giuseppe Barbosa (Advisor). Behavior of Slender High Strength Concrete Columns under Uniaxial and Biaxial Eccentric Loads. Rio de Janeiro, 2011. 118p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents an experimental study of the behavior of slender high strength concrete columns under uniaxial and biaxial eccentric compression loads. Eight columns with cross-section of 15x25 cm and height of 300 cm were tested, divided into two series. In the first series, the concrete strength was 40 MPa and the four columns were tested under biaxial compression. In the second series, the concrete strength was 70 MPa and the four columns were tested under uniaxial compression. In each series, the variable was the longitudinal reinforcement ratio which assumed the values 1,3%, 2,1%, 3,2% e 4,3%. The objective was to verify the values of the eccentricity of second order that should be taken into account in the design of slender high strength concrete columns. The experimental results were compared with theoretical results obtained by the models of the approximated curvature and approximated stiffnes methods prescribed in the NBR 6118:2003 code. This comparison showed that the method of curvature approximate present values of the eccentricities of second order close to the real in the case of columns under uniaxial and biaxial eccentric compression loads, while the method of stiffness approximate is lower security in columns under uniaxial eccentric compression load.

Keywords

Slender columns; high strength concrete; eccentric compression.

Sumário

Lista de Símbolos	16
1 Introdução	19
1.1. Considerações iniciais	19
1.2. Objetivo	20
1.3. Estrutura do trabalho	20
2 Revisão Bibliográfica	21
2.1. Introdução	21
2.2. Pilares de concreto armado	21
2.3. Índice de esbeltez	21
2.4. Esbeltez limite λ_1	22
2.5. Classificação segundo a esbeltez	23
2.6. Determinação dos efeitos locais de 2ª ordem	23
2.6.1. Método geral	23
2.6.2. Método do pilar padrão com curvatura aproximada	24
2.6.3. Método do pilar padrão com rigidez k aproximada	25
2.6.4. Método do pilar padrão acoplado a diagramas M, N, 1/r	26
2.6.5. Método do pilar padrão para pilares com seção retangular	
submetidos à flexão composta oblíqua	26
2.7. Pesquisas sobre pilares de concreto armado	26
2.7.1. LLOYD e RANGAN (1996)	28
2.7.2. CLAESON e GYLLTOFT (1998)	31
2.7.3. LEE e SON (2000)	33
2.7.4. GALANO e VIGNOLI (2008)	35
2.7.5. PALLARES et al. (2008)	38
2.7.6. MELO (2009)	43
2.7.7. AGUIRRE (2010)	44
2.7.8. OLARTE (2010)	47
3 Programa Experimental	49
3.1. Considerações iniciais	49

3.2. Pilares ensaiados	49
3.2.1. Características geométricas e nomenclatura	49
3.2.2. Detalhamento das armaduras	50
3.3. Materiais utilizados	55
3.3.1. Cimento	55
3.3.2. Sílica ativa	55
3.3.3. Aditivo Superplastificante	55
3.3.4. Agregado miúdo	55
3.3.5. Agregado graúdo	56
3.3.6. Água	56
3.4. Propriedades dos materiais	57
3.4.1. Concreto	57
3.4.2. Aço	63
3.5. Moldagem dos pilares	64
3.5.1. Formas	64
3.5.2. Concretagem e cura	64
3.6. Instrumentação	65
3.7. Procedimento de realização dos ensaios	67
4 Apresentação e análise dos resultados	70
4.1. Modo de ruptura	70
4.2. Diagramas força – deformação	79
4.2.1. Pilares da série l	79
4.2.2. Pilares da série II	85
4.3. Diagramas força – deslocamento	89
4.3.1. Pilares da série l	90
4.3.2. Pilares da série II	93
4.4. Comparação entre resultados experimentais e teóricos	94
4.4.1. Excentricidades de 2ª ordem	94
5 Conclusões e sugestões	112
5.1. Conclusões	112
5.2. Sugestões para trabalhos futuros	113
6 Referências	114

Lista de Figuras

Figura 2.1 – Detalhes da seção transversal dos pilares ensaiados	
(LLOYD e RANGAN, 1996)	28
Figura 2.2 – Detalhes da seção transversal dos pilares ensaiados	
(CLAESON e GYLLTOFT, 1998)	31
Figura 2.3 – Esquema dos pilares ensaiados por LEE e SON (2000)	33
Figura 2.4 – Geometria e detalhamento da armadura	
(GALANO e VIGNOLI, 2008)	35
Figura 2.5 – Geometria e detalhamento da armadura	
(PALLARES et al., 2008)	38
Figura 2.6 – Geometria e detalhamento dos pilares (MELO, 2009)	43
Figura 2.7 – Geometria e detalhamento da armadura dos pilares	
(AGUIRRE, 2010)	45
Figura 2.8 – Detalhe da instrumentação dos pilares (AGUIRRE, 2010)	46
Figura 2.9 – Detalhe da instrumentação no aço e concreto localizada	
a meia altura dos pilares (OLARTE, 2010)	47
Figura 3.1 – Detalhe das armaduras dos pilares B 40-1,3 e U 70-1,3	51
Figura 3.2 – Detalhe das armaduras dos pilares B 40-2,1 e U 70-2,1	52
Figura 3.3 – Detalhe das armaduras dos pilares B 40-3,2 e U 70-3,2	53
Figura 3.4 – Detalhe das armaduras dos pilares B 40-4,3 e U 70-4,3	54
Figura 3.5 – Ensaios de caracterização do concreto	58
Figura 3.6 – Curva tensão-deformação do corpo de prova do pilar B40 – 1,3	59
Figura 3.7 – Curva tensão-deformação do corpo de prova do pilar B40 – 2,1	59
Figura 3.8 – Curva tensão-deformação do corpo de prova do pilar B40 – 3,2	60
Figura 3.9 – Curva tensão-deformação do corpo de prova do pilar B40 – 4,3	60
Figura 3.10 – Curva tensão-deformação do corpo de prova do pilar U70 – 1,3	61
Figura 3.11 – Curva tensão-deformação do corpo de prova do pilar U70 – 2,1	61
Figura 3.12 – Curva tensão-deformação do corpo de prova do pilar U70 – 3,2	62
Figura 3.13 – Curva tensão-deformação do corpo de prova do pilar U70 – 4,3	62
Figura 3.14 – Ensaio de resistência à tração do aço	63
Figura 3.15 – Diagrama tensão-deformação das barras de aço	63
Figura 3.16 – Posição da armadura na forma metálica	64
Figura 3.17 – Concretagem dos pilares	65

Figura 3.18 – Posicionamento dos extensômetros elétricos no concreto	
e aço da 1ª Série	65
Figura 3.19 – Posicionamento dos extensômetros elétricos no concreto	
e aço da 2ª Série	66
Figura 3.20 – Extensômetros elétricos colados na superfície de concreto	
e de aço	66
Figura 3.21 – Posicionamento dos transdutores de deslocamento nos	
pilares	67
Figura 3.22 – Desenho da montagem do ensaio da 1ª série	68
Figura 3.23 – Posicionamento do pilar com a excentricidade inicial e	
detalhe da rótula universal utilizada na 1ª série	68
Figura 3.24 – Desenho da montagem do ensaio da 2ª série	69
Figura 3.25 – Posicionamento do pilar com a excentricidade inicial da	
2ª série	69
Figura 4.1 – Fotografias do ensaio do pilar B40 – 1,3, após a ruptura	71
Figura 4.2 – Fotografias do ensaio do pilar B40 – 2,1, após a ruptura	72
Figura 4.3 – Fotografias do ensaio do pilar B40 – 3,2, após a ruptura	73
Figura 4.4 – Fotografias do ensaio do pilar B40 – 4,3, após a ruptura	74
Figura 4.5 – Fotografias do ensaio do pilar U70 – 1,3, após a ruptura	75
Figura 4.6 – Fotografias do ensaio do pilar U70 – 2,1, após a ruptura	76
Figura 4.7 – Fotografias do ensaio do pilar U70 – 3,2, após a ruptura	77
Figura 4.8 – Fotografias do ensaio do pilar U70 – 4,3, após a ruptura	78
Figura 4.9 – Diagrama força-deformação no pilar B40 – 1,3	80
Figura 4.10 – Diagrama força-deformação no pilar B40 – 2,1	80
Figura 4.11 – Diagrama força-deformação no pilar B40 – 3,2	81
Figura 4.12 – Diagrama força-deformação no pilar B40 – 4,3	81
Figura 4.13 – Distribuição de deformações na região central dos pilares	
da série l	82
Figura 4.14 – Distribuição de deformações na região central dos pilares	
da série l	83
Figura 4.15 – Esquema da posição das excentricidades totais no pilar	
B40 – 1,3	83
Figura 4.16 – Esquema da posição das excentricidades totais no pilar	
B40 – 2,1	84
Figura 4.17 – Esquema da posição das excentricidades totais no pilar	
B40 – 3,2	84

Figura 4.18 – Esquema da posição das excentricidades totais no pilar	
B40 – 4,3	85
Figura 4.19 – Diagrama força-deformação no pilar U70 – 1,3	86
Figura 4.20 – Diagrama força-deformação no pilar U70 – 2,1	86
Figura 4.21 – Diagrama força-deformação no pilar U70 – 3,2	87
Figura 4.22 – Diagrama força-deformação no pilar U70 – 4,3	87
Figura 4.23 – Distribuição de deformações na região central do pilar	
da série II	88
Figura 4.24 – Esquema do deslocamento transversal no pilar	90
Figura 4.25 – Diagrama força-deslocamento no pilar B40 – 1,3	91
Figura 4.26 – Diagrama força-deslocamento no pilar B40 – 2,1	91
Figura 4.27 – Diagrama força-deslocamento no pilar B40 – 3,2	92
Figura 4.28 – Diagrama força-deslocamento no pilar B40 – 4,3	92
Figura 4.29 – Diagrama força-deslocamento na região central do pilar	
da série II	93
Figura 4.30 – Métodos de cálculo para excentricidades de 2ª ordem	
da série l	95
Figura 4.31 – Comparação entre as excentricidades de 2ª ordem da série I	96
Figura 4.32 – Comparação entre as excentricidades totais da série I	96
Figura 4.33 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de PALLARES et al. (2008)	97
Figura 4.34 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de PALLARES et al. (2008)	98
Figura 4.35 – Comparação entre as excentricidades totais dos ensaios	
de PALLARES et al. (2008)	99
Figura 4.36 – Métodos de cálculo para excentricidades de 2ª ordem da	
série II	101
Figura 4.37 – Comparação entre as excentricidades de 2ª ordem	101
Figura 4.38 – Comparação entre as excentricidades totais	102
Figura 4.39 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de LLOYD e RANGAN (1996)	103
Figura 4.40 – Comparação entre as excentricidades totais dos ensaios	
de LLOYD e RANGAN (1996)	103
Figura 4.41 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de LLOYD e RANGAN (1996)	104

Figura 4.42 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de CLAESON e GYLLTOFT (1998)	104
Figura 4.43 – Comparação entre as excentricidades totais dos ensaios	
de CLAESON e GYLLTOFT (1998)	105
Figura 4.44 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de CLAESON e GYLLTOFT (1998)	105
Figura 4.45 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de LEE e SON (2000)	106
Figura 4.46 – Comparação entre as excentricidades totais dos ensaios	
de LEE e SON (2000)	106
Figura 4.47 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de LEE e SON (2000)	107
Figura 4.48 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de GALANO e VIGNOLI (2008)	108
Figura 4.49 – Comparação entre as excentricidades totais dos ensaios	
de GALANO e VIGNOLI (2008)	109
Figura 4.50 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de GALANO e VIGNOLI (2008)	110
Figura 4.51 – Comparação entre as excentricidades de 2ª ordem dos	
ensaios de AGUIRRE (2010)	110
Figura 4.52 – Comparação entre as excentricidades totais dos ensaios	
de AGUIRRE (2010)	111
Figura 4.53 – Métodos de cálculo para excentricidades de 2ª ordem dos	
ensaios de AGUIRRE (2010)	111

Lista de Tabelas

Tabela 2.1 – Resumo dos ensaios experimentais em pilares de concreto	
encontrados na bibliografia	27
Tabela 2.2 – Resultados dos ensaios de LLOYD e RANGAN (1996)	30
Tabela 2.3 – Resultados dos ensaios de CLAESON e GYLLTOFT (1998)	32
Tabela 2.4 – Resultados dos ensaios de LEE e SON (2000)	34
Tabela 2.5 – Resultados dos ensaios de GALANO e VIGNOLI (2008)	36
Tabela 2.6 – Resultados dos ensaios de PALLARES et al. (2008)	40
Tabela 2.7 – Resultados dos ensaios de MELO (2009)	44
Tabela 2.8 – Resultados dos ensaios de AGUIRRE (2010)	46
Tabela 2.9 – Resultados dos ensaios de OLARTE (2010)	48
Tabela 3.1 – Características dos pilares ensaiados	50
Tabela 3.2 – Análise granulométrica do agregado miúdo	56
Tabela 3.3 – Análise granulométrica do agregado graúdo	56
Tabela 3.4 – Traços dos concretos - Quantidades de materiais para 1m ³	57
Tabela 3.5 – Resistência à compressão do concreto	58
Tabela 3.6 – Propriedades mecânicas do concreto	58
Tabela 3.7 – Dados do módulo de elasticidade do concreto do pilar	
B40 - 1,3	59
Tabela 3.8 – Dados do módulo de elasticidade do concreto do pilar	
B40 - 2,1	59
Tabela 3.9 – Dados do módulo de elasticidade do concreto do pilar	
B40 - 3,2	60
Tabela 3.10 – Dados do módulo de elasticidade do concreto do pilar	
B40 – 4,3	60
Tabela 3.11 – Dados do módulo de elasticidade do concreto do pilar	
U70 – 1,3	61
Tabela 3.12 – Dados do módulo de elasticidade do concreto do pilar	
U70 – 2,1	61
Tabela 3.13 – Dados do módulo de elasticidade do concreto do pilar	
U70 – 3,2	62
Tabela 3.14 – Dados do módulo de elasticidade do concreto do pilar	
U70 – 4,3	62
Tabela 3.15 – Propriedades mecânicas do aço	63

Tabela 4.1 – Resultados gerais dos ensaios	70
Tabela 4.2 – Características dos pilares ensaiados da série I	82
Tabela 4.3 – Dados das excentricidades totais no pilar B40 - 1,3	83
Tabela 4.4 – Dados das excentricidades totais no pilar B40 – 2,1	84
Tabela 4.5 – Dados das excentricidades totais no pilar B40 – 3,2	84
Tabela 4.6 – Dados das excentricidades totais no pilar B40 – 4,3	85
Tabela 4.7 – Características dos pilares ensaiados da série II	89
Tabela 4.8 – Dados obtidos dos métodos de cálculo para os pilares	
da série l	94
Tabela 4.9 – Dados obtidos dos métodos de cálculo para os pilares	
da série II	100

Lista de Símbolos

Símbolos Romanos

Ac	Área de concreto da seção transversal de um pilar
As	Área da seção transversal da barra
b	Maior dimensão da seção transversal do pilar
d	Altura útil
ea	Excentricidade acidental
e ₁	Excentricidade de 1ª ordem
e ₂	Excentricidade de 2ª ordem
е	Resultante dos deslocamentos transversais nos eixos x, y
e _{total}	Excentricidade total (somas das excentricidades de 1ª ordem e 2ª
	ordem)
E _{cs}	Módulo de elasticidade secante do concreto
Es	Módulo de elasticidade do aço
f_{cd}	Resistência de cálculo à compressão do concreto
f _c	Resistência à compressão do concreto
f _{ct}	Resistência à tração por compressão diametral
fy	Tensão de escoamento do aço à tração
Fu	Força de ruptura no pilar
h	Altura da seção transversal na direção considerada
Н	Altura do pilar
I_c	Momento de inércia da seção transversal em relação ao eixo
	principal em torno do qual tem-se o momento fletor.
i	Raio de giração da seção transversal do pilar
l_e	Comprimento de flambagem
$M_A \in M_B$	Momentos solicitantes de 1ª ordem nos extremos do pilar
M_C	Momento de 1ª ordem no meio do pilar em balanço
$M_{1d,A}$	Valor de cálculo de 1 ^ª ordem do momento M_A
$M_{1d,min}$	Momento fletor mínimo de 1ª ordem
N_d	Força normal de cálculo
1/ <i>r</i>	Curvatura na seção crítica do pilar

Símbolos Gregos

$lpha_b$	Coeficiente
$\delta_{(L/2)}$	Deslocamento aproximado
$\delta_{T(L/2)}$	Deslocamento experimental
δ_{topo}	Deslocamento de corpo rígido no topo do pilar
3	Deformação específica
ε _c	Deformação especifica do concreto
ε _s	Deformação média das barras tracionadas
ε _{sc}	Deformação especifica da armadura longitudinal comprimida
ε _{st}	Deformação especifica da armadura longitudinal tracionada
ε _y	Deformação específica de escoamento do aço
φ	Diâmetro da barra da armadura
κ	Rigidez adimensional
λ	Índice de esbeltez
λ_1	Esbeltez limite
V	Força normal adimensional
ρ	Taxa geométrica de armadura longitudinal
σ	Tensão normal

Lista de abreviaturas

ABNT	Associação Brasileira de Normas Técnicas
ACI	American Concrete Institute
ASCE	American Society of Civil Engineering
В	Pilar à flexo-compressão biaxial (Flexão composta oblíqua)
CA	Método do pilar padrão com curvatura calculada
CA-NBR	Método do pilar padrão com curvatura aproximada da NBR
	6118:2003
CAR	Concreto de Alta Resistência
CEB	Euro-International Committee for Concrete
E-C	Extensômetros de resistência no concreto
E-A	Extensômetros de resistência no aço
FIP	International Federation for Prestressing
LEM-DEC	Laboratório de Estruturas e Materiais do Departamento de
	Engenharia Civil
NBR	Norma Brasileira Registrada
PUC-RJ	Pontifícia Universidade Católica do Rio de Janeiro
RA-NBR	Método da rigidez aproximada da NBR 6118:2003
U	Pilar à flexo-compressão uniaxial (Flexão composta reta)
UnB	Universidade de Brasília
USP	Universidade de São Paulo