2 Modelagem

O estudo de um sistema mecânico resulta em equações cinemáticas e dinâmicas, que expressam restrições, ou que limitam a possibilidade de movimento dos sólidos constituintes do sistema. O presente capítulo tem como foco o desenvolvimento do modelo matemático da dinâmica do TPRE, que será usado, posteriormente, na respectiva simulação.

A seguir serão apresentados dois modelos retirados de artigos de referência, e em seguida o modelo aqui desenvolvido e utilizado na simulação.

2.1 Modelo I

Tsai-Jiun Ren, Tien-Chie Chen e Chun-Jung Chen [09] desenvolveram uma formulação dinâmica, baseada no sistema de coordenadas da Figura 7. Na Tabela I embaixo encontra-se a descrição dos parâmetros deste modelo:

Parâmetro	Descrição
l	Comprimento da haste
D	Metade da largura da base
R	Raio da roda
$J_{p\phi}$	Momento de inércia em relação ao eixo das rodas do chassis
$J_{m \phi}$	Momento de inércia em relação ao eixo das rodas do pendulo
g	Gravidade
M_w	Massa de cada roda
I_w	Momento de inércia da roda
М	Massa da estrutura
f_{dL}	Perturbação na roda esquerda
f_{dR}	Perturbação na roda direita
f_p	Perturbação no chassis
Jψ	Momento de inércia perpendicular ao eixo das rodas

Tabela I: Parâmetros utilizados no modelo I

Figura 7: Sistema de Coordenadas modelado por Tsai-Jiun Ren, Tien-Chie e Chun-Jung Chen

Nas equações amostradas embaixo descrevem a dinâmica do sistema para um TPRE desenvolvido por Ren, Chie e Chen.

$$\overset{\bullet}{\theta} = \frac{(M+m+2M_w+2J_w/R^2)(mgl\sin\phi + f_p l\cos\theta) - ml\cos\theta(\tau_1/R + \tau_2/R + f_{dL} + f_{dR} + f_p)}{(J_{m\phi} + J_{p\phi})(M+m+2M_w + 2J_w/R^2) - m^2 l^2 \cos^2\theta}$$
(2.1)
$$\overset{\bullet}{x} = \frac{\tau_1/R + \tau_2/R + f_{dL} + f_{dR} + f_p - ml\cos\theta(mgl\sin\theta - f_p l\cos\theta)/(J_{m\phi} + J_{p\phi})}{(M+m+2M_w + 2J_w/R^2) - m^2 l^2 \cos^2\theta/(J_{m\phi} + J_{p\phi})}$$
(2.2)
$$\overset{\bullet}{u} = \frac{D(\tau_1/R + \tau_2/R + f_w - f_w)}{(M+m+2M_w + 2J_w/R^2) - m^2 l^2 \cos^2\theta}$$
(2.2)

2.2 Modelo II

S.W. Nawawi, M. N. Ahmad, e J.H.S. Osman [08] desenvolveram outro modelo matemático, baseado no sistema de coordenadas mostrado na Figura 9, no qual se aplica a mecânica Newtoniana para a obtenção das equações, descrito a seguir.

Na Tabela II encontra-se a descrição dos parâmetros do segundo modelo:

Parâmetro	Descrição
L	Comprimento da haste
D	Metade da largura da base
R	Raio da roda
8	Gravidade
M_r	Massa de cada roda
M_p	Massa da estrutura

Tabela II: Parâmetros utilizados no modelo II

Figura 8: Sistema de Coordenadas modelado por S.W. Nawawi, M. N. Ahmad e J.H.S.Osman.

Baseando-se no sistema de coordenadas da Figura 8, obtêm-se as equações de movimento, para a roda direita e esquerda:

$$x_{RL} M_r = H_{TL} - H_L + (f_{dRL} + f_{dRR})$$
(2.4)

$$\overset{\bullet}{\theta_{RL}} J_{RL} = C_L - H_{TL}R \tag{2.6}$$

Baseando-se no sistema de coordenadas da Figura 8, escreve-se para o chassis:

$$\mathbf{y}_{p} = -\boldsymbol{\theta}_{p} L \sin \boldsymbol{\theta}_{p} \tag{2.8}$$

$$\mathbf{x}_{p} = -\boldsymbol{\theta}_{p} L \cos \boldsymbol{\theta}_{p} + \frac{x_{RL} + x_{RR}}{2}$$
(2.9)

$$\dot{\delta} = \frac{x_{RL} + x_{RR}}{2f} \tag{2.10}$$

onde: HTL, HTR, HL, HR, VTL, VTR, VL, VR, representam as forças de reação entre os componentes do veículo e que se encontram definidas na Figura 9.

Então, para o chassis, obtêm-se as seguintes equações dinâmicas

$$x_{p} M_{p} = (H_{R} - H_{L}) + f_{dP}$$
(2.11)

$$\overset{\bullet}{\theta_p} J_p = (V_R + V_L) L \sin \theta_p - (H_R + H_L) L \cos \theta_p - (C_L + C_R)$$
(2.13)

$$\ddot{\delta}J_{\delta} = (H_L + H_R)\frac{D}{2}$$
(2.14)

As variáveis de estado são então definidas por:

$$x = \begin{bmatrix} x_r, x_r, \theta_p, \theta_p, \delta, \delta \end{bmatrix}'$$
(2.15)

Modificando as equações acima, linearizando o resultado ao redor de $\theta_p = 0$, $x_r = 0 \ e \ \delta = 0$, e escrevendo o sistema na forma de espaço-estado, encontra-se definida o modelo:

$$\begin{bmatrix} \bullet \\ x_r \\ \vdots \\ \theta_p \\ \bullet \\ \theta_p \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & A_{23} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & A_{43} & 0 \end{bmatrix} \begin{bmatrix} x_r \\ \bullet \\ x_r \\ \theta_p \\ \bullet \\ \theta_p \end{bmatrix} + \begin{bmatrix} 0 \\ B_2 \\ 0 \\ B_4 \end{bmatrix} \begin{bmatrix} C_L + C_R \end{bmatrix}$$
(2.16)

$$\begin{bmatrix} \mathbf{\dot{\delta}} \\ \mathbf{\ddot{\delta}} \\ \mathbf{\dot{\delta}} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{\delta} \\ \mathbf{\dot{\delta}} \end{bmatrix} + \begin{bmatrix} 0 \\ B_6 \end{bmatrix} \begin{bmatrix} C_L - C_R \end{bmatrix}$$
(2.17)

onde:

$$A_{23} = g(1 - \frac{4}{3}L\frac{M_p}{X})$$
(2.18)

$$A_{43} = \frac{gM_{p}}{X}$$
(2.19)

$$B_2 = \left(\frac{4LY}{3X} - \frac{1}{M_p L}\right)$$
(2.20)

$$B_4 = -\frac{Y}{X} \tag{2.21}$$

$$B_6 = \frac{6}{(9M_r + M_p)RD}$$
(2.22)

$$X = \frac{1}{3} \frac{M_{p} (M_{p} + 6M_{r})L}{M_{p} + \frac{3}{2}M_{r}}$$
(2.23)

$$Y = \frac{M_p}{(M_p + \frac{3}{2}M_r)R} + \frac{1}{L}$$
 (2.24)

2.3 Modelo III

Nesta seção apresenta-se o modelo desenvolvido por Kim e Kwak, onde é acoplado o modelo do motor e o usuário, com a finalidade de atingir a maior exatidão na simulação e no processo sintonizar os parâmetros dos controladores.

2.3.1 Método de Kane

O método de Kane [19] relaciona as forças inerciais generalizadas, com as forças ativas generalizadas, através de:

$$\tilde{F}r + \tilde{F}r = 0 \tag{2.25}$$

onde:

Fr : força ativa generalizada; e

Fr : força inercial generalizada.

As relações de dependência entre os parâmetros do sistema: q, q e t, sendo q a coordenada generalizada e t o tempo, podem ser consideradas holonômicas ou nãoholonômicas. No caso dos robôs móveis equipados com rodas, assunto desta dissertação, constitui uma classe de sistemas caracterizados por restrições cinemáticas de contato que não são integráveis.

2.3.2 Sistema Holonômico

Um sistema Holonômico é aquele no qual se tem restrições descritas pela Equação (2.26), por exemplo, em um robô serial fixo. As restrições são de tipo geométrico e não sofrem interferência da derivada temporal dos parâmetros do sistema \cdot q.

$$f(q,t) = 0$$
 (2.26)

2.3.3 Sistema Não Holonômico

Um sistema não-holonômico é aquele no qual as restrições não são apenas de contato físico. Devido a certas condições cinemáticas de contato, não integráveis, estas restrições são descritas pela Equação (2.27), por exemplo, em um móvel no qual não existe escorregamento das rodas. Além de restrição geométrica, também existe a restrição de velocidade entre o ponto de contato da roda e o solo.

$$f(q,q,t) = 0$$
 (2.27)

2.3.4 Força Ativa Generalizada

A força ativa generalizada se relaciona com todas as forças de contato como, por exemplo, a força do atrito e a força de distância. Entre as forças de distância, destacamse as forças de gravidade e as forças magnéticas que atuam sobre um elemento, ou partícula.

$$\tilde{F}_r = \sum_{i=0}^3 \tilde{\mathbf{v}}_r^{P_i} \bullet R_i$$
(2.28)

2.3.5 Força Inercial Generalizada

Relaciona-se com as forças geradas pela inércia do sistema como, por exemplo, a aceleração angular e a aceleração linear.

$$\tilde{F}^{*}_{r} = \sum_{i=0}^{3} (\tilde{\boldsymbol{\omega}}_{r}^{P_{i}} \bullet T^{*}_{i} + \boldsymbol{v}_{r}^{P_{i}} \bullet R^{*}_{i})$$
(2.29)

onde:

$$\mathbf{R}^* = -M\mathbf{a}^* \tag{2.30}$$

$$\mathbf{T}^* = -\boldsymbol{\alpha} \bullet \mathbf{I}^* - \boldsymbol{\omega} \times \mathbf{I} \bullet \boldsymbol{\omega} \tag{2.31}$$

e

M : Massa total
a* : aceleração de S
T* : Torque em S

I* : Inércia em S

2.3.6 Modelagem pelo método de Kane

Os parâmetros do sistema do TPRE, medidos e calculados, podem ser observados na Tabela III.

Parâmetro	Descrição	Valor
D	Comprimento da haste	0,84 m
L	Metade da largura da base	0,83 m
R	Raio da roda	0,15 m

Tabela III: Parâmetros utilizadas no modelo III

I ₃	Momento de inércia em relação ao eixo das rodas	$1,08 \text{ kg m}^2$
I ₂	Momento de inércia perpendicular ao eixo das rodas	$2,06 \text{ kg m}^2$
G	Gravidade	9,81 m/s ²
m _c	Massa de cada roda	3,8 kg
m _s	Massa da estrutura	42,2 kg

Define-se a restrição no sistema a partir da Equação (2.32), que assume que a velocidade entre o contato das rodas e o solo é zero [13].

$${}^{F}v^{\hat{C}_{1}} = {}^{F}v^{\hat{C}_{2}} = 0 \tag{2.32}$$

Figura 9: Sistema de Coordenadas do Sistema [13].

$$u_{1} = x = {}^{F} v^{Sc} \bullet n_{1}$$

$$u_{2} = \psi = {}^{F} \omega^{S} \bullet n_{2}$$

$$u_{3} = \phi = {}^{F} \omega^{S} \bullet n_{3}$$

(2.33)

As forças e os torques entre o corpo e as rodas do robô, considerados no desenvolvimento, são representados de acordo com Figura 9 e estão descritos por:

$$\mathbf{K}_{1} = \gamma_{1}\mathbf{n}_{1} + \gamma_{2}\mathbf{n}_{2} + \gamma_{3}\mathbf{n}_{3}$$

$$\mathbf{K}_{2} = \delta_{1}\mathbf{n}_{1} + \delta_{2}\mathbf{n}_{2} + \delta_{3}\mathbf{n}_{3}$$

$$\mathbf{M}_{1} = \alpha_{1}\mathbf{n}_{1} + \alpha_{2}\mathbf{n}_{2} + \alpha_{3}\mathbf{n}_{3}$$

$$\mathbf{M}_{2} = \beta_{1}\mathbf{n}_{1} + \beta_{2}\mathbf{n}_{2} + \beta_{3}\mathbf{n}_{3}$$

$$\mathbf{G} = -m_{s}g\mathbf{n}_{2}$$

(2.34)

onde:

 K_i : são as forças sob as rodas.

 M_i : são os torques sob as rodas.

G : é a força de gravidade

As velocidades lineares, acelerações lineares, velocidades angulares e acelerações angulares de cada parte do sistema são consideradas: velocidades generalizadas. Descreve-se, aqui, a velocidade angular do corpo em relação ao sistema de referência S e a velocidade do centro de gravidade no corpo, ambas representadas na Figura 9, descritas por:

$${}^{F}\boldsymbol{\omega}^{S} = u_{2}\mathbf{n}_{2} + u_{3}\mathbf{n}_{3}$$

$${}^{F}\mathbf{v}^{S^{c}} = u_{1}\mathbf{n}_{1}$$

$${}^{F}\mathbf{v}^{S^{*}} = {}^{F}\mathbf{v}^{S^{c}} + {}^{F}\boldsymbol{\omega}^{S} \times \mathbf{d}$$

$$= (u_{1} - u_{3}d\cos\phi)\mathbf{n}_{1} - u_{3}d\sin\phi\mathbf{n}_{2} + u_{2}d\sin\phi\mathbf{n}_{3}$$
(2.35)

A velocidade angular de cada roda e as velocidades lineares do centro de giro das rodas são descritas por:

$${}^{F}\boldsymbol{\omega}^{C_{1}} = \left(-\frac{1}{R}u_{1} + \frac{L}{R}u_{2}\right)\mathbf{n}_{3} + u_{2}\mathbf{n}_{2}$$

$${}^{F}\mathbf{v}^{C_{1}^{*}} = (u_{1} - u_{2}L)\mathbf{n}_{1}$$

$${}^{F}\boldsymbol{\omega}^{C_{2}} = \left(-\frac{1}{R}u_{1} + \frac{L}{R}u_{2}\right)\mathbf{n}_{3} + u_{2}\mathbf{n}_{2}$$

$${}^{F}\mathbf{v}^{C_{2}^{*}} = (u_{1} - u_{2}L)\mathbf{n}_{1}$$

$$(2.36)$$

$$(2.37)$$

A aceleração angular para cada roda com relação ao centro de giro é descrita por:

$${}^{F}\boldsymbol{\alpha}^{S} = \overset{\bullet}{\boldsymbol{u}}_{2} \, \mathbf{n}_{2} + \overset{\bullet}{\boldsymbol{u}}_{3} \, \mathbf{n}_{3} \tag{2.38}$$

$${}^{F}\boldsymbol{\alpha}^{C_{1}} = \left(-\frac{1}{R}u_{1}u_{2} + \frac{L}{R}u_{2}^{2}\right)\mathbf{n}_{1} + \dot{u}_{2}\mathbf{n}_{2} + \left(-\frac{1}{R}\dot{u}_{1} + \frac{L}{R}\dot{u}_{2}\right)\mathbf{n}_{3}$$
(2.39)

$${}^{F}\boldsymbol{\alpha}^{C_{2}} = \left(-\frac{1}{R}u_{1}u_{2} - \frac{L}{R}u_{2}^{2}\right)\mathbf{n}_{1} + u_{2}\mathbf{n}_{2} + \left(-\frac{1}{R}u_{1} - \frac{L}{R}u_{2}\right)\mathbf{n}_{3}$$
(2.40)

As acelerações do corpo do robô e as acelerações do centro de giro de cada roda são descritas por:

$${}^{F}\mathbf{a}^{S^{*}} = \frac{d^{F}\mathbf{v}^{C_{2}}}{dt} + {}^{F}\mathbf{a}^{S} \times \overline{S^{C}S^{*}} + {}^{F}\mathbf{\omega}^{S} \left({}^{F}\mathbf{\omega}^{S} \times \overline{S^{C}S^{*}}\right)$$
(2.41)
$${}^{\bullet}\mathbf{u}_{1} - \mathbf{u}_{3} d\cos\phi + \left(u_{2}^{2} + u_{3}^{2}\right)d\sin\phi\mathbf{n}_{1}$$
$$= -\mathbf{u}_{3} d\sin\phi - u_{3}^{2} d\cos\phi\mathbf{n}_{2}$$
$$+ u_{2} d\sin\phi + u_{2} u_{3} d\cos\phi\mathbf{n}_{3}$$
(2.42)

$${}^{F}\mathbf{a}^{C_{1}^{*}} = \frac{d^{F}\mathbf{v}^{S_{C}}}{dt} + {}^{F}\mathbf{a}^{S_{C}} \times \overline{S^{C}C_{1}^{*}} + {}^{F}\mathbf{\omega}^{S_{C}} \times \left({}^{F}\mathbf{\omega}^{S_{C}} \times \overline{S^{C}C_{1}^{*}}\right)$$
(2.43)

$$\mathbf{u}_{1} - L u_{2} \mathbf{n}_{1}$$

$$= +0\mathbf{n}_{2}$$

$$+ L u_{2}^{2}\mathbf{n}_{3}$$
(2.44)

Usando a informação da cinemática já obtida, torna-se possível calcular as forças ativas generalizadas e as forças inerciais também generalizadas, em relação ao sistema S, vide Figura 9. As equações que definem a relação entre as velocidades generalizadas e as forças generalizadas ativas e inerciais, são (2.28) e (2.29):

 $-Lu_2^2\mathbf{n}_3$

Finalmente, as equações de movimento são descritas por:

$$(3m_{c} + m_{s})\overset{\bullet}{x} - m_{s}d\cos\phi \overset{\bullet}{\phi} + m_{s}d\sin\phi (\overset{\bullet}{\phi}^{2} + \overset{\bullet}{\psi}^{2}) = -\frac{\tau_{1} + \tau_{2}}{R}$$
(2.47)
$$\{(3L^{2} + 1/2R^{2})mc + m_{s}d^{2}\sin^{2}\phi + I_{2}\}\overset{\bullet}{\psi} + m_{s}d^{2}\sin\phi\cos\phi \overset{\bullet}{\psi}\phi = \frac{L}{R}(\tau_{1} - \tau_{2})$$
(2.48)
$$\overset{\bullet}{m_{s}d}\cos\phi \overset{\bullet}{x} + (-m_{s}d^{2} - I_{3})\overset{\bullet}{\phi} + m_{s}d^{2}\sin\phi\cos\phi \overset{\bullet}{\phi}^{2} + m_{s}gd\sin\phi = \tau_{1} + \tau_{2}$$
(2.49)

Reordenando as equações (2.47-2.49) e considerando o termo $\psi = 0$, tem-se:

$$\begin{bmatrix} \frac{(m_s d \cos \phi)}{3m_c + m_s} + (m_s d^2 + I_3) \end{bmatrix}^{\bullet \bullet} \left[m_s d^2 \sin \phi \cos \phi - \frac{(m_s d)^2 \sin \phi \cos \phi}{3m_c + m_s} \right]^{\bullet 2}$$

$$+ m_s g d \sin \phi = (1 + \frac{m_s d \cos \phi}{R(3m_c + m_s)})(\tau_1 + \tau_2)$$
(2.50)

$$\begin{bmatrix} m_s d \cos\phi - \frac{(m_s d^2 + I_3)(3m_c + m_s)}{m_s R d \cos\phi} \end{bmatrix}^{\bullet} x + \begin{bmatrix} m_s d^2 \sin\phi \cos\phi - (m_s d^2 + I_3) \tan\phi \end{bmatrix}^{\bullet} \phi^2$$

$$+ m_s g \sin\phi = \begin{bmatrix} 1 + \frac{m_s d^2 + I^3}{m_s R d \cos\phi} \end{bmatrix} (\tau_1 + \tau_2)$$
(2.51)

$$\{(3L^{2} + 1/2R^{2})mc + m_{s}d^{2}\sin^{2}\phi + I_{2}\}\psi = \frac{L}{R}(\tau_{1} - \tau_{2})$$
(2.52)

2.3.7 Modelagem com o motor de corrente contínua e o usuário para a implementação da simulação.

As equações genéricas dos motores elétricos usados na locomoção são

$$\frac{di}{dt} = \frac{-R_a i - K_\omega \omega + u}{L_a}$$
(2.53)

$$\frac{d\omega}{dt} = \frac{-B\omega + K_m i - TL}{J}$$
(2.54)

onde os valores dos parâmetros dos motores são:

$R_a = 0,16$: Resistência elétrica (Ω)
B = 0, 1	: Coeficiente de atrito (kgm/rad/s)
J = 0,099	: Coeficiente de Inércia (Kgm ²)
$L_a = 0,005$: Indutância do motor (mH)
$K_w = 0,86$: Constante de velocidade (RPM/A)
$K_m = 10$: Constante de torque (N.m/A)
и	: Sinal de controle (%)
TL	: Torque de carga (N.m)

Em seguida define-se o modelo matemático de uma pessoa que controlaria o transportador, utilizando um controle PD acoplado em cascata nas equações

$$f_p = k_{pp} \times e_{vel} + k_{dp} \times e_{vel}$$
(2.55)

•

onde:

$$e_{vel} = x_{ref} - x$$
 : erro de velocidade linear
 $\frac{de_{vel}}{dt} = e_{vel} = x_{ref} - x$: derivada do erro de velocidade linear

 f_p : ação da pessoa sobre o sistema x_{ref}^{\bullet} : referência de velocidade linear k_{pp} : ganho proporcional k_{dp} : ganho derivativo

Em seguida, faz-se a mudança de variáveis:

$$x_{1} = i$$

$$x_{2} = \omega$$

$$x_{3} = \phi$$

$$x_{4} = \frac{d\phi}{dt}$$

$$x_{5} = x$$

$$x_{6} = \frac{dx}{dt}$$

$$x_{7} = \psi$$

$$x_{8} = \frac{d\psi}{dt}$$
(2.56)

Reagrupando os parâmetros e fazendo a mudança de variáveis acima nas Equações (2.25) até (2.27), obtém-se:

$$A1 = \frac{(m_s d \cos x_3)}{3m_c + m_s} + (m_s d^2 + I_3)$$
(2.57)

$$A2 = m_s d\cos x_3 - \frac{(m_s d^2 + I_3)(3m_c + m_s)}{m_s R d\cos x_3}$$
(2.58)

$$A3 = (3L^2 + 1/2R^2)mc + m_s d^2 \sin^2 x_3 + I_2$$
 (2.59)

$$B1 = m_s d^2 \sin x_3 \cos x_3 - \frac{(m_s d)^2 \sin x_3 \cos x_3}{3m_c + m_s}$$
(2.60)

$$B2 = m_s d^2 \sin x_3 \cos x_3 - (m_s d^2 + I_3) \tan x_3$$
 (2.61)

$$B3 = 0$$
 (2.62)

$$C1 = m_s gd \sin x_3 \tag{2.63}$$

$$C2 = m_s g \sin x_3 \tag{2.64}$$

$$C3 = 0$$
 (2.65)

$$D1 = 1 + \frac{m_s d \cos x_3}{R(3m_c + m_s)}$$
(2.66)

$$D2 = 1 + \frac{m_s d^2 + I^3}{m_s R d \cos x_3}$$
(2.67)

$$D3 = \frac{L}{R} \tag{2.68}$$

Definindo-se as condições iniciais das acelerações, de acordo com as Equações (2.44) até (2.46), e partindo das Equações (2.25) até (2.28) com $x_3(0) = \phi(0)$ e $x_4(0) = \dot{\phi}(0)$, pode-se escrever:

$$\overset{\bullet}{\phi}(0) = \frac{D1(\tau_1(0) + \tau_2(0)) - B1x_4(0)x_4(0) - C1}{A1}$$
(2.69)

$$\dot{\psi}(0) = \frac{D3(\tau_1(0) - \tau_2(0)) - C3}{A3}$$
(2.71)

A partir das Equações (2.69), (2.70) e (2.71) podem-se obter TLL e TLR da Equação (2.54), resultando em:

$$TLL = 0.5 \left(\frac{A1}{D1 + D2} \overset{\bullet}{\phi} + \frac{A2}{D1 + D2} \overset{\bullet}{x} + \frac{B1 + B2}{D1 + D2} \overset{\bullet}{\phi^2} + \frac{B3}{D3} \overset{\bullet}{\psi} \overset{\bullet}{\phi} + \frac{C1 + C2}{D1 + D2} + \frac{C3}{D3} \right) (2.72)$$
$$TLR = 0.5 \left(\frac{A1}{D1 + D2} \overset{\bullet}{\phi} + \frac{A2}{D1 + D2} \overset{\bullet}{x} + \frac{B1 + B2}{D1 + D2} \overset{\bullet}{\phi^2} - \frac{B3}{D3} \overset{\bullet}{\psi} \overset{\bullet}{\phi} + \frac{C1 + C2}{D1 + D2} - \frac{C3}{D3} \right) (2.73)$$

Sabe-se que o torque está relacionado com a corrente em um motor de corrente contínua. Substituindo-se o termo de torque de carga na Equação (2.29) de um motor DC, e assumindo que a carga é a mesma para os dois motores, obtém-se:

$$\tau = k_m x_1 \tag{2.74}$$

$$TLL = TLR \tag{2.75}$$

•
$$x_2 = \frac{(Bx_8 + k_m x_8 - TLL)}{J}$$
 (2.77)

$$x_5 = x_6 (2.80)$$

O capítulo seguinte apresenta a teoria básica das estratégias de controle PID, Controle Fuzzy e Controle Robusto.