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Abstract. The HYH” problem is formulated in a Hilbertian context. It has a unique solution, which
is the strong limit of sequences generated by Gallerkin methods based on convenient and not necessarily
orthogonal generator sets. Using these results, a methodology to solve the problem by the Gallerkin
method is proposed and an example is solved and compared to other approachs.
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1. Introduction. The simplest H¥/H® problem is to find a function K(.) in the
Hardy class H minimizing the quadratic criterion

JIK()] = }{K(—iw)F(iw)K(iw) + K(-iw)y(iw}dw,

under the H™ constraint
ess.sup. | A(iw)K(iw)+ B(iw)| <A,

where I'(.), K.), A(.) and B(.) are given rationa functions, A is a given positive real
number and the essential supremum is taken on the set of real numbers w This problem
arises in quadratic optimal control theory for linear systems when robustness conditions
or filtering constraints are imposed on the controller. This paper shows that, in spite of
the H” constraint, the above optimal control problem is well-posed in a larger space,
H?>™, aHilbert space to be defined here. It means that the optimal control problem has
a unigue solution in this space with desired regularity properties, under suitable
conditions on the functional J[.]. Moreover, this functional setting leads to the definition
of generator sets such that Gallerkin methods converge to the optimal control problem
solution. A significant remark is that it is possible to measure the approached solution
quality when the proposed method is coupled with the dual method presented in [1].
The design of a pitch optimal control of afight airplane will be showed as an example
to show the numerical viability and to alow the comparison with others design
methods.

The crucia point in this paper is the construction of a Hilbert space containing
the usual Hardy spaces H?, H? and such that bounded closed sets in both spaces are

also bounded closed in this new space. The embedding of the origina problem in this
new setting allows the use of the Hilbert spaces convex optimization tools to solve the

problem. The H constraint carries the optimal solution into this last space with no
further considerations about the H_; non-Hilbertian topology. Besides this construction
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it will be necessary to build a chain of Hilbert spaces to well represent the optimal
solution regularity, an essential information for the Gallerkin method convergence
properties.

In the remaining of this section it will be presented a survey of the HH* problem
and the notations to be used. The geometry of the Hilbert spaces H>™ and H>™ is
presented in section 2. The unconstrained H? optimal control problem is rewritten in
section 3 as a minimum norm problem in a suitable space H>™ according to the data.

This clarifies its existence and regularity properties. The constrained H%H” optimal
control problem is solved in section 4, Theorem 7 containing the existence and
uniqueness results cited above. The convergence of Gallerkin methods is the subject of
section 5 and a numerical example is presented and discussed in section 6. Some
extensions of those results are shown in the last section, in particular, to multivariable
problems. All the proofs not presented in the main text can be found in Appendix 1.

After the introduction of the Youla-Kucera parameterization [2], [3], quadratic
criteria for Wiener-Hopf linear-quadratic optimal control problems have been
considered, which allow the manipulation of well-defined technical or physical optimal
solution characteristics, as rms transient error, plant saturation and closed loop
sensitivity [2], transient specifications against shape-deterministic exogenous inputs [4],
performance measures [5], [6] and [7], servomechanism specifications [8] and transient
specifications [9]. The work in [9] presents a heuristic procedure to choose the criteria
weighting filtersin such a way that a trade-off between overshoot and time constant can
be obtained. All these papers consider the controller as optimization variable, the set of
controllers being parameterized by real-rational proper stable rational matrices. They
arrived to explicit expressions for the optimal solutions.

These linear-quadratic criteria were enriched by quadratic or H constraints to
consider performance or robustness conditions in [6], [7], [10] and [11]. In special, H”
constraints have been used to impose a pre-specified robustness degree to the optimal
solution - see [12], but they can be used also to impose other specifications, as filter
constraints - see [13].

A set of different methods was proposed to solve the H¥H” problem. Some of
them modify the original optimization criteria, loosing the origina physical
interpretations in view to obtain new soluble mathematical problems. Examples are the
methods exposed in [5], [10] and [11]. Direct methods, using expansions in series, do
not modify the original criteria They were proposed in [14], without major
developments, and in [15], [16] and [17]. These papers show examples using Laguerre
functions as generator set, do not proving the optimal solution existence or uniqueness.
Also, they do not discuss the numerical viability of the algorithms. In [18] is proposed
the use of linear matrix inequalities (LMI) to solve the H¥H® problem, but under
assumptions too restrictive and non natural.

A last methodology was presented in [1] where a sequence of H? constraints
approaching the origina H® constraint was built. In this method, each H? constraint
defines a pure H? problem solved by a dual problem whose solution is explicitly given.
The present paper shows that this solution defines a lower bound to the original optimal
cost, the sequence of these solutions approaching monotonically the optimal solution,
when it exists. Such an algorithm will be used here as a part of a methodology to give
lower bounds to the optimal criterion value.



Actually, if finite dimensional controllers are imposed, it is possible to obtain only
approximate solutions. Indeed, [19] proved that the optimal solution is infinite
dimensional when the H® constraint is active. If this constraint is inactive and the
criterion is quadratic, then an explicit formula for the optimal solution can be obtained
asisin|[§].

A first proof for existence and uniqueness results for the H¥H® problem was
gived by the authors in [20], searching the solution in the space generated by
completing the set of real-rational proper stable functions under the norm defined by the
guadratic criterion term. This result was further developed in [21], allowing a complete
methodology to solve the H/H” problem without changes in the criteria and in the
constraints. This methodology will be, in part, showed here. The present paper develops
a more complete mathematical theory for the problem, proving the existence,
uniqueness and regularity to the solutions under natural assumptions, and proves the
convergence of the Gallerkin approximating sequence to the optimal solution.

NoTATIONS: N, Z, R and C denote the natural numbers (i.e. the positive integers),
the integers, the real and the complex numbers, respectively. |s|, s and Re{s} denote the
module, a conjugate and real part of acomplex number s, respectively.

If i=+/-1,iR = {i, R}, C° = {sOCORe{s}>0}, C° = {sOCORe{s}<0}.
Functions /A - B are denoted as f, f{.) or f{s), f(s) also denoting its value at the number
sUA. A function f{.) isreal if it transforms real numbersin real numbers.

If A.) = n()/d(.) is rationd, n(.) and d(.) being polynomials, d,(f) denotes its
relative degree, defined as the integer "degree of d(.) - degree of n(.)". Also

7)) = £(=3), | fiow) P= f(iw) f(iw) . Thelast expression equals f“(iw) f(iw) if A.)
isrea.

The usual inner product and the usual quadratic norm are defined by:
r.gl = jf(iw)f(iw)dw and || f Il,=[0, fO1"* =[f1 /(i) I du)?.

The H® norm is defined by
1= ess.sup| f(iw)],
the supremum taken on «iJR. The symbols Rm, R’ and R, denote the classes of
rational functions with relative degree greater or equal to m, respectively without poles
iniR,iniROC? (stable functions) and in iR 0 C° (completely unstable functions).
The symbols H?, H?, H” and H” represent the usua Hardy classes studied in

[22], [23]. The principal features of these spaces to be used here are given in the
sequence. The two spaces of stable functions are defined by

H? ={f C- C analytic in C° O |[fla+ic)||» < 0, O a>0},
H? ={f C- C analyticin C° O ||fla+id||» < o, O a>0},
H? and H” defined analogously changing the symbol "+" by "-" and assuming a < 0.
Also, if
I (R) = {f: iR~ C O || fllo < o},
it can be proved that [, g is an inner product in I*(iR), H? and H?, these spaces
being Hilbert spaces under this inner product. The functional spaces H? and H? can be



identified to orthogonal subspaces of 7°(iR) so that 77 (iR) = H?[ H? (an orthogonal
sum of subspaces). The symbols [f].+ and [f]- denote the orthogonal projection of
/OI2(iR) in H? and H?, respectively. H? and H® are Banach spaces under the norm
Il 1l..

If H represents a locally convex topological vector space [24], H' denotes its
topological dual endowed with its strong topology. If H and } are such spaces, H+V and
HOV denote their sums and their direct sums, respectively. The latter means

HnV ={0}, thetrivia subspace. Further information about these concepts can be found
in[24], [25] or [26].

2. A functional setting for the optimal control problem. This section presents
the functional setting to formulate the H¥H® problem as a well-posed problem. The
subjacent idea is to define spaces containing H? and H? such that the quadratic
functional to be minimized be continuous and the constraints convex, closed and
bounded. Actually, it will be defined a chain of spaces like H? to grasp the problem
regularity.

DEFINITION 1. Let & = (s+1)*, k027,

.80 = [/ ()., () /(o9 and

1 Moo = [0, S BT =10, (100) /() [ ™.

Set
L2 (R)={f iR~ CO || f Il <},
H?™ ={fC~ Cis analyticin C] O || f(a+iw) ||,_, <o for all a> 0},
H?*™* the analogous space using a < 0 and C? in its definition, a
As U!g@,—k = _ f,®_ g0 and || f ”2,—k = ”cD—kf ”2’ it is easy to proof that
[, gL} _, defines an inner product and || /||,_, the associated norm in the spaces

defined above (see Appendix 1). Moreover, the usua 7 (iR), H? and H? spaces are

the specia cases where £=0. The next theorem presents the geometrical properties of the
spaces defined here.

THEOREM 1. Let the spaces 12, (iR), H>™*, H*>™ beasin Definition 1.

a) 12, (iR), H*™ and H*>™* arethe completion of the sets R1x, R, and R, , inthe
norm ||.||,_,, respectively. Moreover, they are Hilbert spaces with respect to the
corresponding inner product.

b) H*>™* and H>™ are closed subspaces of ?, (iR).

¢ I’ (iIR)= H>*+H** If k<0, H> nH*™* isempty. If k=1, H>*n H*™
contains the polynomialsin s with degree less than or equal to -1 and the functions

00

defined by § a e, where Z| a, | <o. O
m=

m=



REMARK 1. It is worth noticing that a rationa function f{s) without poles in iR
belongsto 27, (iR) if and only if 0,(f) = 1-k. Alternatively, if 0,(f) = m and f{s) has no
polesiniR, f{s)0 L?, (iR) for each k = 1-m. O

The next theorem collect some results relating the topologies of H?°, 12, (iR) and
H?>™* for different indexes k.
THEOREM 2. Let the spaces presented in Definition 1 and & < m.
(@ 12, ((R)OI? (iR). The linear spaces I (iR) and L2 (iR) are isometricaly
2

-m

isomorphic, the isometry from 12, (iR) to Z?, (iR) being injective and the inverse
isometry being surjective. Therefore, the L2, (iR) topology is strictly finer than the
I? (iR) topology.

(b) H>*OH?>™.The H>™* topology is strictly finer than the /> topology.

(c) 1%, (iR)isdenseinl? (iR), H>™* isdensein H>™". In particular, if k > 1, the sets
Ro, R} and R; aredenseinl?, (iR), H>™* and H?>™, respectively.

(d) H*OH?>™, the H? topology being strictly finer than the one of H>7. O

REMARK 2. Property (c) says that biproper rational functions can be approached in
H?Z>™ by strictly proper rational functions, diminishing the relative degree at the limit.

As an example, £,(s) = n(s+n)™* converges to the constant function f(s) = 1 in the H2™
topology. This explains why it is possible to find complete sets for 7>™, k=1, formed
by strictly proper real-rational stable functions ( R; functions). a

ReEMARK 3. Let S(iR) denotes the space of functions going quickly to zero at
infinity, (S(iR))’ its topological dua (the space of temperate distributions) [25], [26].
Define S:(iR) as S(iR)n H?, (S+(iR))’ asits closurein the (S(iR))’ topology. With these
notationsit is possible to prove that, for any £ > 1,

SGRYD  LiGR)O  LIGR)D  r2GR)0  L4GR)O L4 GR)O (SGR))

0 0 0 0 0 0 0
s,GqRyo  H} O HY 0O H; O HX O HI' O (S.GR)
0
e

+

Each space is dense in the next bigger one in the chain. An analogous sequence can be
build for unstable function spaces. The origina H%H™ problem will be embeded in
these chains of Hilbert spaces, asit will be showed in the next section.

REMARK 4. Let Hy denote the order £ Sobolev space [25], [26]. As Hi is the
Fourier transform image of L2 (iR) (by an adaptation of a construction found in [25]), it
is possible to define stable Sobolev spaces [[H,]" as the inverse Fourier transform image
of H*. Then it is possible to build a corresponding sequence of stable Sobolev spaces

aso beginning in S:(iR) and ending in (S:+(iR))". Also, from the Structure Theorem



([25], page 255), it is possible to show that the temperate distributions in (S.(iR))’ are

derivatives of some finite order of functionsin [H]". a
Now, the crucia point for embeding the H¥H® problem in H2™ will be

considered.
THEOREM 3. Consider the spaces presented in Definition 1.

(@) If k < m, the bounded subsets of 1?, (iR) are bounded in L? (iR), and the bounded
closed subsets of L, (iR) are bounded and closed in 7, (iR), the same relations
arriving between setsin H>™* and H>™".

(b) The bounded subsets of H? are bounded in H>™, and the bounded closed subsets
of H? arebounded and closedin H>™. O

REMARK 5. Here it is essential that the subset be bounded. The spaces H; and

H? are closed and unbounded in its own topologies, but they are densein 7> in the

coarser topology. Also, closed balls in H® have empty interior in relation to H>™"

topology. a
The next step is to collect the properties of linear and quadratic functional in

H?>™*, preparing more tools for minimizing the quadratic criteria showed in section 1.

THEOREM 4. Let ) s) be areal-rational function without polesin iR.
(&) Thelinear functiona

R = [f iody(isdeo

iscontinuouson H>7* if and only if 8, (y) =k +1.

(b) The space of continuous linear functional on H>™ can be identified to H>*, for
any k. O

THEOREM 5. Let ['(s) areal rationa para-hermitian function in R without poles

or zeroesin iR, i.e., [(s) = (s) and | (iw)|>0 for each finite w.

(@ T(s) =P"(s)P(s), P(s) being a rea rational stable function in R, with al its
zeroesin C? (i.e., minimum-phase).

(b) The quadratic functional

I jf* (W) (i) f (iw)dw = [@f ,&f T = || &f |13
iscontinuous in 2™ if and only if m < k. It is coercivein H>™ (i. e, thereisa
real number a > 0 such that [@f,df0 = o] f II5_, foral fO0H2™)if and only if

m = k. Moreover, it is strictly convex and ||®f ||, defines a norm in HZ>™*
equivalentto || /' |l,_, - a

3. Optimal H’ unconstrained control problems. This section presents the
mathematical extension of the usual H? unconstrained optimal control problem on the
mathematical framework developed in the last section. New conditions about its



solution will be obtained, clarifying the onesin [8], [9]. This extension will be used in
the next section to solve the H/H* optimal control problem.

The unconstrained H? problem can be defined as follows: find a function K(s)
solution to:

(3.1) iQf{}[KD(iw)F(iw)K(iw)—ZKD(iw)y(iw)]dw} = inf JIK],

where the functions K(s) belong to some H?™* space, or, formaly, to (S.)’, a space
containing H2™ for dl integer k. I'(s) and y(s) are given rea-rational functions.
Remember that K(s) is the parameter describing the set of stabilizing controllers (or the

set of controllers solving a given servomechanism problem), initialy a free real-rational
stable and proper function. To define the functional J[.] some assumptions are needed:

Al) T'(s) = D "(s)D(s) is apara-hermitian real-rational function in Ry without poles or
zeroes in iR, ®(s) being area rationa stable function in R with al its zeroes in
C? (i.e., minimum-phase);

A2) Ys) isareal-rational function without polesin iR, d:(y) = p.

The functional J[.] will be finite only for a meager parameter subset if I'(s) or y(s)
have poles on the imaginary axis, as both are rational functions. Indeed, if such happens,
JIK] will be finite only for K(s) with zeroes on those imaginary poles. The other

conditions on assumption Al are natural for quadratic functional on H?*™* spaces,
according to Theorem 5 above. Indeed, it is possible to represent all integral quadratic
real functional on H>™* spaces as an integral quadratic operator with a para-hermitian
kernel by a procedure similar to the auto-adjoint representation for integral quadratic

functional on L? spaces. Moreover, I'(s) is assumed with no zeroes on the imaginary
axis because this allows unstable solutions (see Remark 8). Finally, the Wiener-Hopf

factorization I' = ®"® isa consequence of the known Y oula factorization theorem cited
above as Theorem 5a[27].
LEMMA 1. Under assumptions A1, A2, let m = min{kp-1}. Then the functional

J[.] iscontinuousin H2™ and it is not well-defined in larger spaces, i. e., the integrals
in J[K] diverge for KOI(S:)- H>™* (the complement of H*7*in (S.)). O

Proof. The first statement follows from continuity conditions in Theorems 4 and
5b. For the second statement, if KO(S.)- H>™ isarational function, J[K] is not defined
because (K TK) < 1ord,(K'y) < 1. n

DEFINITION 2. The space H>™™ in Lemma 1 will be called the "effective domain”
of the functional J[.]. This terminology is inherited from convex analysis and adapted to
the chain of spaces defined here. O

Now, note that, for KOH?>™ and m as in Lemma 1, ®KOH?. Then the
functional J[K] can be written as

(32 JIK] =K | -2}{[<D(iw)K ()] [ ()] " y(iw)dw.

*\- 2
As (@) yOL
functionin H ™™ according to Theorem 1c.

1 (iR), it can be factorized as a sum of a function in H2”™™* with a



If p < k, this factorization is not unique because p-k-1 < -1. As (@) 'y isrationd,
it is possible to choice a factorization where the polynomial part of (®°)™y is taken on
the unstable factor. This factorization will be denoted by:

@)y =[(@) Y+ + [(@) N,
with o([(®)y]+) 2 1, [(@) Y. O HZ7 ™2, (@) y).O H27+2,
Actualy, [(®)y].OH? because it is a stable strictly proper rational function
with all its polesin C°.
If p+1 = k, Li_k_l(i[R)D L*(iR), p-k-1 = 0. The above factorization will be
interpreted  as  [(®)N.OH?>0OH2, [(@)N.OH?>*0H?, because

0.([(®)y]+) = p-k = 1. Note that all the stable projections are denoted by [.]+, but the
different spaces will be clear from the context.
With this notation, the linear part of J[ K] becomes

200K, [(®) Y] 0 — 2 [ K (i) (i0)[(P (i) V()] dw

= —2[®K,[(®") Y], O,
the integral being zero because al the integrand poles are in C? and its relative degree
isless or equal than 2 (the residue theorem applied to a circuit involving C° proves the

statement — see [8]). In other words, the unstable tetm)f{]. is orthogonal to the
stable functiorPK. Then, completing the square in (3.2), we get

JIK] = | K [l -200K,[(®7) YL G+II(@) YL 5 — (@) V1L I3
= | @K =[(®") Y], 15 = III(®) VL. 13-
Therefore, the minimum of ] is attained at such thatbK —[(P")y], =0, if

JIK] < o, i.e., if K belongs toJ[] effective domain, #>™. These conclusions are
collected in the next theorem.

THEOREM 6. Let assumptions A1, A2 be verifieff, a rational function given by:
(33) K =o7[(@)],,
where [(0")'y]. denote the stable strictly proper part of Xy, m = min{kp-1}. If
KOH?™ (theJ[] effective domain) then inf[K]} = J[K]in H>™. a

As it was commented on above, in commofiHi problems,K(s) is a proper
stable real-rational function, which mead$k)=0. In the mathematical framework
presented here, this implig€] /7>~". This situation is explored in the next corollary,
easily proved from Theorem 6 and the calculations above. Note that the condition
H?>™"™OH?*™" is not necessary, but only the conditakOH>“0OH?*™" with
H?“OH>™", for someg < 1.

COROLLARY 1. Under the same assumptions as in Theoredy &) = 0 if and
only if 3([(®)'y]+) = k. Sufficient conditions for this conclusion are= d,(y) = 2k or
k=0(P) < 1. O

REMARK 6. The sufficient conditions in Corollary 1 are not necessary. Indeed, for
any @ with d,(®) = k£ and for anyy < %, it is possible to find a functioy(s) as in (3.1)
such thatd(K) = 1y andJ[K] < o. For that, lety = ® B, BOL(iR) such that
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0/([B]+) = 1+k-q, which is aways possible if ¢ < k. Note that £ < p-1 = 0,(y) — 1, which
implies that/[.] is well defined in/>™* . Then

0K ) = 0(P[(P) P B].) = 0(P[B]+) = 1.
Also, KOH?™ , thenJ[ K] < . O

In the control context, criteria as (3.1) usually appear from the sum of functional
in the form
(34) ||4K+B|; =

}{ K (i0) A" (i0) A(iw) K (i) — 2K "(iw) A”(iw) B(iw) + B (iw) B(iw)}dw,

where B(iw)OL?(iR) is a real-rational strictly proper function widi(B) = 1. For each
simple functional, by direct verificationg(s) = A(s), y(s) = 4 (s)B(s). Therefore
0r(y) = 0(P)+0,(B), which implies the condition:

(3.5) 0i(y) = 0(P)+1.

Condition (3.5) is inherited by a sum of quadratic functional as (3.4) and will
strongly simplify the use of Theorem 6. Indeed, under such condition, the function
[ (i0)] V(i) OLA(R) because condition (3.5) is exactly the condifierl = k. Then
the decomposition used to prove Theorem 6 will be the us(&l) = H20 H?, which
no need to consider larger spaces. In other words)f(]. is the usual projection on
H?. Moreover,m = min{kp-1} = k. Therefore, K = ®™[(®")?y], is a rational
function with ,(K) = 9([(P")'y],) - 0(P) = 14 which impliesJ K] < o and
KOH?™=H?" with no further condition. In the other senseHf ™ =H>™* , m =k
< p-1, which implies (3.5).

These remarks are collected in the next corollary.
COROLLARY 2. Let assumptions Al, A2 hold. Then condition (3.5) is equivalent to

the effective domain of[.] be H>™ . In this case the functio& (s) given by (3.3) is

such that inf§[K]} = J[K] in H>™, [.]+ denoting the usual orthogonal projection on

H?. O
REMARK 7. The conditions found in the literature about the unconstrained problem

are particular cases of assumptions in Corollaries 1 and 2 [8]. In special, in [9] a well-

motivated criterion is presented such that these conditions are naturally verified.
REMARK 8. If '(s) has zeroes on the imaginary ax@s) will have the same

zeroes if it is used the generalized Wiener-Hopf factorization as in [27]. Khgiven
in (3.2) will have these zeroes as poles, being unstable. In other words, the completion
of Ry in the norm induced by the quadratic parf[of will contain, in this case, unstable

rational functions, the minimum being attained in such a function. O
Remark 6 shows tha(K) can be different from &, where theJ[.] effective
domain is H>™. This possibility will be essential to the algorithm convergence

regularity, see section 5 above. Corollary 1 gives conditiong(f&r) = 0 if m = 1. The

same considerations used in its proof can be generalized to any relative degree for the
optimal solution. Actually, much of the work founded in the literature can be linked
with this search of regularity. It was essential in the existence proofs in [8], [9] and in
some seminal but unclear comments in [2]. Moreover, a lot of work was needed in [9] to
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define a natural criterion such that 0,(K) = O for al linear systems for which the
servomechanism problem proposed there is solvable. This natural criteria verify
assumptions A1, A2 and condition (3.5) with £k = p = 1. Then, by Corollary 2, m = k, the
effective domain is exactly H2>™', which eases considerably the application of the
methodology proposed therein.

4. Optimal H/H” control problems. This section presents the mathematical
extension of the usua H%H” control problem on the mathematica framework
developed in section 2. The optimal solution existence and uniqueness will be proved in
the following and regularity results will be presented.

In the H¥H" optimal control problem the goal is to find a function K (s) solution
to:

4.2 Klmgfn O{ }[K W) (W) K (iw) — 2K “(iw)y(iw)]dw} = Klmgfn G)J[K 1,

where Q is a bounded closed convex subset of H? and © is a bounded closed convex

subset of /2. The usual examples of sets Q and © arising from performance, filtering
and robustness specifications are

M
Q=(Q,; Qu={KOH? such that |AnK+By|l<An}, Ay and B, functionsin H?;

m=1
N
©=(10,; ©, ={KOH? such that ||C,K+D,ll:<t4}, C,OHY and D,0 HZ;
n=1
A and u, positive real numbers so that the set Q is nonempty.
Now, under the assumptions of Lemma 1, the criterion functional in (4.1) is

strictly convex and continuous in its effective domain, 2™ . By Theorem 3a, the set ©
is convex, bounded and closed in 2™ for m = 0, as a convex, bounded and closed
subset of /2. By Theorem 3b, Q is convex, bounded and closed in /™, as a convex,
bounded and closed subset of H 2. Then, Q is convex, bounded and closed in H2>™" for
m = 1, by Theorem 3a. Therefore, we are in conditions to apply a well-known theorem
to show the existence and uniqueness of the optimal solution for problem (4.1).
THEOREM 7. Let assumptions A1, A2 with 0,(I") = 2, 0,()) = 2 be verified. Then,
(@) if the constraint set Qn® is nonempty, the optimal control problem (4.1) has one
and only one solutionin H>™;
(b) if Q is nonempty, the optimal solution isin H: ; if © is nonempty, the optimal
solutionisin H?; O
Proof. By the comments above, Lemma 1 and the assumptions, the functional in
(4.1) is strictly convex and continuousin H>™", for some m = 1. Also, the constraint set

is convex, closed and bounded in H>™. Then Theorem 1.4.1, [28], page 9 applies,
proving the first statement. The second statement is clear. [ ]
Naturally, it is possible to add H>™ closed convex subsets as new constraints

without changing the above conclusions.
REMARK 9. A direct consequence of this last theorem is the convergence of the
approximating sequence generated by the algorithm proposed in [1] to the optimal
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solution of problem (4.1). In the same paper it is showed that the optimal control, if it
exists, belongs to the H” constraint boundary. Also, it is explicitly solved the H? optimal
control problem with only H? constraints by duality, a key to the method proposed

therein. O
Before the presentation of numerical methods to solve the optimal control
problem (4.1) it will be interesting to rewrite this problem as a minimal norm problem, a

step in the strong convergence proof. Assume that KOH2“0OH2™ for some
g <m = inf{kp-1}. Then ® K OH?2. Now, the calculations used to prove Theorem 6
give
(42) JIK] = | S{K -7 [(@)VLIE - I S{@ 7 [(@7) VLI I
= | oK -K) |} - [ PK |3

NOTATION. Let || f|l; = ||Pf|l,, a norm associated to J[.] quadratic term,
[f, g = [f,dgl] the associated internal product. a

Theorem 5b says that if assumption A1 is verified || f ||, definesanormon H>™*
equivalent to thenorm ||. ||, _, . Then
(43 JIKI=IK-KIE-IIKIE.
Therefore, under the assumptions of Theorem 7, the optimal control problem (4.1) is
equivalent to find afunction K solution to
(44) inf |K =K,
a best approximation problem in H>*. Note that, if condition (3.5) is verified,
H?>™* = H*>™ buthereitisneeded only that KOH>*OH>"OH>™.

COROLLARY 3. Let assumptions A1, A2 hold with 9,(I") = 2, d,()) = 2. Problems
(41) and (4.4) are equivdlent if and only if KOH?>OH*>"0OH*™, ie,
0,(K) = 1-m, m = min{k,p-1}. Moreover, assumptions A1, A2 with 0,(") = 2, 3,()) = 2
and condition (3.5) are sufficient for the same conclusion. a

Proof. According to the above comments, the first statement is a consequence of

Theorem 7 and the second statement is a consequence of Theorem 7 and Corollary 2. m
Optimal control problem (4.1) can be rewritten as a minima norm problem in

H?™ if this space is trandated by K. For that, redefineG =K - K, Q' =Q - K,
© =0 - K. Notethat Q' and @' are convex, bounded and closed in H>™* because these
properties are not changed by trandations in a Hilbert space. In these notations the
optimization problem (4.4) can be trandated as the new problem: find G OH>™
solution to

45 inf ||G|7,

GOR'ne’
aminimal norm problem. Note that K could not belong to H?™*. Thus problem (4.5)

shall be solved carefully from a numerical point of view.
Regularity now is essentia. If the optimal control problem needs to be solved in

some H 2> asaminimal norm problem, beyond the existence conditions in Theorem 7,
it will be also needed the condition H>=H>*OH?™. Thismeans g = k < m, with
KOH?™, or, more exactly, KOH?™", for some r < g. For that, Corollary 1 (and its
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extensions) and Corollary 2 are useful. The usual setting is¢ = 1, asin [8], [20], [21],
or, in a more restrict way, ¢ = k£ = 1, asin [9]. In the present paper this setting was
generalized to well understanding weak and strong convergence of the algorithm
proposed in the next section.

5. Gallerkin method. If {3,, nON} is a generator set for H>™, not necessarily
orthogonal, denote by H, the finite-dimensional subspace generated by the n first

vectors in the generator set. If Q, = QnONH,, it is possible to project the optimal
control problem (2.3) in H, which defines the following finite-dimensional

optimization problem: find I%n in H, solution to
- 2 _
(5.1) inf {I K|} -20K. v} .
As Q, is abounded closed convex subset of H,, and the criterion is strictly convex, this
optimal control problem has one and only one solution K, in H,, for each n[ON (see

[28], page 9). The Gallerkin method consists in approximating the optimal solution K
to the optimal control problem (3) by I%n, if the sequence { I%n} converges to the
optimal solution K . Thisisthe content of the next theorem.

THEOREM 8. Let the assumptions in Theorem 7 and assume that K does not
belong to Qn® (otherwise the optimal solution will be K). Then the sequence { I%n}

generated by Gallerkin method converges weskly in H*™ to the unique optimal

solution K to the optimal control problem (2.2). a
Under the assumptions of Corollary 3, including (3.5), the optimal control
problem (4.1) can be rewritten as minimal norm problems (4.4) and (4.5), which will

allow to show the strong convergence of the sequence { I%n } in suitable spaces. For that,
let { B,,nON} be a generator set for 2™ and ||.||- the norm defined in section 4. Thus

we can define the projection of the minimal norm problem (4.4) in H,, as find I%n in H,
solution to
(5.2) inf [|[K-K,I|I7,

K0Q,
where K, isthe projection of K in H,. Analogously, translating H, by K, , the minimal
norm problem (4.5) can be projected, the minimal norm problem becomes how to find
G, solution of:

(53) inf |IGIIF,

Goe,’
where Q' = Q, - K,. As Q, and Q, are bounded closed convex sets, the

optimization problems (5.2) and (5.3) have one and only one solution, defining
sequences of functions approximating the optimal solution to optima norm problems
(4.4) and (4.5), for nON.

THEOREM 9. Let assumptions Al, A2, and condition (3.5) be verified. Also,

assume that 9,(I") = 2, d,(y) = 2, K not belonging to Qn®. Then, the sequences { K, }
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and {Gn} of solutions to problems (5.2) and (5.3) for all »ON, converge strongly in

H?™* to the optimal solutions to problems (4.4) and (4.5), respectively. O
REMARK 10. Note that the strong convergence in H>™* arrives only if k = 1 and
condition (3.5) is verified, asin [9]. a

In Theorem 8 proof, (5.1) and (5.2) are characterized by linear variational
inequalitieson H2>™* . Gallerkin methods are powerful to solve this type of inequality in
functional spaces [29], which give linear matrix inequalities (LM1) after the choice of a
basis for H>7*. Another approach to problems (4.4) and (4.5) is the one presented
under the name of best approximation, using convex projections or proximina maps

(the mapping from K to K ). This approach is interesting for minimum norm problems
in Hilbert spaces, as in the present paper, where the proximinal map is continuous ([30],
pages 157, 164). The same reference shows the difficulties when the problem is

considered in H; , anot reflexive Banach space (see [30], page 77).

Theorem 8, 9 speak about convergence in H>™, not in H?. In general, strong
H?>™ convergence does not imply H? strong convergence. It allows spikes in
sequencesconverglng to zero, asin f(s) = (ns+1)* (see Remark5proof in Appendix 1).
Actualy, K - K strongly in H>™ implies CD_lK _®41K in measure on the

imaginary axis and Kn . K in measure on any finite measure subset of the imaginary

axis (in this case the H>™ and H? strong topologies coincide). From Theorem 7.11,
page 73, in [38], this implies the amost uniform convergence on the finite measure
subset. But this result does not imply the H_" strong convergence even in those subsets.
In spite of these difficulties, the next theorem and remark show some relevant results in
H.

~ ~

THEOREM 10. If the sequence K, converges to K drongly in H>™, as in

n

Theorem 9, it then convergesto K in the weak topology of H? a

REMARK 11. If the sequence Kn converges to K Weakly in H>™, asin Theorem
8, then it is possible to prove, after some identifications, that I%n converges to K inthe
weak-star topology of (H?). a

To end the theoretical presentation of Gallerkin methods some generator set for
H?>™" and for H>™* must be presented. Due to the density of H? in H>™*, k> 1, any
one of the basis obtained from the Runge Theorem [31] for the space of analytic
functions on C? can be used. Note that the topology used in Runge Theorem (the

topology of the uniform convergence in al compacts in C?) is finer than the L(iR)
topology. An example, already used in [15], is the Laguerre orthonormal basisin H?2:
1 (s—-a)"t

" V2a (s+a)”

The numerical experiments in [21] show the interest in the use of redundant sets
of generators, as

{L , nON}, for each positive real number a.
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1 (s-a)"t
v2a (s+a)’
which capture more quickly the asymptotic behavior of the optimal solutions. The
proofs of Theorems 8 and 9 apply to these redundant sets without changes.

An orthonormal basis for H>™, in relation to the inner product [0, isgiven

{Lo=1,L,= , nON}, for each positive real number a,

by

(1-5)(s—a)"™"
J2a (s+ay "
Note that 0/(M,) = O, differently from Laguerre basis. Reference [21] presents other
orthonormal basis for 72 built under the same principle, with the poles of ® as the
zeroes of the basis functions. The numerical solution of problem (5.2) needs some
mathematical programming developments [21], which will be presented in a future

paper. Some comments about the numerical procedure following the developments in
[21] will be presented next.

After the choice of aredundant generator set, say { 1,3,, n[IN}, and the choice of
the number of poles of K,(s), say n, the functions K(s) in the finite-dimensional space
H,, can be represented as.

{Mo= (|| @ )™, M, = [N},

n

Ki(s) = ;0( B (5),

where the constant function is represented by [u(S). By substitution of this last
expression in (5.1) or (5.2) it is defined a (n+1)-dimensional programming problem
which variable is the (n+1)-vector & =(a,,q,,...,a,)" . The integrals in the quadratic
functiona calculation can be performed analytically, being this functional quadratic in
0. The quadratic constraints are calculated by the same methods, but not the H”
constraints. Actually, there is no need to explicitly calculate these hard constraints, but
only a generalized gradient. The reason is that the finite-dimensional constrained
optimization problem was solved by a penalty method coupled with the known BFGS
algorithm, where the position of the H” constraint gradient (which do not exist) was
filled by a generalized gradient. If this constraint is represented by
sup|A (i w) Kn(iw)+B(i w)|-A<0,

it is proved in [21] that the derivative of |4(iw)K,(iw)+B(iw)| for w = wy, uy one of the
values where this function assumes its maximum, is a generalized gradient for the
constraint. The wy calculation uses the tools of H” theory, as showed in [6]. Note that
the procedure should consider also the case where wy = . The convergence of this
procedure was proved in [21], and the authors did not find significant problems to

obtain the optimal parameters I%n after perform the functional calculations through state
variable and Lyapunov equation tools.

5. Numerical example. The example shown here was developed in [21], where a
more complete discussion can be found. It represents the pitch optimal control of afight
airplane described in [32] to exemplify LQG/LTR design and it is used in [33] to
exemplify the dual method from Corréa [1]. In this example the transfer function from
the elevation angle to the aptitude angle is
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—(94812s° + 303255 + 564825 +1215.3)

s® +64.554s° +1167s" + 372.865° — 5495.4s° +1102s + 708.1
the quadratic criterion being the one defined in [9] with weighting filters and weighting

coefficients given by
1
:0! = 1 Y = 1) 7: u: 7’::1_

B6)=0, ()= QW) = P =P =P

After some calculations, the optimal control problem criterion can be transformed

P(s) =

in

JoAK(s)] = || A(s) + B(s)K(5) I +Jr,
where A(s) and B(s) are 14" and 10™-order rational functions (presented in the
Appendix), both with unitary relative degree, Jr = 0.30612 and K(s) is the rational
proper and stable Youla parameter. The stability margin functional for the control
problem, after some transformations to put it in Nehari form [21] is given by

Jo[K($)] = || K (5) = Fy(5) [l

Fo(s) a second order unstable proper rational function (also presented in Appendix 2)
with unitary relative degree. The minimum value for J[K(s)], i.e., the optimal stability
margin, is 0.610513.

If we define the robustness constraint allowing a 10% degradation of the optimal
stability margin, the H/H* problem to be solved becomes:

“find K(s) minimizingJ>[K(s)] subject ta/.[K(s)] < y= 0.6715643".

Assumptions Al, A2, witht = p = 1, condition (3.5) and the others conditions on
Theorem 7 are verified. Then, by Theorem 7 this problem has one and only one solution

in H>™, belonging toH? Also, by Theorem 9 the sequence of functions generated by

Gallerkin method, as exposed in section 5, converges strongly to’tH& problem
optimal solution, for any basis or redundant generator sEif .

Table 1 presents some characteristics of controllers solving related optimal control
problems, wher&(s) is the optimization parameter used to obtain a controller by the

Youla parameterization. There,

*  Kuo(s) represents the Youla parameter corresponding to the controller minimizing

the quadratic criteriotb[K(s)] without constraints (the $bptimal controller),

*  Kho(s) represents the Youla parameter corresponding to the controller minimizing

the stability margin (the Hoptimal controller),

* Kspo(s) represents the Youla parameter corresponding to a nonfeasible controller

approximating the HH® problem solution (withy = 0.6715643) calculated by the
dual method from Corréa [1],

*  Kspor(s) represents the Youla parameter corresponding to a reduced order controller

generated fronkspo(s) by truncation of a balanced realization.

TABLE 1. Characteristics of some related controllers.

K(s) JAK(5)] Ju K(5)] order
Kiiafs) 0.306120137 2.07804793 17
Kitoo(5) 3.964188309 0.61051297 1
Kspols) 2.141469573 0.67180700 29
Kspor(s) 2.141470588 0.67193138 14
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Note that Kspo(s) and Kspor(s) do not verify the stability margin constraint, as expected,
i.e., they are not feasible.

Table 2 presents the same characteristics for the controllers obtained by Gallerkin
method, » = 1,...,9, using the redundant generator set based on Laguerre functions asin
section 4, y= 0.6715643:

TABLE 2. Characteristics of optimal Gallerkin controllers for extended Laguerre

functions.
K(s) JAK(s)] Jo[K(5)] order
Ki(s) 2.436117 0.6715643 1
Ko(s) 2.367955 0.6715643 2
K3(s) 2.346453 0.6715643 3
Ku(s) 2.250182 0.6715643 4
Ks(s) 2.209556 0.6715643 5
Ks(s) 2.207430 0.6715643 6
K7(s) 2.206113 0.6715643 7
Ks(s) 2.191661 0.6715643 8
Ko(s) 2.175038 0.6715643 9

First, all solutions are feasible, as expected. Second, the greater the order, the smaller
the quadratic criterion value. Third, comparing this value for Ko(s) and Kspo(s) and
using the dual solutions properties, we verify that

Jo[ Kspo(s)] = 2.141469573 < Jo K (s)] < 2.175038 = Jo[ Ke(s)],

K (s) being the H¥H" problem optimal solution. Therefore, the difference between the
guadratic criterion values error of Ky(s) and the quadratic criterion values error of the
optimal solution islessthan 1.54%.

Table 3 presents the same characteristics for the optimal controllers obtained by
Gallerkin method using a H>™ basis obtained step by step by minimization of the

quadratic criterion (under the H™ constraint) as a function of both of the basis
coefficients and the basis poles [21]. The optimization problem to be solved for each
dimension nis not convex. Then, the usual optimization algorithms give only H, locally
optimal solutions, depending on the agorithm initialization. The BFGS method
extended for generalized gradients was used to solve the finite-dimensional optimization
problems, the constraints considered by a Lagrangean method [21]. As above,
y=0.6715643.

TABLE 3. Characteristics of optimal Gallerkin controllers for “optimal step-by-step"

basis.
K(s) JAK(s)] Jo[K(s)] order
Koa(s) 2.651499 0.6715643 0
Kaa(s) 2.417010 0.6715643 1
Koa(s) 2.412348 0.6715643 2
K3a(s) 2.278789 0.6715643 3
Kan(s) 2.195134 0.6715643 4
Ksa(s) 2.195134 0.6715643 5
Kea(s) 2.164122 0.6715643 6
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Note that Kia(s) and Ksa(s) present the same characteristics, the new coefficients
caculated for Ksa(s) being zero: the new dimension did not allow a smaller criterion
value for the chosen initialization vector. The local character of the n-dimensional
numerical optimization and its dependence on the initialization vector is showed by the
worst behavior of Kza(s) in relation to Kx(s). In spite of those difficulties, the 6™-order
controller attains a smaller criterion value than Ko(s), which allows us to find a best
estimation for the criterion optimal vaue and a best approximation for the optimal
controller (corresponding to Ksa(s)):
Jo[ Kspo(s)] = 2.141469573 < Jo[ K(s5)] < 2.164122 = J,[Kea(s)],

with arelative error smaller than 1.05%.

For the sake of comparison, Figures 6.1, 6.2 and 6.3 show the Bode diagrams for
the functions Kspo(s) — Fo(s), Ko(s) — Fo(s), and Kea(s) — Fo(s), respectively. It was
verified in [21] that Bode diagrams for the Gallerkin approximations do not suffer
significant changes after a sufficiently great dimensioand they do not present
“spikes”, in spite of the discussion just before Theorem 10.
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FIG. 6.1.Bode diagrams for the function Kspo(s) — Fo(s).
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FIG. 6.2.Bode diagrams for the function Ko(s) — Fy(s).
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FIG. 6.3. Bode diagrams for the function Ks4(s) — Fy(s).

Numerical caculations where performed in a PC computer using MATLAB
programming.

7. Conclusions and comments. In this paper the H¥/H® was studied in the context
of weighted Hardy spaces, allowing the proof of the existence and uniqueness of its
solution and the proof of the convergence of Gallerkin method. The extension of these
results to the multivariable case is straightforward but tedious, in view of the existing
techniques presented, for example, in [8] and [34].

Essentially, if M[A] denotes the set of matrices with entries in 4 and the
dimensions established by the context, XK' the transpose of the matrix K,
[K(s)]"=[K(-s)]", ®(s) a maximal rank real-rational matrix in M[R1] with all its
poles and zeroes in C?, I'(s) = ® (s)P(s) a maximal rank rea-rational para-hermitian
matrix,

(K,GL} = }Trace{KD(iw)I_(iw)G(iu))du), IK|IF = [K,KTY?,

| K|k = o{ll K, Il.} (the greatest singular value of the matrix which entries are the H”
norm of the K-entries), the results presented in this paper can be rewritten ipsis literis on
the spaces M[ L7, (iR)], M{ H>™], M[H>™], M{ H?] and M[ H*], with the use of
MR, M[R]] and M[R;] and the obvious adaptations in notations and proofs. A

serious problem not considered in this paper is the great number of entries in
multivariable basis, which increases dramatically the number of parameters in the
optimization problems (4.1), (4.2) and (4.3). The most parcimonious basis, with the
same polesin al the entries of the rational matrix K(s), uses as much parameters as the
product of the entries number by the number of parameters in the one-dimensional
problem (i.e,, for a m-dimensiona problem on H,, we have a nm-dimensional
optimization problem).

The algorithms presented in section 5 and 6 do not explore all the theoretical
possibilities. The freedom in the choice of a generator set allowed by Runge Theorem
linked to a convenient use of model order reduction algorithms by balanced realizations
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can be used to build an algorithm optimizing, in a certain sense, the generator set used
in each step of Gallerkin method. The numerical behavior and the convergence of such
algorithm are better than the simpler algorithms proposed in this paper as it is shown in
[21]. The presentation of the "optimized basis' methodology will be the subject of a
next paper, where the mathematical programming agorithms to be used will be
carefully developed.

There is a point to stress: the relevance of the dual algorithm presented in [1],
giving inferior bounds to the optimal solution, alowing a good control of the
approximation error, undoubtedly a very useful tool not always present in Gallerkin
methods.

Now, the possibility of extensions of some results to other problems will be
considered. First, sometimes there is interest in weighted H; spaces where the norm is

defined as || K ||, , = ess. sup. | ®(ic)K(ic)|, P asin assumption Al. Note that closed

ballsin this new space are closed in H2~%**Y if 9,(d) = k, which alows to easily extend
the theory exposed in this paper to this new context. Second, the assumption that the
weighting filters ®(s) are rational functions is natural in finite-dimensional control
problems, but it can be generalized to assume the weighting filters as H2* functions,
with no restrictions to rational ones. The only real constraints are the integrability
conditions, the non-existence of zeroes on iR and the asymptotic order at s = +oo. With
these changes and the extension of Youla Theorem to this new setting, the theory
developed here can be applied to strongly stabilizable infinite-dimensional linear
systems, a problem presently in study.

A last comment is about the so-called L' problem [35]. Denoting by 4 the algebra
of the stable impulse functions [ 36],

A=(F: @)+ 4,80 -1) fODL{0®)1, 20 2| a <o}

and 4 its Laplace transform, it can be shown (with the appropriate identifications) that
AOC%R) n H°OH?™,

C°(R) denoting the continuous functions in iR and L'[0,0) the usua space of
integrable functions. Moreover, if 4 is normed with the sum of the L*-norm of f plus the
[1-norm of {a,}, bounded sets in A have theirs Laplace images bounded in H; and in
H?™. In spite of that, it is possible to show bounded sequences in L'[0,00) which
L aplace transform converges to a discontinuous function on iR in the H>™" topology.
Therefore, bounded closed sets in 4 are not transformed in bounded closed sets in
H?Z™*, which shows that the mathematical construction presented here does not fit the

L* problem: it is not possible to consider "L constraints" in the H/H® problem with the
methods developed in this paper.

Appendix 1. In this appendix we provide the proofs not presented in the main text.
PROOF OF COMMENTS AFTER DEFINITION 1. As [f, g} _, = ®_ f,®_ ¢[] and

®, (iWP_, (iw) > 0 for adl w, the announced properties are inherited from the inner
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product and the norm in L(iR), if the integrals are finite. If R4, this last property isa
consequence of fbeing arational function without polesin iR and
0.(fd,d_, 1) =(1-k)+2k+(1-k) =2

(then integrable on iR). [ ]
THEOREM 1 PROOF.

(a) The function 7 belongs to %, (iR) if and only if ®.f belongs to L?(iR), by
definition. As Ry isdensein L%(iR) [25], ®; Ry isdensein?, (iR). But ®} Ry = Ry,
Indeed, if fUR1«, g = (P_, ) belongs to R, because 9,(P_, /) = 1 and g has no polesin
iR. In the reverse direction, if 7 belongs to Ry, then ®7; f belongs to R,_, because
0(®_, /) = 1-k and f has no polesin iR. Therefore, Ry isdensein L?, (iR). The same
argument when applied to R, H? to R, , H>", to R, H?,and to R_,, H*™,
proves the announced densities. The final statement in (a) is a consequence of 12, (iR)
be the completion of Ry inthenorm ||. ||, _, , the same arriving to H? inrelationto R,
to H>™* inrelationto R, etc.

(b) H>™* and H?>™*, as closures of R, and R, inI? (iR), are closed

subspaces.

(c) Straightforward from (a). Note that e*0 H> for A a real number because
@94 js hounded on each vertical straight linein C°, for eachreal a>0. Then €%
belongsto H>™ n

THEOREM 2 PROOF.

@ Ask<m, ®_, = ®D_ for some rea-rational stable and minimum phase
function with 0,(®) = m-k > 0. Then a function f belongs to L? (iR) if and only if ®f
belongsto 1?7, (iR), as a consequence of Definition 3 and as a consequence of || f Il
= ||, fl, =l1PP_ fl, = | ®f |l,_, - Therefore, the operator /' — ®f'is an isometry
from I? (iR)tol?, (iR), theinverse isometry being g — ®'g. By the Cauchy-Schwarz

inequality applied in L%(iR),

Nl = PP < NP 1P S = TP S
andas | @ |, <, 12, (iR) O (iR). Then the isometry from I? (iR) to I?, (iR) is
an injective mapping and itsinverse is a surjective mapping.

(b) A direct consequence of Theorem 1b and Theorem 2a.

(c) Let k = 0. First we will prove that R; is dense in R in the L?,(iR) topology.
Actually, we only need to show that the constant function f{s) = 1 is a limit of R;-
functions in this topology. Defining f;(s) = n(s+n)™,

1= [ =

—o00

w = ’
n’+ o’ 1+ n+1

which converges to zero if n goes to o, showing the desired convergence and the stated
density.
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Second, as Rpisdensein L2 (iR), Ry isaso densein L% (iR) initstopology.

Third, as R, O L3GR) O L?,(iR), the density of Ry in L7, (iR) implies the density
of L¥(iR) in 12 (iR).

Fourth, more generally, let M be a total set in L?, (iR), k£ < m, and assume
f(9O L2 (iR). Set:

-m

—m

}f* (WP (iw)P_, (iw)g(iw)dw =0, for al g(s)M,

which has a sense because g(s)0J %, (iR)0 L2, (iR). Then,
fo_, @l 012 (R)OL (iR) =[ 1%, iR)]

-m -m

(where the symbol = denotes the identification to be showed in Theorem 4a below,

which will be proved independently from the present theorem), implying that f®_ @~
can be taken as the zero function. Thisimplies that f{s) = 0 because ®_, (iw)®”, (iw) is

strictly positive for al real w. Therefore, as g(s) is any function in a total set, the set M
isaso total in L? (iR), by a known corollary of Hahn-Banach Theorem. From k < m,

17, (iR)O 12, (iR), proving the density of the first in the second.
Analogous arguments can be used for H2™* and H>™ .

(d) Assume that f, convergesto fin H; . Then

17, = £ 1B= [17,60) = £ (i) F] (i) | de

< ess.sup{| £, (iw) — 1 (iw) |’} }dD*_l(iw)dD_l(iw)doo

<|f-fIE T lE
and because || ®_, |5 is finite, f, convergesto £in L2, (iR). The stability of fis assured
because ¥ 0 H? . To complete the proof, let sus exhibit a function in Z>™ that do not
belongsto H? . First, note that there are unbounded functions in L%(iR), as g(iw) = [icf

1.1, Where Xp1,1; denotes the characteristic function of the closed interval [-1,1].
Straightforward calculations show that || g ||, = 2 and that |g(iw)| diverges when w goes

to zero. As a I*(iR) function, g = g+ + g., where g.[0H? and g.0H?. Both functions

cannot be simultaneously bounded, because ¢ is not bounded. If g, is unbounded, it is

the example completing the proof, because g.0H’0H>™ but g.O0H”. If g, is

bounded, g is unbounded, and g”(s) = g(-90H?>0H>™ and is unbounded because

27 (9| = g.(9)], g"(s) being the example, and completing the proof. [
REMARK 2 PROOF. Remark 2 is proved in (c) above, if we note that

i 2
n
10 = [ —dw=nm
Jn t+tw

which implies that the sequence {f,} does not converge in L4(iR) when » goes to o, in
spite of its convergencein H>™. [ ]
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THEOREM 3 PROOF.

(@ Ask<m, ®_, = ®P_, for some rea-rational stable and minimum phase
function with ,(®) = m-k > 0. First, if || /||, _, <M, by the Cauchy-Schwarz inequality

| A | PP [ | PR (o | PR L7 (o[ P

prooving the first part of the statement. Second, the closed balls of 7, (iR) are closed
in I? (iR) as inverse image of closed sets by an isometric isomorphism (see Lemma
2). Third, if Q is a bounded closed set in Z?, (iR), it is contained in a closed ball in
L%, (iR), which is a closed subset of Z?, (iR). As Q is closed in a closed subset of a
metric subspace of L7 (iR), Q is aso closed in I (iR) (see Theorem 2,11,9,2,b, in
[24], page 27). Fourth, as H>™ is a closed subspace of I, (iR), the last property is
inherited by H>7* .

(b) First, if || f]lo < M,

1/ 152= [/ FIP4 () P dos [[Lf L 1915 < MO | <eo,

which shows that bounded subsets of 47 are bounded in the L7, (iR) metric.

Second, it will be shown that the closed ballsin H” are closed in H>™*. For that,
let {f,} asequencein aclosed ball of H; with radius M, i.e., || f, |l < M for al nON.
Let fOH; with || /]l. > M. Thus there is a positive real number € so that || /|l is
strictly greater than M+2¢. The definition of "essentia supremum™ implies that there

exists aset £ O R with strictly positive measure so that | f{iw) | > M+e for all WlE.
Therefore, £, does not convergeto fin H>™" because

1S = 7 W5= [17, 0= /() Pl (i) | doo
2 {11, (i0) = £ (i) | ®_, (i) | dw
2 [1./(i6) F| (i) | deo= [1.£, (i) [| @y (i) [ doo

>[(M +&) = M][|® (i) § dw=¢g[|®_, (i) > dw>0,

1 A more direct proof uses the weak continuity of the multiplication by ®. Indeed, reasoning on L*(iR),
L% (iR), if £, — fweakly in L%(iR), | | (f,-)®gddd < [|P]l [ |(/,-)gldew — O for al g in L(iR). Then, if,
foral n ON, ||/, |l < M, there is a subsequence, say {f;,}, converging weakly in L%(iR) to a limit f, such
that |[fw|l2 < M (see [27], page 26). The weak continuity proved above implies that ®f,, converges weakly
in L%(iR) to ®f,. But, asf, convergesto f'strongly in Lgl (iR), ®f, converges strongly to ®7in L%(iR), and
then ®f, converges weakly to ®fin L%(iR). As {f;} represents a subsequence of {f,}, ®f, = ®f (which
implies £, = 7in L¥iR) because ®(.) is a continuous bounded function with no zeroes on iR), it follows
that || /|l. < M, proving that the closed ball with radius M in L%(iR) is also closed in L?, (iR). The same

reasoning applies to Lfk (iR) for any integer k.
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the last integral being strictly positive from because ®.1(iw) is continuous and strictly
positive on the real axis. The contrapositive propositionis:

"if £, fin H>™ then || f |l < M",
implying that closed balls of H? arealso closed inthe H>™ topology.

Third, if Q isabounded closed setin H;, it is contained in aclosed ball in H?,
whichisaclosed setin H>™. AsQ isclosed in a closed subset of a metric subspace of
H>™ Qisalsoclosedin H>™ (see Theorem 2,11,9,2,b, in [24], page 27). ]

REMARK 5 PROOF. Let f;(s) = (ns+1)™*, nON. These functions belongsto H with
Il £, ll. =72(0) = 1. Also

, _ o (UUn)? T

I/, 12 = _L—(lln)z e dw = o
Therefore, the sequence £,(s) converges to zero in H? and, a fortiori, in H>™. But it
does not converges to zero in in H;. Now, let g(s)00H; any function such that
lg|l. <1 Then g,(s) = g(s) + 3f.(s) convergesto g(s) in H>™ but does not converge
in H; because || g, ||, > 2, for al n. Therefore, any function in the closed unit ball in
H? can be strongly approximated in #>~* by functions in the exterior of this ball: all
the functions in this set are in its Z>™ boundary. The H? closed balls have an empty
interior inthe H2>~* topology. n

THEOREM 4 PROOF.
(&) As continuous linear functional on Hilbert spaces are uniformly continuous,

we need to proof the statement only on R;",, adense subset of H>7* ([37], page 98). In
this case, as y(s) and f{s) have no poles on the imaginary axis, the integral will be finite
if and only if 0,(/)+0,(y) = 2. This arrives for al /O R, if and only if d,(y) = 2—(14) =

k+1. Also, (®°,)7'yOL?(iR) and ®,/0L*(iR). Then, by the Cauchy-Schwarz
inequality,7(f) is continuous orR;", , because

| [/ (@y(ie)dw] = | [(/_) (W)[(P,) V] (wdw|

< P2 TV 1S Nl -
(b) As a consequence of (a), a rational functitm is in the dual space off >™

if and only if 0,(g) = k+1, i. e,gd0HZ>*. As the dual of #>™ is a Hilbert space, the

completion argument proves the statement. [ ]
THEOREM 5 PROOF.
(a) The statement is an adaptation of the known Youla Theorem, see [27].

(b) We need to proof the statement only Bj, , a dense subset d7>™ (see

[37], page 100). Now, if(s) is a rational function without poles @R,
|/ (i) (i) £ (i00)dew = Jler (W] [®f (iw)]dw = | f |l; <o
if and only ifd,(/P) = 1, i.e.,0,(f) = 1-k or fO H>*.
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Also, as ®(s) and P(s) are rational functions with no poles or zeroes on iR and
those functions have the same rel ative degree, there are real numbers a and 3 such that:
0<a< |PIWP (iw) | <P <.
Thisimpliesthat, if fOR,", , then

allf Iy < [f (O (i) f(i)dw> = [|DF [I; <BILS Il -

Thus || ®f ||, defines a norm equivalent to || f|,_,, the quadratic functional being
continuous on R,’, as the square of an equivalent norm. Finaly, if m < k and fOHZ>™",
| f_, (iw) | and | PP (iw) |* belong to L? (iR), then

-m

[/ G i0) f (o = [, /(] T, /(@D ()] [0, (o

< edT, I®, /1l = 1PP LIz,

by the Cauchy-Schwarz inequality. Therefore, the quadratic functional is continuous in
HZ?™ at the origin, then continuousin H2™" for m < k.

The coerciveness on H?>™* was shown above, where o is the coerciveness
constant. For m < kand fO0 H>™" , let

£(5) = D ()svn(s +n) ?], D(s)P, () = g(s)(s+1)*,
where |g(iw)f? < B? < o for some rea number B because g(s) is a proper rational
function without poles on the imaginary axis. Straightforward cal cul ations show that:

2

0 10, I SB S =6t ST

which converges to zero when n goesto . But || £, ||?, = 102 for al n. Then thereis no

real number o such that o?|| £, |I?, < || ®f, |I? for al n, which shows that the quadratic

functional is not coerciveon H2>™" for m <k.
The proof of the strictly convexity is straightforward. [
COROLLARY 1 PROOF. As 8, (K) = 0, ([(®")*y],) -k, 0,(K) =0if and only if
0. ([(P)7'V],) 2k 1fay) =2k, 0, ((®7)7'y) =k, implying 0, ([(P")*y],) =k, which
proves the sufficiency of the condition. If £ = d(®) < 1, as 0, ([(®")7'y],) = 1,
d.(K) 0. [ ]
PROOF OF COMMENTS ABOUT CONDITION (3.5). We need to prove that condition

(3.5) isinherited by afinite sum of quadratic functiona asin (3.4). For that, denote the
functional as

JKI =5 J, K], JIK] = }{K*FnK—ZK*yn}doo, M= ®,0,.

Then,

1 S\

JK] = }{K*FK—ZK*y}doo forr=@’®= zq);q)n Y=YV

Let 0r(yn) = 0,(Pn)+1 and assumptions A1, A2 hold for each n. Then
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(> v, ) 2 min{or(yn)},
as usual, but:
(S T,)=0(Y ®,®,)=min{o( )}
because the numerator of the first term is a sum of para-hermitian functions, each one

strictly positive on the imaginary axis, which implies that its degree is the maximum
degree of the parcels. See[9] for a complete development of this argument. Therefore,

or( z Y, ) =2 min{o(yn)} = 0(Pp)+1 = (Y2)Min(M)}H+1
= ()min{o( T, )1 = 0(Pn)+1,
completing the proof. [ ]
THEOREM 8 PROOF. Here it will be used the notatioffjs|. and Ll..} from section
4. The strictly convex criterion in problem (5.1) is a continuous function becééuise

finite-dimensional Q, is a closed convex set as the interception of the closed convex
setsQ, © andH,. It will be nonempty if the dimensiom™ is sufficiently big because

QnO is nonempty by assumption a|b_(an is H>™. Therefore, if "n" is sufficiently

n=1

big, problem (5.1) has one and only one solution Kn .

(a) For all VOH,, ||K, |l < |V |l because Q; 0 Q, 0..0Q, 0..0Qn0O.
Then the sequence { 13,] 0N} is bounded, which implies the existence of a weakly
convergent subsequence that converges weakly in H>™ to a function, denoted here by

I%W (Bolzano-Weierstrass Theorem, [28], page 26). This subsequence will be denoted
by { l%m ,mUN}. Note that I%w depends on the chosen subsequence.
(b) As QnO is convex and strongly closed, it is also weakly closed (Mazur

Theorem, [28] page 20). Then K, QN ©.

(© 13,] Is a solution of problem (5.1) if and only if it verifies the following
variational inequality:
w,,V, —K, 0 =0, foral V,0Q,

([29], pages 9-11 or, in a more general setting, [30], page 76). The weakly convergence
of 12 implies the convergence of the inequality above to the condition:

w,,V, -K, 0 =0, foral VnOQm,

m

for each m used in the subsequence. As the sequence of spaces { H,} increases, then

m

| JH, isadensesubspaceof H?™ and | JQ, 0Qnis adense subset of Qn®. Taking
m=1 m=1

the limit in the last inequality, we arrive to
,Vy-K,0_, 20, foral YOQnO,

a necessary and sufficient condition to IQW be the solution of problem (2.3). Then I%W

equals K , the solution of problem (4.1), for any subsequence 12 of the sequence I%n

generated by Gallerkin method, which implies the weakly convergence of this sequence
to the optimal solution to problem (4.1). [ |
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THEOREM 9 PROOF. First, it will be considered the situation where K, = K, when
problems (5.2) and (5.3) are essentially the same. Second, note that Theorem 8 can be
generalized to the space H>~* without changes, which proves the weak convergence (in

H?>™) of the sequences generated by problems (5.2) and (5.3), when #ON, it means,
K, convergesweakly to K and G, + K convergesweaklyto G + K = K in H>™.

Under the assumptions of Theorem 9 these sequences will converge strongly in H>7™,
for the same limit. Indeed, the density of | |/, in H?™ and the fact that GOQnO, a

n=1
closed convex set, imply that, for all positive real number €, there is an integer N such

that || G- G, |lr <eforadln>NandG,e Qy. Thus, by the triangle inequality,

1G, I =G, +G=G I <IIG, =Gl + Gl <Gk +e.
Squaring this expression and remembering the minimizing property of G in
Q'nO'0Q,, wehave

WG +&)? =IGIE + UG +&) > IG, IF 2IG, IF 2IGIF.
Taking € to zero, it is proved that || én I? convergesto || G IIZ.

Now, an argument due to Frederic Riesz shows the strong convergence of én to
G:

1G, -G IF = G, -GG, -GJ =G, |} -2,,GF + G I},
which goesto |G | - 2G,G0 + ||G |P = 0 asn goes to « by the weak convergence
of én to G and by the norms convergence (showed above). This ends this part of the
proof.

The strong convergence of K = G +KtoK=G + IS a consequence of
the continuity of the sum in Hilbert spaces.

Now, if K, is the projection of K in Q,, K, = G, + K

Where{é } is
exactly the sequence considered just above. As G converges strongly to G and K,
converges strongly to K (by the continuity of convex projectionsin Hilbert spaces [30],
pages 157-158), K, converges strongly to K in H27* .

The strong convergence of én to G, in the case where K isthe projection of
K inQ,, is now aconsequence of the equivalence between probl ems (4.2) and (4.3).

To end the proof, note that Q, 0 H>™, whichimpliesthat K, belongsto H>™.

Then, the convergence of K, in H2™* implies the convergence in H2™ to the same
limit by the inverse isometry of Theorem 2a. [ ]
REMARK 11 AND THEOREM 10 PROOF. First, note that H* O H>'=(H>™) =

H*O(H?), H? being dense ind>™ and (H>™) being weak-star dense in4(")’
(apply the Corollary, page 298 and T2,XIX,7;5, page 299 [24]). 'ﬂﬁgn]% above can
be identified with functionsin (H>™) O(H?) by K= G, (f) = [@®_K,®_ £, for
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fUOH?. Second, Fr,0( H;’ ) converges taFlJ( H; )’ in the weak-star topology” means
Fn(g) - F(g) forallgd HY .

If K, -~ K weaklyin H27, @ K, ®_ g0 - @ K,® g0 foreachgDH”,
which proves the sequence weak-star convergencein (4, )’ and Remark 11.

Now, for Theorem 10, let Kn converges to K strongly in H>™. For each
functional GO(H?)', let F,, a functional sequence in(>™)" approachingG in the
(H?) weak-star topology, i. e.F.(g)-G(g) for eachgllH;. By the Banach-
Steinhaus theorem [24], the sef,} is equicontinuous in #2™*. Thus F,(K,)
converges to G(K ). Indeed,

|G(K) - F,(K,)| < | F,(K,) = F,(K) |+ F,(K) - G(K) |,
the first term in the right going to zero because { F,,} is equicontinuous and Kn - K
strongly in H2™, the second term in the right going to zero because F,,(g) — G(g) for
each gl1H; . As a consequence G(I%n) converges to G(I% ) for each functional
GU(H), proving the weak convergence i, . [ |

PROOF OF THE LAST COMMENT IN SECTION 7. If F(f) = f{r) + iaja(t —1,) with

J=1

Z| a, | < andf belongs taL [0, =) (it means F is a distribution in the algebr4),
Jj=

Fs) = F(s) + Zaje", its Laplace transform (a function in 4), where f(icw) is a

continuous function going to zero at +eo (£ and f representing the Fourier transforms
of F and ). From the Fourier transform properties (see [25]) with 3 = (1-§9)™,

IEG) I = [FHOM66) f(@)dw + [ 3 ae T (@)Y aedw
2t J; 1 J;]Z J 1 Zl %
<SIFIR T IR +1 Z' a, P17 11T, I
J=

<Ll + Z' P12

Therefore, 7 belongs to H>™ and bounded sets in 4 are also bounded in /2. But
closed bounded setsin 4 are not bounded closed in H>™.

Indeed, if g(ic) = 1 for | w|< 1 and g(ic) = O for | w| > 1, g belongs to L*(iR).
Then, g can be decomposed in its stable and unstable components as g = g+ + g..
Without loss of generality, assume that g. is discontinuous. As a H? function, g is a

limit of a sequence of continuous functions G, = ;bk B, , where Bi(s) = (s-a)/(s+a)",

a > 0, the Laguerre functions, and lebk |> < . As the Laguerre functions inverse
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Fourier transforms are in L[0,), afunction that is not in A, g+ isalimitin H? (then

in H>™) of a sequence of functions in A. Moreover, this sequence is bounded in A
because

I Ga |l < a_lZ“?k |* < oo foral nON.
=1
Thislast inequality is a consequence of
Guiaf = ZI b, | B.(iw) [

and

I1G, I = sup{IG (i)} = sup{ ilbk [l B, (i) [}

< sup{|Bi ) gﬂ b < a-1i| b .

where it was used that a set of functions in L'[0,0), which Fourier transforms are
bounded in 4, are also bounded in A, as a consequence of || /|, < || /|l (see[25],

page 26) and Zlbk IZS[ZIbk I L
=1 =1
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Appendix 2. In this appendix we provide the numerical data for the example in section
5. Rational functions described below have been calculated from the data P(s), @.(s),
@ (s) and @(s) givenin Section 5. For that some diophantine equations (arising from the
parameterization of stabilizing controllers) was solved, a variable change to reduce the
robustness condition to Nehari form was applied, some multiplications of rational
functions and cancellations of coincident poles and zeroes were made. The two first
caculations were performed by state variable methods, as exposed in [6], the
cancellation being performed by model order reduction using the Hankel singular value
technique. The use of double precision cal culations was impositive.

Rational Degree Numerator coefficients Denominator coefficients

functions

A(9) s 0  1.000000000000000e+000
st 1.381024580093296e+000  1.211595042867158e+002
st 1.686008580615162e+000  5.458713034337957e+003
st 7.703019538462904e+003  1.125395291285975e+005
sto 1.634508577704982e+005  1.076974629099070e+006
s 1.671129690051401e+006  4.927775329734212e+006
$ 8.766081844981248e+006  1.233200905234427e+007
s’ 2.566570185137830e+007  1.843165614381086e+007
$ 4.288376514277657e+007  1.679171067887532e+007
S 3.638011973651214e+007  8.937537473511269e+006
s 1.128209738056106e+007  2.752841097866921e+006
s 1.881317702823051e+006  4.943826116024184e+005
& 1.129883884492416e+005  4.781899120202310e+004
st 2.747279969974730e+003  1.733418128119080e+003
L 2.330461985378970e+001  1.960830911271398e+001

B(s) s 0  1.000000000000000e+000
S -1.000012371305996e+000  1.863782215050616e+001
$ -1.562399952832152e+001  1.181106597540888e+002
s’ -1.161078545444695e+002  3.834756797815088e+002
¢ -4.837125168666800e+002  7.437879887932461e+002
S -1.205831279245822e+003  9.129112097836384e+002
s -1.706884574538163e+003  7.095696057600543e+002
s -1.220645462582847e+003  3.376552213167196e+002
& -3.711128214145705e+002  9.277136443643682e+001

-3. e+ . et

st 3.777832594378928e+001  1.316517110219557e+001
L -7.343714254348321e-001  7.250551615217723e-001

Fo(S) & 0  1.000000000000000e+000

-2. e+ -2. e+

st 2.488088793672762e+000  -2.263724821234260e+000
L 8.620956412513727e-001  8.843128062448000e-001
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