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$EVWUDFW

In this paper the extension of Wiener-Hopf design to irrational transfer functions is investigated.

Infinite-dimensional servomechanisms are considered. A spectral factorization theorem and an

optimization result are showed conditioned by the necessity to have a bounded Youla’s parameter, i.e., an

optimal Youla’s parameter in the Hardy class ∞
+H . Some ideas are presented to solve this last problem by

the use of an auxiliary constrained optimal control problem.

.H\ZRUGV: Irrational transfer functions, Infinite-dimensional systems, Servomechanisms, Wiener-Hopf

optimal design, Weighted Hardy spaces.

______________________________________________________________________

���,QWURGXFWLRQ

Wiener-Hopf design, following Youla’s terminology, do not fit easily in H2

optimal control problems on infinite-dimensional linear systems with irrational transfer

functions because the optimal parameter should belong to ∞
+H  (Smith, 1989),

(Oostveen, 1999) and quadratic functionals are naturally defined on weighted 2H +

spaces (Da Silveira & Ades, 2000). Finite-dimensional linear systems, with rational

transfer functions, do not have this problem because rational functions in 1,2H −
+

necessarily belong to ∞
+H . This paper investigates this problem introducing some

conditions on the optimal control problem such that the Youla parameter belongs to

∞
+H . The weighted Hardy spaces are used as a tool for this investigation.
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Youla and his co-workers (Youla, Jabr & Bongiorno Jr, 1976) introduced Wiener-

Hopf optimal design on finite-dimensional linear systems. They differ from the usual

LQG problems because the optimization is on the stabilizing controllers set,

parameterized by real-rational proper stable matrices. From these initial works several

results and methods were developed, working also with controllers solving the

servomechanism problem and with special criteria fitting the transitory behavior of the

controlled system: see (Youla & Bongiorno, 1985), (Park & Bongiorno, 1989), (Park &

Bongiorno, 1990), (Da Silveira & Corrêa, 1992), (Corrêa & Da Silveira, 1995), (Zhuo,

Doyle & Glover, 1996), (Corrêa, Sales & Soares, 1997), (Da Silveira & Ades, 1998),

(Da Silveira & Ades, 2000), (Xie, Xue & Tso, 2000), and the references therein. The

extension to infinite-dimensional systems begins with some works relating coprime

factorizations on ∞
+H  and the description of the stabilizing controller set: see (Smith,

1989), (Curtain & Zwart, 1995) and its references. In spite of many results on the LQ

optimal control problems by the use of suitable Riccati equations – (Lions, 1971),

(Curtain & Pritchard, 1978), (Curtain & Zwart, 1995), (Oostveen, 1999), for instance –

early Wiener-Hopf methods were not extended to irrational transfer functions.

In the second section a typical infinite-dimensional Wiener-Hopf (or a H2) optimal

control problem will be presented, extending the ideas of (Corrêa & da Silveira, 1995)

and (Xie et al., 2000) to the infinite-dimensional setting. The problem of asymptotic

tracking with known dynamics for finite-dimensional inputs and stochastic disturbance

rejection will be considered. The criterion will select a controller achieving good

transitory properties. In section three the weighted Hardy spaces, theirs properties and

some of their relations with the ∞+H  setting will be presented. In section four a spectral

factorization theorem will be presented, which will be needed to solve the optimal

control problem proposed in section 2. In the fifth section Wiener-Hopf methods (in the
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sense of Youla) will be investigated for infinite-dimensional linear systems in the light

of the tools presented in previous sections. Another approach to solve the same problem

via a constrained optimal control problem will be discussed in section six. The last

section will present some conclusions and open problems.

1RWDWLRQV: Let  and  denote the real numbers and the complex number sets,

respectively, +={s∈ ∴5H{s}>0}, -={s∈ ∴5H{s}<0}. The usual euclidean norm on

n will be denoted by ||x|| . 2L  denotes the class of bounded quadratic norm functions

on the imaginary axis with, ∞L  the class of essential bounded functions on the

imaginary axis, 2H +  the usual Hardy class of analytic functions in + with bounded

quadratic norm in any vertical line in +, 2H −  the corresponding space obtained by

changing + by -.

The norm and the inner product in 2L  will be denoted by 2||f||  and <f,g>,

respectively. The norm on ∞L  will be denoted by ∞||f|| . Remember that 2L = 2H + + 2H − ,

these two sub-spaces being orthogonal (Hoffmann). ∞
+H  is the usual space of functions

analytic on + which are bounded on each vertical line in + (Hoffmann, 1962). This

space can be viewed as a subspace of ∞L . 1L  will denote the space of integrable

functions on the imaginary axis, with norm given by 1||f|| .

0[;] will denote the set of matrices with entries in ;. If A is a matrix, AT denotes

its transpose, det{A} its determinant, Tr{A} its trace. A≥0 means that the matrix A is

hermitian non-negative, A>0 denotes that A is also definite positive. If F(s) is a matrix

function, F~(s) = FT(-s). A para-hermitian matrix is a functional matrix F(s) such that

F~(s)=F(s).



Wiener-Hopf Design for Irrational Matrices - 5

The symbol )s(f̂  denotes the Laplace transform of a function f(t). If f(s) is a

rational function, ∂r(f) denotes the relative degree of f(.), i.e. the difference between the

degree of its denominator from the degree of its numerator. If K, A, B are matrices,

column{K} denotes the stacking of K-rows, A⊗B the Kronecker product of A and B.

With these notations, Tr{AB} = Tr{BA}, column{AKB} = A⊗B(column{K}). E{.}

will denote the mathematical expectance of its argument and [p] the integer part of a

real number p.

���+��RSWLPDO�FRQWURO�SUREOHPV�IRU�LQILQLWH�GLPHQVLRQDO�OLQHDU�V\VWHPV

Let a time-invariant linear system be described by:

)t(x&  = $x(t)+%u(t)+(v(t), x(0)=xo,

  y(t) = &x(t)+'u(t)+)v(t),

where x(t)∈;, u(t)∈ m, y(t)∈ n, v(t)∈ m, when ; is a separable Hilbert space. The

operator $ on ; generates a C0-semigroup of bounded operators T(t), % is a bounded

operator from m to ;, ( is a bounded operator from m to ;, & is a bounded operator

from ; to n, ' and ) are nxm real matrices. Here x(t) denotes the state variable, u(t)

the control variable, v(t) a disturbance signal and y(t) the measured output.

Assume that the transfer-functions

G(s) = &(sI-$)-1%+', G’(s) = &(sI-$)-1(+)

are well-posed (i.e., analytic in some right half-plane) (Curtain & Zwart, 1995), that

G(s) has a right-coprime and a left-coprime factorizations on ∞
+H :

G(s) = N(s)D-1(s) = )s(N
~

)s(D
~ 1− ,
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N(s), D(s), )s(N
~

 and )s(D
~

 being nxm, mxm, nxm, nxn ∞
+H  matrices, D(s) and )s(D

~

invertible (also at s=∞), and that G’(s) has the same property:

G’(s) = M(s)D-1(s) = )s(M
~

)s(D
~ 1− ,

M(s) and )s(M
~

 being pxm ∞
+H  matrices.

By convenience, it will be developed here only the robust asymptotic tracking

problem for one-parameter controllers with a quadratic criterion on transient

performance and disturbance attenuation. The theory of the complete servomechanism

problem for four-block linear systems and two-degree-of-freedom controllers,

considering asymptotic tracking and disturbance and sensor noise asymptotic rejection,

can be developed extending the results shown here, following (Da Silveira & Corrêa,

1992).

For the asymptotic tracking problem, let the reference signals r(t) be in the class of

signals with Laplace transform given by )s(r̂ = )s()s(1
r µΨ − , Ψr(s) a stable, biproper and

invertible rational matrix with all its zeroes out of the stability region, µ(s) any strictly

proper and stable rational matrix. The choice of µ(s) will fix the specific reference

signal to be tracked. For the disturbance attenuation problem, assume v(t) a wide-sense

stationary stochastic process with zero-mean and power density spectra φv(iω), a real-

rational strictly proper matrix such that φv(iω)=[φv(-iω)]T, i.e., para-hermitian. One-

parameter controllers solving the robust asymptotic tracking are described by:

)],s(ŷ)s(r̂)[s(H)s(û −=

)s(N
~

)]s()s(D
~

[)s(H c
1

rc
−ϕ= ,
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when H(s) internally stabilizes the closed control loop. Here, )s(N
~

c  and )s(D
~

c  are

mxm and mxn ∞
+H  matrices with )s(D

~
c  invertible (also at s=∞), ϕr(s) is the maximum

invariant factor of Ψr(s).

1RWDWLRQ: By convenience, the argument "s" will be dropped in the sequel when there is

no chance of ambiguity.

The existence of such controllers is equivalent to the existence of mxm and mxp

∞
+H  matrices, Y and X, solving the diophantine equation:

Y(ϕrD)+XN=I

(see the Appendix). Note that

N(ϕrD)-1 = N
~

)D
~

( 1
r

−ϕ .

The right-coprimeness of (ϕrD,N) means exactly the existence of such X, Y. Actually,

the existence of such controller needs to be verified for each particular system.

Meanwhile, for finite-dimensional systems, exponentially stabilizable systems (Curtain

& Zwart, 1995) and collocated infinite-dimensional systems (where C = B*) (Oostveen,

1999) it is possible to show some general conditions for the existence of such

controllers.

With these assumptions and applying some stabilizing results from (Curtain,

Weiss and Weiss, 2001), all one-parameter controllers stabilizing the linear system and

solving the asymptotic tracking problem considered here are given by:

H(s) = c
1

rc N
~

]D
~

[ −ϕ  = )D
~

LX(])N
~

LY[( r
1

r ϕ−ϕ+ − ,

for any mxn ∞
+H  matrix L(s) such that the controller is well posed. In (Da Silveira &

Corrêa, 1992), (Corrêa & Da Silveira, 1995) and (Xie et al., 2000) there are sets of

conditions to solve this problem when the linear system is finite-dimensional. All the

∞
+H  matrices are being real-rational proper and stable matrices.
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Closing the loop and defining the tracking error (when v(t)≡0) by e(t) = r(t)-y(t), it

is easy to verify that the proposed controller solves the robust asymptotic tracking

problem (see the Appendix), when:

)s(ê  = )s(r̂)s()s(D
~

)s(D rc ϕ  = )s()s(R)s(D
~

)s(D c µ ,

)s(û  = )s(r̂)s(N
~

)s(D c ,

where R(s) = ϕr(s) )s(1
r
−Ψ , a stable biproper real-rational matrix.

Extending a result from (Corrêa, da Silveira), define the filtered error by:

)s(e~  = W(s) )s(ê ,

where W(s) is a real-rational stable and strictly proper matrix without zeroes on the

imaginary axis. From a known result on Fourier transform (Rudin, 1966),

||)t(e~||sup k
0t≥

 ≤ 1ck ||)s()s(R)]s(D
~

)s(D)[s(W|| µ

≤ 1jjck
j

||)]s()s(R[)]s(D
~

)s(D)[s(W|| µ∑

≤ ∑ µ
j

2j2jck }||)]s()s(R[||||)]s(D
~

)s(D)[s(W{||

≤ 22kc ||)s()s(R||||)]s(D
~

)s(D)s(W[|| µ ,

where [Θ]k denote the kth row of the matrix Θ and the Cauchy-Schwarz inequality was

used in the two last lines. Therefore,

2
2k

0t
||)t(e~||sup

≥
 = ∑

≥ k

2
k

0t
||)t(e~||sup  ≤ 2

k
k 0t

||)t(e~||sup∑
≥

≤ {∑ µ
k

2
2

2
2kc ||)s()s(R||}||)]s(D

~
)s(D)s(W[||

= 2
2

2
Fc ||)s()s(R||||)s(D

~
)s(D)s(W|| µ ,

where
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2
F||)s(Z||  = ∫

∞

∞−

ωωω d)}i(H)i(H{Tr ~

(the Frobenius norm) and H~(s) = HT(-s). Thus, it can be seen that the term

2
Fc ||)s(D

~
)s(D)s(W||  has a bearing on the magnitude of the error signal in the time

domain, as it was verified for finite-dimensional systems (Corrêa & Da Silveira, 1995).

To reflect the magnitude of the control signals u(t) it will be used the suggestion

of (Xie et al., 2000), i.e., the Frobenius norm of the transfer function from r(t) to u(t),

also filtered by a real-rational stable and strictly proper filter denoted by V(s):

2
Fc ||)s(N

~
)s(D)s(V|| .

To minimize the stochastic disturbance influence note that when v≠0:

v̂MDN
~

Nr̂N
~

Nŷ 1
cc

−−= .

Whence, the mean quadratic error originated from the disturbance can be measured by:

}||vMDN
~

N{||E 2
F

1
c

−  = ∫
∞

∞−
ω=

−− ωφ d]}MDN
~

N[]MDN
~

N[{Tr is
1

c
~1

cv .

By simplicity, assume M=D, i.e. v(t) affects all the state components.

Now, recalling that N
~

LYD
~

c +=  and D
~

LXN
~

rc ϕ−= , a criterion for a quadratic

optimal control problem can be defined summing all the three presented terms, which

gives:

J[L] = ∫
∞

∞−
ω= ω++ d)]}N

~
LY(WD[)]N

~
LY(WD{[Tr is

~

+ ∫
∞

∞−
ω= ωϕ−ϕ−ρ d)]}D

~
LX(VD[)]D

~
LX(VD{[Tr isr

~
r

+ ∫
∞

∞−
ω= ωϕ−ϕ−φµ d)]}D

~
LX(N[)]D

~
LX(N[{Tr isr

~
rv ,

for ρ and µ non-negative real numbers (weighting coefficients).
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By the use of the trace and Kronecker product properties cited in the first section,

the criterion J[L] can be written as:

J[K] = ∫
∞

∞−
ω= ωγ−Γ d)}s()s(K2)s(K)s()s(K{ is

~~  + J[0],

where K = column{L} and:

Γ = [(D~W~WD)⊗( N
~

N
~ ~)]+ρ[(D~V~VD)⊗( D

~ ϕr(ϕr)
~ D

~ ~)]+

+µ[(N~N)⊗( D
~ ϕrφv(ϕr)

~ D
~ ~)

γ(s) = column{ρ(D~V~VDX(ϕr)
~ D

~ ~)-(D~W~WDY N
~ ~)+µ(N~NX(ϕr)

~φv D
~ ~)}.

From this definition we can see, by inspection, that Γ~=Γ. Moreover, Γ = ΛΘ,

where Λ is a real-rational para-hermitian (Λ~=Λ) and strictly proper matrix with relative

degree greater than or equal to 2, i.e, (1+s2)pΛ(s) is biproper for some p≥1. Indeed, this

is a consequence of the presence of W~W, V~V or φv in the terms defining Γ. All the

other matrices are in 0[ ∞L ], as ∞
+H  matrices or its para-conjugates, which implies that

Γ(iω)∈0[ ∞L ] and (1+ω2)pΓ(iω)∈0[ ∞L ] for some p ≥1.

Reasoning as in the proof of Proposition 1 in (Corrêa & da Silveira, 1995), which

is presented in (Corrêa & Da Silveira, 1993), proves that Γ(iω) has zeroes on the

imaginary axis only and exactly at D~(iω)D(iω) zeroes. The argument uses the non-

negativeness of the three terms in Γ definition and the coprimeness of the pair

( N
~

,D
~ ϕr). Therefore, if D(s) has no zeroes on the imaginary axis, Γ(iω) will have no

zeroes in this set. If Γ(iω) is continuous this implies that det{(1+ω2)pΓ(iω)} ≥ε>0. In

general, if we know only that Γ(iω)∈0[ ∞L ], this last property is not warranted and it

needs a particular verification.
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New terms can be added to the criterion to allow plant poles on the imaginary

axis, as discussed in (Da Silveira & Corrêa, 1992) or such that p=0. In the last case,

L∈0[ 2H + ], as it will be show in section 5.

Analogously to Γ(iω), it can be shown that γ(iω)∈0[ ∞L ] and

(1+ω2)pγ(iω)∈0[ ∞L ], for which the presence of  W~W, V~V or φv in the terms defining

γ(iω) is essential.

The criterion J[K] defined above is only an example of functional appearing on

optimal quadratic control problems. Also, the control problem considered in this paper

is only an example between another interesting control problems. Our choice tries to

grasp the principal features of these problems in relation to the solvability of quadratic

optimal control problems for infinite-dimensional systems.

���:HLJKWHG�+DUG\�VSDFHV

The purpose of this section is to collect some facts about the weighted 2L  and

Hardy spaces to be used later in this paper. All results are slightly adaptations of results

that can be found in (Hoffman, 1962), (Aubin, 1977) and (Da Silveira & Ades, 2000).

'HILQLWLRQ�� – For p∈ , the weighted L2 spaces on i are defined by:

p,2L  = {f(.):i ∴f(i ω)(ω2+1)p/2∈ 2L } = {f(.):i ∴f(iω)(iω+1)p∈ 2L }.

These spaces are Hilbert spaces with inner product and norm given by:

pg,f 〉〈  = ∫
∞

∞−
ωω+ωω d)i(g)1)(i(f p2 , p,2||f||  = pf,f 〉〈 ,

respectively. When p=0 we recognize the usual 2L  space on i . The corresponding

weighted (quadratic) Hardy spaces are defined by:

p,2H +  = {f(.): +  analytic in + ∴ f(σ+iω)∈ p,2L  for any σ>0},
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p,2H −  = {f(.): -  analytic in + ∴ f(σ+iω)∈ p,2L  for any σ<0}.

When p=0 we recognize the usual quadratic Hardy spaces 2H +  and 2H − .

)DFW�� - p,2H +  and p,2H −  can be identified to closed subspaces of p,2L  with the same inner

product and norm. Moreover, p,2L = p,2H + + p,2H − , the sum being orthogonal if p≥0.

1RWDWLRQV - [f]p,+ and [f]p,- will denote the projections of a function f(.)∈ p,2L  in p,2H +

and in p,2H − , respectively. By the use of the identification above, we will say that

f(.)∈ p,2L  if and only if (s+1)pf(.)∈ 2L  and f(.)∈ p,2H +  if and only if (s+1)pf(.)∈ 2H + , with

p,2||f|| = 2
p ||)s(f)1s(|| + . Also, a analytic function (or matrix) in + with no poles on the

imaginary axis will be called stable.

A rational function f(s) belongs to p,2L  if and only if it has no poles on the

imaginary axis and ∂r(f)≥[p]+1≥p+1, where [p] denotes the integer part of the real p and

∂r(f) denotes the relative degree of f(.).

)DFW�� – The set of real-rational functions with no poles on the imaginary axis and with

∂r(f)≥[p]+1≥p+1 is dense in p,2L . The set of stable (i.e. analytic in + with no poles on

the imaginary axis) real-rational functions with ∂r(f)≥[p]+1≥p+1 is dense in p,2H + .

)DFW�� – p,2L  and p,2H +  are isometric to q,2L  and q,2H + , respectively, for any p, q. Such

isometry is given by f(s) (s+1)q-pf(s). Moreover, f(s)∈ p,2H +  if and only if

(s+1)q-pf(s)∈ q,2H + .

This last fact shows that p,2L  and p,2H +  constitute chains of spaces: if p>q>0,

p,2L  ⊂ q,2L  ⊂ 2L  ⊂ q,2L −  ⊂ p,2L −

and

p,2H +  ⊂ q,2H +  ⊂ 2H +  ⊂ q,2H −
+  ⊂ p,2H −

+ .
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Note that the topology on p,2L  is stronger than that on q,2L  if p>q. Also, each space in

these chains is dense in the subsequent, and p,2H −
+  is identifiable (as a Hilbert space) to

the dual space of p,2H + .

Some relations between ∞L , ∞
+H  and p,2L , p,2H +  will be used.

)DFW� � - ∞
+H ⊂ 1,2H −

+ , the topology in ∞
+H  being stronger than that on 1,2H −

+ . Also,

bounded and closed subsets in ∞
+H  are also bounded and closed as 1,2H −

+  subsets. See

(Da Silveira & Ades, 2000) for a proof.

)DFW�� – 2H + ∩ ∞L ⊂ ∞
+H .

���$�VSHFWUDO�IDFWRUL]DWLRQ�WKHRUHP

Now, a spectral factorization result to be used in the sequel will be presented.

7KHRUHP�� – Let Γ(.) be a mnxmn functional matrix on the imaginary axis such that

Γ(iω)=Γ~(iω) and Γ(iω)≥0. Assume also that, for some p≥0, there are real numbers ε

and δ such that 0<ε≤det{Γ(iω)(1+ω2)p} ≤δ almost everywhere (which means

Γ(iω)(1+ω2)p∈0[ ∞L ] and Γ-1(iω)(1+ω2)-p∈0[ ∞L ]). Then there is a mnxmn functional

matrix Φ(s) with the following properties:

(a) Γ(iω)=Φ~(iω)Φ(iω) almost everywhere on the imaginary axis;

(b) Φ(s)(1+s)p∈0[ ∞
+H ] and Φ-1(s)(1+s)-p∈0[ ∞

+H ]:

(c) Φ(s)∈0[ 1p,2H −
+ ] and Φ-1(s)∈0[ 1p,2H −−

+ ].

Any two such matrices are related by right multiplication by an orthogonal constant

matrix.

Proof: Theorem 1.3, page 204, in (Caines, 1988), says that, if Θ(eiθ), θ∈[0,2π], is

a nxn matrix verifying Θ(eiθ)~= Θ(e-iθ) with Θ(eiθ)≥0 and Θ(eiθ), Θ-1(eiθ)∈0[ ∞L ] (on the
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unity circle), there exists a nxn matrix Z(z)∈0[ ∞H ] (on the unity disk) which satisfies

Z-1(z) ∈0[ ∞
+H ] (on the unity disk) and Z(eiθ)ZT(e-iθ) = Θ(eiθ) almost everywhere for

θ∈[0,2π].

Now, define:

F(iω) = )
i1

i1
(

ω+
ω−Θ , G(s) = )

s1

s1
(Z

+
−

.

This transformation being a Banach isomorphism from the space ∞H  on the unitary

disk to ∞
+H  (on +), the transposed version of this theorem applies with F(iω) and

F-1(iω) in 0[ ∞L ], G(s)∈0[ ∞
+H ], G-1(s)∈0[ ∞

+H ], G~(iω)G(iω)=F(iω).

Define F(iω) = (1+ω2)pΓ(iω) and Φ(s) = (1+s)-pG(s). The assumptions on Γ(iω)

implies the assumptions just above on F(iω), and then:

Γ(iω) = F(iω)(1+ω2)-p = (1-iω)p G~(iω)G(iω)(1+iω)p = Φ~(iω)Φ(iω),

with Φ(s)(1+s)p, Φ(s)-1(1+s)-p in 0[ ∞
+H ] (on +), proving statements (a) and (b).

Statement (c) is a consequence of the two implication chains below:

(i) Φ(s)(1+s)p∈0[ ∞
+H ] ⇒ Φ(s)(1+s)p(1+s)-1∈0[ 2L ] ⇒ Φ(s)∈0[ 1p,2H −

+ ];

(ii) Φ-1(s)(1+s)-p∈0[ ∞
+H ] ⇒ Φ-1(s)(1+s)-p(1+s)-1∈0[ 2L ] ⇒ Φ-1(s)∈0[ 1p,2H −−

+ ].

���+��SUREOHP�IRU�LUUDWLRQDO�PDWULFHV

In this section the quadratic functional arising in the H2 problem described in the

second section will be minimized with calculations similar to those in (Da Silveira &

Corrêa, 1992). The factorization in Theorem 1 allows us to write the functional as:

J[K] = ∫
∞

∞−

ωωγω−ωωΓω d)}i()i(K2)i(K)i()i(K{Tr ~~

= 2
2||K|| Φ  - 2 〉γΦΦ〈 −1~ )(,K ,
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Then, J[K] is finite only if ΦK∈0[ 2L ] and (Φ~)-1γ∈0[ 2L ].

If K∈0[ p,2H −
+ ], ΦK = [Φ(1+s)p][(1+s)-pK]∈0[ 2L ] because the first parcel

belongs to 0[ ∞
+H ] (by Theorem 1) and the second to 0[ 2L ] (by the p,2H −

+  definition). If

γ∈0[ p,2L ], the same arguments show that (Φ~)-1γ = [(Φ~)-1(1-s)-p][(1-s)pγ]∈0[ 2L ].

Note that, if γ∈0[ p2,2L ], this argument shows that (Φ~)-1γ∈0[ p,2L ]. These

considerations prove the next result.

/HPPD�� – Under Theorem 1 assumptions, γ∈0[ p,2L ] implies J[K]<∞ on 0[ p,2H −
+ ].

As (Φ~)-1γ∈0[ 2L ], then (Φ~)-1γ = [(Φ~)-1γ]0,++[(Φ~)-1γ]0,-, where the first term is

in 0[ 2H + ] and the second in 0[ 2H − ]. Whence,

J[K] = 2
2||K|| Φ  - 2 〉γΦ+γΦΦ〈 −

−
+

−
,0

1~
,0

1~ ])[(])[(,K

= 2
2||K|| Φ  - 2 〉γΦΦ〈 +

−
,0

1~ ])[(,K ,

because the unstable term in 0[ 2H − ] is orthogonal to ΦK∈0[ 2H + ]. Completing squares,

J[K] = 2
2||K|| Φ  - 2 〉γΦΦ〈 +

−
,0

1~ ])[(,K  + 2
2,0

1~ ||])[(|| +
− γΦ  - 2

2,0
1~ ||])[(|| +

− γΦ

= 2
2,0

1~1 ||}])[(K{|| +
−− γΦΦ−Φ  - 2

2,0
1~ ||])[(|| +

− γΦ .

Now, K̂  = Φ-1[(Φ~)-1γ]0,+ = {Φ-1(1+s)-p}{(1+s)p[(Φ~)-1γ]0,+}∈0[ p,2H −
+ ] because

the first term in brackets belongs to 0[ ∞
+H ] and the second to 0[ p,2H −

+ ]. This implies

J[ K̂ ]<∞.

If γ∈0[ p2,2L ] and p≥0, then (Φ~)-1γ belongs to p,2L ⊂ 2L  and can be projected in

p,2H + . Whence K̂ =Φ-1[(Φ~)-1γ]p,+ = {Φ-1(1+s)-p}{(1+s)p[(Φ~)-1γ]p,+}∈0[ 2H + ].

Analogously, if γ∈0[ 1p2,2L − ], then K̂ ∈0[ 1,2H −
+ ].
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But K̂  should belong to 0[ ∞
+H ]⊂0[ 1,2H −

+ ], a stronger statement. For that, from

the above calculations, it is sufficient that (1+s)p[(Φ~)-1γ]0,+}∈0[ ∞
+H ]. This condition

will be taken as an assumption in the next theorem.

7KHRUHP� � – Let p≥0 and the assumptions of Theorem 1 verified. Assume also

γ∈0[ p,2L ] with (1+s)p[(Φ~)-1γ]0,+∈0[ ∞
+H ]. Therefore K̂  = Φ-1[(Φ~)-1γ]0,+ minimizes

J[K] on 0[ p,2H −
+ ] with K̂ ∈0[ ∞

+H ].

The last assumption is problematic. Actually, by the definition of p,2H +  and Fact 5,

we need only that [(Φ~)-1γ]0,+∈0[ p,2H + ∩ ∞L ]. But (Φ~)-1γ∈0[ ∞L ] does not imply that

the functional matrix [(Φ~)-1γ]0,+ is bounded on the imaginary axis. An open problem is

to find particular classes of problems where this last property is verified.

Theorem 2 assumptions can be simplified in some situations.

&RUROODU\�� – If γ∈0[ p2,2L ] with (1+s)p[(Φ~)-1γ]p,+∈0[ ∞L ], then

K̂ =Φ-1[(Φ~)-1γ]p,+∈0[ ∞
+H ].

Proof - If γ∈0[ p2,2L ], (Φ~)-1γ∈0[ p,2L ], then [(Φ~)-1γ]p,+∈0[ p,2H + ]. Now,

(1+s)p[(Φ~)-1γ]0,+∈0[ 2H + ∩ ∞L ]⊂0[ ∞
+H ] by the p,2H +  definition and Fact 5. Therefore,

K̂ ∈0[ ∞
+H ].

&RUROODU\�� – If p=0, γ∈0[ 2L ] and [(Φ~)-1γ]0,+∈0[ ∞L ], then K̂ ∈0[ ∞
+H ].

Proof – For p=0, K̂ ∈0[ 2H + ]. By the assumptions and from Fact 5, Φ-1∈0[ ∞
+H ]

and [(Φ~)-1γ]0,+∈0[ ∞
+H ], which implies K̂ ∈0[ ∞

+H ].

Actually, if we change, in Theorem 1 assumptions, 0[ ∞
+H ] by 0[ 1,2H −

+ ] and

0[ ∞L ] by 0[ 1,2L − ], then K̂ ∈0[ 1,2H −
+ ] (Da Silveira, 2001). But this conclusion is not

sufficient to have the Youla parameters in ∞
+H .
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���$QRWKHU�DSSURDFK��FRQVWUDLQHG�RSWLPL]DWLRQ�SUREOHPV�

Another approach to this question is to minimize J[K] under a constraint on the

∞
+H  norm of the Youla parameter K. Explicitly, solve a new problem: find K

(
∈0[ ∞

+H ]

such that

J[ K
(

] = inf J[K] for K∈Ω(λ),

where Ω(λ)={K(.)∈0[ ∞
+H ]∴ ∞||K|| ≤λ} is a 0[ ∞

+H ] closed ball centered in the origin,

for a sufficiently big real number λ. Here, ∞||K|| = max{[ ∞||]K[|| k , k=1,...,mn}, [K]k

being the kth entrie of the functional vector K. If the original problem has a solution K̂

with λ≥ ∞||K̂|| , then K̂  equals K
(

. Therefore, K
(

 solves the original problem.

This approach is based on the next theorem.

7KHRUHP�� – Under the assumptions of Theorem 1 and if p≥1, there is one and only one

K
(

∈0[ ∞
+H ] minimizing the criterion J[K] above on Ω(λ)={K ∈0[ ∞

+H ]∴ ∞||K|| ≤λ}, for

each λ≥0.

Proof – Assumptions on Theorem 1 imply that the functional J[K] is continuous in

0[ p,2H −
+ ], as it is shown in the proof of Theorem 2 (da Silveira, Ades). Also, J[K] is a

strictly convex functional in this space. If p≥1, ∞
+H ⊂ p,2H −

+  and Ω(λ), a bounded closed

convex subset of 0[ ∞
+H ], is also a bounded closed convex subset of 0[ p,2H −

+ ] by Facts

3 and 4. Then, Theorem 1.4.1 from (Balakrishnan, 1976), page 9, implies the statement.

Presently we only know how to obtain approximations for K
(

 by Gallerkin

methods (Da Silveira & Ades, 2000) and by a dual method (Corrêa et. al., 1997). An

attentive reading of the former paper shows that the proposed method do not need

rational matrices in the definition of the criterion, but only the possibility to project the

infinite-dimensional equations on the finite-dimensional spaces used therein. The
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knowledge of Φ(s) and γ(iω) is sufficient for these calculations. The convergence of this

algorithm was proved in the same paper, stronlgy on p,2H −
+  and weakly on ∞

+H . The

algorithm can be applied here without changes if the constraint is assumed active

( ∞||K|| =λ), or, with some easy generalizations, for inequality constraints ( ∞||K|| ≤λ).

The dual method from (Corrêa et al., 1997) can be also applied to the problem,

furnishing an estimation to the approximation error in terms of the criterion values. This

dual method necessarily assumes equality constraints (∞||K|| =λ).

The use of both methods allows to find a real interval [a,b] such that J[K
(

]∈[a,b],

i.e., an estimation for the optimal criterion value. The lowest value “a” is determined

from the dual method and the greater value “b” is determined by the Gallerkin method.

It will be useful to prove that the solution for the constrained problem in Ω(λ)

belongs to its ∞
+H -boundary if the unconstrained solution K̂  is in the exterior of Ω(λ),

i.e., ∞||K̂|| >λ. For that we will used a Lemma proved in (Corrêa et. al., 1997). The

proof presented here will clarify the geometry of this problem.

/HPPD�� - If ∞||K̂|| >λ the solution K
(

 for the constrained problem on Ω(λ) verifies

∞||K||
(

=λ.

Proof – Consider the line segment defined by K=(1-τ) K
(

+τ K̂ , τ∈[0,1] a real

number. By assumption, K
(

 (τ=0) belongs to Ω(λ) and K̂  (τ=1) is in its exterior. As

Ω(λ) is closed and convex, its trace on this one-dimensional segment is a closed real

interval, say τ∈[0,e]⊂ . The quadratic criterion defines a real quadratic function on the

segment, J[τ] = J[(1-τ) K
(

+τ K̂ ]. Now, this real function has its minimum in the whole

segment at τ=1, by assumption. Therefore, the criterion minimum on the constrained
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segment [0,e] is at the point corresponding to τ=e, say K =(1-e) K
(

+e K̂ . Then, K = K
(

.

But ∞||K|| =λ, which proves the Lemma.

Now, we will use this Lemma to verify if the approximation obtained by the

Gallerkin method approaches the unconstrained problem solution K̂ . For that, solve the

constrained problem for Ω(η), η>λ. If the criterion value interval associated to the

problem in Ω(η) is [c,d] with [c,d]⊂[a,b], c>d, then the unconstrained problem solution

K̂  has a ∞
+H  norm lower than η. Indeed, if K̂  is exterior to Ω(η), the solution of the

constrained problem has a norm exactly equal to η by Lemma 2. But we have here the

opposite. This implies that this optimal solution is the unconstrained solution. In other

words, ∞||K||
(

<η implies K
(

= K̂  with K̂ ∈0[ ∞
+H ].

If η is not sufficiently big, the procedure follows by the choice of a bigger value

for this parameter. Mathematically speaking, if there is a solution, the procedure will

find it after a finite number of iterations. As we do not know at this moment conditions

to the existence of a ∞
+H  minimum for J[K], we can not warrant this finite convergence

in the general situation.

���&RQFOXVLRQV

In this paper the quadratic optimal control problem for servomechanisms on

infinite-dimensional methods was investigated. In spite of the results showed here, some

problems remain open. First, to find conditions on problem data to

0<ε≤det{Γ(iω)(1+ω2)p} for some real number ε when Γ(iω) is not continuous. Second,

to find conditions on problem data such that the limitation of ∞
− γΦ ||)(|| 1*  on the

imaginary axis implies the limitation of ∞+
− γΦ ||])[(|| ,0

1* . Third, the alternative
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approach in section 6 needs an independent proof for the existence of a ∞
+H  solution for

the unconstrained problem. In any case, the proposed algorithm obtains finite-

dimensional approximations for the optimal solution.

The implementation of the Gallerkin method in (Da Silveira & Ades, 2000) – see

also (Ades, 1999) – use the MATLAB toolboxes performing state variable calculations.

It will be interesting to follow this way to investigate the approximation of the optimal

control problem solution by finite-dimensional parameters beginning from finite-

dimensional approximations for the semigroup S(t) considered in section 2. There is a

strong interest on ∞
+H  convergence, but they are not easy to obtain, as showed in (Xiao

& Basar, 1999).

We are developing, at this moment, some applications of these ideas in the

optimal vibration control of mechanical structures comparing several different

approximation procedures, which will be presented in another paper due to the amount

of preparation work needed.

$SSHQGL[

From the system equations,

û  = )ûNDr̂(N
~

D 1
c

1
c

−− − ,

where cD  = ϕr cD
~

. Then,

û  = D(ϕr cD
~

D+N cN
~

)-1
cN

~
r̂  = D cN

~
r̂ ,

where the diofantine equation ϕr cD
~

D-N cN
~

=I was used. Also,

ê  = r̂ - ŷ  = r̂  - ND-1D cN
~

r̂  = (I-N cN
~

) r̂  = ϕr cD
~

D r̂ ,

where the same identitie was used. As ϕr is a polynomial,

ê = cD
~

Dϕr r̂  = cD
~

Dϕr
1

r
−Ψ µ = cD

~
DRµ.
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The converse is also true, but its proof needs an incursion on the robust

servomechanism problem with a lot of definitions. The theory in (Corrêa & Da Silveira,

1995b) can be applied without changes because the reference signals are assumed

rational functions.
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