

Cesar Gonzalo Vera Vasquez

Redução das Emissões em Geradores Diesel-Gás

Dissertação de Mestrado

Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC - Rio.

Orientador: Prof. Sergio Leal Braga

Rio de Janeiro Setembro de 2009

Cesar Gonzalo Vera Vasquez

Redução de Emissões em Geradores Diesel-gás

Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC – Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sergio Leal Braga

Orientador

Departamento de Engenharia Mecânica – PUC-Rio.

Prof. Ricardo Hernandez Pereira

Co- Orientador

Faculdade de Engenharia Mecânica – UFU-MG.

Prof. Carlos Valois Maciel Braga

Departamento de Engenharia Mecânica – PUC-Rio.

Prof. José Alberto dos Reis Parise

Departamento de Engenharia Mecânica – PUC-Rio.

Prof. Marcos Sebastião de Paula Gomes

Departamento de Engenharia Mecânica – PUC-Rio.

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Cesar Gonzalo Vera Vasquez

Formado em Engenharia Mecânica pela Universidad Nacional de San Agustín. Arequipa- Perú, em Dezembro de 2005. Todo o ano 2006 atou como engenheiro em projetos de manutenção e planejamento em diversas empresas peruanas.

Ficha Catalográfica

Vera Vasquez, Cesar Gonzalo

Redução das emissões em geradores diesel-gás / Cesar Gonzalo Vera Vasquez; orientadores: Sergio Leal Braga, Ricardo Hernandez Pereira. – Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2009.

118 f.: il. (color.); 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Geração termelétrica. 3. Motor diesel-gás. 4. Emissões. 5. Gás natural. 6. Combustão. I. Braga, Sergio Leal. II. Pereira, Ricardo Hernandez. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

A mis padres Reynaldo y Maruja, por el inmenso amor y apoyo siempre.

A Maricela por su inmenso cariño y estímulo en mi viaje a Brasil.

Agradecimentos

Aos Professores Sergio Leal Braga e Ricardo Hernandez Pereira, pela confiança, paciência e apoio.

Aos meus familiares, em especial ao Arquiteto Álvaro Pilares Vera e a Licenciada Consuelo Vera Ramos pelo estímulo e ajuda na minha viagem ao Brasil.

Ao Departamento de Engenharia Mecânica da PUC-Rio, professores e funcionários.

Ao ITUC (Instituto Tecnológico da PUC-Rio), aos funcionários administrativos e funcionários das oficinas mecânicas pela ajuda subministrada.

Aos colegas Julio Cuisano Egúsquiza, Juan Milón Guzmán, Miguel Mozo Leon, Anthony Roque Ccacya, José Aguilar Franco, Fernando Ferrari, Andrea Carvalho e Filipe Alves pela parceria e amizade.

Ao engenheiro Severino Wanderley pelo suporte eletrônico e amizade.

Aos técnicos do Laboratório de Engenharia Veicular da PUC-Rio, Gilson Coutinho Pradanoff e Fabrício Ferraz Gonçalves, pelo apoio técnico na montagem experimental.

Para Gerson Silvério, pela ajuda na montagem do aparato experimental e pela amizade.

Aos amigos que fiz no Brasil: Gilmar, Jorge, Marko, David, Antonio, Miguel, Nilton, Gerardo, Johanna, Melisa, Evelyn R., Rocio Z., Mayra, Melva, Claudia, Rocio R., Marquito, César M., Carlos G., Liseth, Alejandra, Liliana, Tania e todos meus amigos da PUC-Rio pela amizade e estímulo.

Para CAPES, pelo suporte financeiro.

Resumo

Vera Vasquez, Cesar Gonzalo; Braga, Sergio Leal; Pereira, Ricardo Hernandez. **Redução das emissões em Geradores Diesel-gás.** Rio de Janeiro, 2009. 118p. Dissertação de Mestrado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O trabalho tem como objetivo a conversão de um grupo gerador, originalmente Diesel, para operar no modo Diesel-Gás, onde estes dois combustíveis são administrados simultaneamente no motor. Para tal foi utilizado um grupo gerador de 120KW, com um motor Perkins 1006 TAG (turbo alimentado com intercooler). Medidas experimentais foram realizadas tanto no modo Diesel quanto no bicombustível Diesel-gás. Foram avaliados: desempenho e, principalmente, emissões de poluentes atmosféricos. A redução das emissões foi realizada mediante a restrição parcial do ar de combustão, regulada por uma válvula tipo borboleta, que funciona eletronicamente, posicionada na entrada do coletor de admissão. A relação Diesel-Gás foi também avaliada, onde o segundo combustível era administrado através de um sistema eletrônico de injeção de gás natural. Os resultados indicam que em cargas baixas as reduções de monóxido de carbono e hidrocarbonatos são significativas (50% de redução de HC e 20% de CO) com máximas taxas de substituição. O mesmo se observa em cargas intermediárias. Em cargas médias e baixas observa-se um leve aumento nas emissões de óxido nitroso. Pode-se observar uma melhora no rendimento global do grupo gerador com o aumento da carga e da taxa de substituição. De forma geral, conseguiu-se reduzir os níveis de emissões em altas cargas, principalmente de hidrocarbonetos e monóxido de carbono.

Palavras-chave

Geração termelétrica; Motor Diesel-Gás; Emissões; Gás Natural; Combustão.

Abstract

Vera Vasquez, Cesar Gonzalo; Braga, Sergio Leal (Advisor); Pereira, Ricardo Hernandez (Advisor). **Reduction of the Emissions in Gas Diesel Generators.** Rio de Janeiro, 2009. 118p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this study is converting a generator, originally Diesel, to operate in a Diesel-Gas; two fuels are administered simultaneously to the motor. One diesel generator of 120KW model Perkins 1006 TAG (powered with turbo intercooler), running on the Diesel / natural gas dual fuel mode, was tested. Experimental measurements were performed in both the Diesel and dual fuel diesel-gas. Are evaluated performances and; especially air pollutant emissions. The emission reduction was carried out by partial restriction of the combustion air with the help of an electronic throttle valve, positioned before the intake manifold. The ratio Diesel-Gas was evaluated, where the second fuel (natural gas) was administered with one electronic injection of natural gas. The results indicate that at low loads the reductions in carbon monoxide and hydrocarbons are significant (50% reduction in HC and 20% CO) with maximum replacement rates. Something like is observed at intermediate loads. In medium and low loads there is a slight increase in emissions of nitrous oxides. One can observe a slight increase in overall yield of the generator with the increased workload and the replacement rate; in general it was possible to reduce emissions at high loads, especially in hydrocarbons and carbon monoxide.

Keywords

Power Generation; Gas Diesel; Engine; Emissions; Natural Gas; Combustion.

Sumário

1. Introdução	18
1.1. Poluentes Atmosféricos	19
1.2. Principais Poluentes Atmosféricos	20
1.3. Objetivos	22
1.4. Descrição da Tese	23
2. Revisão Bibliográfica	24
2.1. Combustão Diesel-Gás	24
2.2. Definições de Potências em Geradores	24
2.2.1. Potência Efetiva Contínua não Limitada	25
2.2.2. Potência Efetiva Contínua Limitada	26
2.3. Combustão Perfeita	27
2.4. Propriedades do Óleo Diesel	28
2.5. Propriedades do Gás Natural	29
2.6. Combustão Real	30
2.7. Formação de Poluentes em Motores Diesel-Gás	31
3. Aparato Experimental	32
3.1. Grupo Gerador	33
3.2. Governador Elétrico	34
3.3. Medição da Carga Elétrica	36
3.4. Medição do Consumo de Diesel	37
3.5. Controlador Eletrônico de Vazão Ar	38
3.6. Medição de Consumo de Ar	39
3.7. Controlador Eletrônico de Vazão de Gás	40
3.8. Medição do Consumo de Gás	41
3.9. Medição de Pressões e Temperaturas	42

3.12. Dissipador de Carga Elétrica 3.13. Sistema de Compressão de Gás Natural 4. Metodologia e Desenvolvimento dos Ensaios 4.1. Modo Diesel Puro 4.2. Modo Diesel – Gás 4.3. Diesel – Gás com Restrição de Ar 4.4. Redução de Dados 4.4.1. Potência elétrica Observada (P_{el}) 5.1. A.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 5.2. 4.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3. 4.4.4. Consumo Específico de Combustível (cec)		44
3.13. Sistema de Compressão de Gás Natural 4. Metodologia e Desenvolvimento dos Ensaios 4.1. Modo Diesel Puro 4.2. Modo Diesel – Gás 4.3. Diesel – Gás com Restrição de Ar 4.4. Redução de Dados 4.4.1. Potência elétrica Observada (P_{el}) 4.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 5.5 4.4.4. Consumo Específico de Combustível (cec)	0.40 Blocks to 1. O El/Cl.	
4. Metodologia e Desenvolvimento dos Ensaios 4.1. Modo Diesel Puro 4.2. Modo Diesel – Gás 4.3. Diesel – Gás com Restrição de Ar 4.4. Redução de Dados 4.4.1. Potência elétrica Observada (P_{el}) 5.1 4.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 5.2 4.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3 4.4.4. Consumo Específico de Combustível (cec)	3.12. Dissipador de Carga Eletrica	45
4.1. Modo Diesel Puro 4.2. Modo Diesel – Gás 4.3. Diesel – Gás com Restrição de Ar 4.4. Redução de Dados 5.1. Potência elétrica Observada (P_{el}) 5.1. Vazão Mássica de ar (\dot{m}_{ar}) 5.2. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3. Vazão Mássica de Combustível (cec) 5.4. Consumo Específico de Combustível (cec)	3.13. Sistema de Compressão de Gás Natural	44
4.1. Modo Diesel Puro 4.2. Modo Diesel – Gás 4.3. Diesel – Gás com Restrição de Ar 4.4. Redução de Dados 5.1. Potência elétrica Observada (P_{el}) 5.1. Vazão Mássica de ar (\dot{m}_{ar}) 5.2. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3. Vazão Mássica de Combustível (cec) 5.4. Consumo Específico de Combustível (cec)		
4.2. Modo Diesel – Gás 4.3. Diesel –Gás com Restrição de Ar 4.4. Redução de Dados 5.1. Potência elétrica Observada (P_{el}) 5.1. Vazão Mássica de ar (\dot{m}_{ar}) 5.2. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3. Vazão Mássica de Combustível (cec) 5.4. 4.4. Consumo Específico de Combustível (cec)	4. Metodologia e Desenvolvimento dos Ensaios	46
4.3. Diesel –Gás com Restrição de Ar 4.4. Redução de Dados 5.1. A.4.1. Potência elétrica Observada (P_{el}) 5.1. A.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 5.1. A.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.2. A.4.4. Consumo Específico de Combustível (cec) 5.3. Comparison de Ar 5.0. Salada (\dot{m}_{g}) 5.3. A.4.4. Consumo Específico de Combustível (cec)	4.1. Modo Diesel Puro	47
4.4. Redução de Dados 4.4.1. Potência elétrica Observada (P_{el}) 5.1. 4.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 5.2. 4.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 5.3. 4.4.4. Consumo Específico de Combustível (cec)	4.2. Modo Diesel – Gás	47
4.4.1. Potência elétrica Observada (P_{el}) 51 4.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 51 4.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 55 4.4.4. Consumo Específico de Combustível (cec) 57	4.3. Diesel –Gás com Restrição de Ar	50
4.4.2. Vazão Mássica de ar (\dot{m}_{ar}) 51 4.4.3. Vazão Mássica de Gás Natural (\dot{m}_{g}) 55 4.4.4. Consumo Específico de Combustível (cec) 57	4.4. Redução de Dados	51
4.4.3. Vazão Mássica de Gás Natural ($\dot{m}_{\rm g}$) 55 4.4.4. Consumo Específico de Combustível (cec) 57	4.4.1. Potência elétrica Observada (P_{el})	51
4.4.4. Consumo Específico de Combustível (cec) 57	4.4.2. Vazão Mássica de ar (\dot{m}_{ar})	51
	4.4.3. Vazão Mássica de Gás Natural ($\dot{m}_{_{g}}$)	55
4.4.5. Rendimento Térmico (η_t) 58	4.4.4. Consumo Específico de Combustível (cec)	57
	4.4.5. Rendimento Térmico ($\eta_{\scriptscriptstyle t}$)	58
4.4.6. Eficiência Volumétrica (η_V) 59	4.4.6. Eficiência Volumétrica ($\eta_{\scriptscriptstyle V}$)	59
4.4.7. Razão Ar-Combustível (AC)	4.4.7. Razão Ar-Combustível (AC)	61
4.4.8. Razão de Equivalência Total (RE_T) 67	4.4.8. Razão de Equivalência Total (RE_T)	61
4.4.9. Taxa de Substituição (TS) 62	4.4.9. Taxa de Substituição (TS)	62
4.4.10. Emissões Específicas 6:	4.4.10. Emissões Específicas	62
5. Resultados e Análises 66	5. Resultados e Análises	66
5.1. Resultados no Modo Diesel Puro, Diesel-Gás e	5.1. Resultados no Modo Diesel Puro, Diesel-Gás e	66
Com Restrição de Ar	Com Restrição de Ar	
6 Conclusões e Recomendações 87	6 Conclusões e Recomendações	87

7. Referências Bibliográficas	92
Anexo A: Analise da Propagação de Incerteza nos Cálculos	96
Anexo B: Planilhas de Medições	106
Anexo C: Planilhas de Incertezas	113

Lista de figuras

Figura 1 - Emissões por tipo de fonte na região metropolitana	21
de Rio de Janeiro	
Figura 2 - Esquema da instalação e montagem dos	32
equipamentos de ensaio	
Figura 3 - Grupo gerador Perkins 1006 TAG modelo P135	33
Figura 4 - Governador eletrônico da Bomba de alta	34
Pressão de combustível	
Figura 5 - Voltímetro e Amperímetro usados em conjunto	35
na medição da carga elétrica	
Figura 6 - Medidor de vazão de Óleo Diesel	35
Figura 7 - Tambor para a medição de vazão de ar na	36
entrada do coletor de admissão	
Figura 8 - Bico injetor	37
Figura 9 - Placa eletrônica de controle	38
Figura 10 - Tambor de medição de gás natural	38
Figura 11 - Arranjo dos transdutores de pressão e	39
tomadas de temperatura no lado direito a tomada	
dos sensores para a leitura de dados	
Figura 12 - Software e Sistema de aquisição de dados	40
Figura 13 - Arranjo dos transdutores de pressão e tomadas	41
de temperatura; no lado direito a tomada dos sensores para	
a leitura de dados	
Figura 14 - Software e Sistema de aquisição de dados	42
Figura 15 - Equipamento de medição de gases de escapamento	43
Figura 16 - Arranjo do dissipador de carga	44
Figura 17 - Sistema de compressão do gás natural	45
Figura 18 - Curva de potência elétrica e potência ao eixo em	67
função do consumo de óleo Diesel (Modo Diesel Puro)	

Figura 19 e 20 - Consumo específico de combustivei em modo	69
diesel puro e em modo diesel-gás com máxima taxa de	
substituição e consumo de combustível de diesel e de	
gás natural, em modo diesel puro e diesel-gás com	
máxima taxa de substituição para diferentes frações da Carga Prime	
Figura 21 - Consumo Específico de Combustível	70
para diferentes porcentagens da Carga Prime em	
função da Taxa de Substituição	
Figura 22 - Consumo de diesel sem restrição	71
e com as máximas restrições de ar em função da	
Fração de Carga <i>Prime</i>	
Figura 23 - Rendimento Térmico com variações de carga	73
e restrição de ar em função da Taxa de Substituição	
Figura 24 - Eficiência Volumétrica com variações de carga	74
e restrição de ar em função da Taxa de Substituição	
Figura 25 - Temperatura de Escape em 60% e 100% de carga,	75
e restrição de ar em função da Taxa de Substituição	
Figura 26 - Temperatura de Escape com variações de carga	76
e restrição de ar em função da Taxa de Substituição	
Figura 27 - Emissões Específicas de Dióxido de	77
Nitrogênio com variações de carga e restrição de ar em	
função da Taxa de Substituição	
Figura 28 - Emissões Específicas de Monóxido de Carbono	78
em 60% e 100% de carga, com restrição de ar em função	
da Taxa de Substituição.	
Figura 29 - Emissões Específicas de Monóxido de	79
Carbono com variações de carga e restrição de ar em	
função da Taxa de Substituição	
Figura 30 - Emissões Específicas de Hidrocarbonetos não	80
queimados em 60% e 100% de carga, com restrição de ar	
em função da Taxa de Substituição	

Figura 31 - Emissões Especificas de Hidrocarbonetos não	81
queimados, com variações de carga e restrição de ar em	
função da Taxa de Substituição	
Figura 32 - Emissões Específicas de Monóxido de Carbono	82
queimados, com variação de Equivalência Total para	
diferentes restrições de ar. Operação Diesel-Gás com máxima	
taxa de substituição	
Figura 33 - Emissões Específicas de Hidrocarbonetos	85
não queimados, com variação de Equivalência Total	
para diferentes restrições de ar. Operação Diesel-Gás	
com máxima taxa de substituição	

Lista de Tabelas

Tabela 1 - Composição do gás	22
natural fornecida pela Companhia Distribuidora	
de Gás do Estado do Rio de Janeiro	
Tabela 2 - Comparação entre algumas características	29
físico-químicas do Óleo Diesel e o Gás Natural	
Tabela 3 - Dados Técnicos do Grupo gerador	30
Tabela 4 - Dados técnicos dos transdutores	33
de pressão	
Tabela 5 - Dados técnicos dos transdutores de pressão	41

Lista de Símbolos

A - Amperagem medida na linha do trifásico.

(A/C) - Razão ar-combustível.

(A/C_g)_e - Razão ar-gás estequiométrica.

(A/C_D)_e - Razão diesel-gás estequiométrica

C - Carbono.

Cec - Consumo específico de combustível .

CO - Monóxido de carbono.

CO2 - Dióxido de carbono.

CH₄ - Metano.

C₂H₆ - Etano.

C₃H₈ - Propano.

 C_4H_{10} - Butano.

C₁₂H₂₆ - Dodecano (óleo diesel leve).

C_xH_y - Representação geral de um hidrocarboneto.

C_d - Coeficiente de descarga.

d - Diâmetro do orifício nos bocais (m).

EGR - Recirculação dos gases de escapamento.

F1 - Fator de conversão de concentrações em base seca para úmida.

H - Hidrogênio

HC - Hidrocarbonetos não queimados.

H₂O - Vapor d'água.

mar - Massa de ar.

m_D - Massa de diesel.

m_g - Massa de gás.

MP - Material particulado.

 \dot{m} - Vazão mássica (kg/h).

N - Velocidade angular (RPM).

N₂ - Nitrogênio.

NO - Monóxido de nitrogênio.

NO₂ - Dióxido de nitrogênio

NO_x - Óxidos de nitrogênio.

O₂ - Oxigênio.

P - Potência ao eixo (kW)

Pel - Potência elétrica (kW)

Par - Pressão barométrica (kPa)

PCI - Poder calorífico inferior.

P_{sat} - Pressão de saturação da água em temperatura ambiente (kPa).

PPM - Partes por milhão

 $RE_{\scriptscriptstyle T}$ - Razão estequiométrica total.

Rar - Constante do ar (kJ/kg.K).

R_g - Constante do gás natural (kJ/kg.K).

Re - Numero de Reynolds

SO₂ - Dióxido de enxofre.

TS - Taxa de substituição

U_r - Umidade relativa

V_{bocal} - Velocidade nos bocais ASME.

V_d - Volume deslocado no cilindro (m³)

V - Voltagem medida entre duas linhas do trifásico.

V - Vazão volumétrica

W - Umidade relativa

Subscritos e Letras Gregas

- Ar Relativo à vazão mássica do ar.
- D Relativo à vazão mássica do ar.
- D_O Relativo ao consumo de Diesel original.
- esc_u Relativo à vazão do gás de escape em base úmida.
- g Relativo à vazão de gás.
- ρ ar Massa específica do ar (kg/m³).
- $\rho_{\rm g}$ Massa específica do gás (kg/m³).
- $\Delta P_{\rm ar}$ Diferencial de pressão no tambor de ar (kPa).
- $\Delta P_{\rm g}$ Diferencial de pressão no tambor de gás (kPa).
- S Relativo à concentração específica de emissões.
- η_{t_D} Rendimento térmico em operação diesel puro.
- $\eta_{t_{-dual}}$ Rendimento térmico em operação diesel-gás.
- η_{\lor} Eficiência volumétrica.
- $\eta_{\rm G}$ Eficiência do grupo gerador.