
5

A New Bounding Method

The main idea of the new method came to us when we were trying to

figure out what can be done if we knew an upper bound for the optimum

value of UBQP.

The method itself is explained in the next sections.
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5.1

“Direct computation”

If we know an upper bound U , we can solve the following problem:

min z = cTx

s.t.:
1

2
xTQx− bTx ≤ U

(5.1)

Which is “minimize a linear function subject to a quadratic constraint”.

Since we know that min 1

2
xTQx − bTx is a lower bound to the original

problem, we know that z is a lower bound for the value of cTx∗, where x∗ is

the solution for the UBQP.

If we know how to solve it, there is a number of interesting results we

can find from it using different vectors c. Some of them are:

1. If c = (0� . . . � 0� 1� 0� . . . � 0) = ei and z > 0, then we can fix xi = 1, since

for all solutions whose value is less then U (and hence, for the optimal

solution), xi > 0.

2. If c = (0� . . . � 0�−1� 0� . . . � 0) = −ei and z > −1 we can fix xi = 0.

3. With c = (1� . . . � 1� . . . � 1), then z is a lower bound for the size of the set

{i|xi = 1}.

4. With c = (−1� . . . �−1� . . . �−1), then n+ z is a lower bound for the size

of the set {i|xi = 0}

It is easy to use this information in a branch-and-bound environment,

for pruning reasons.

Of course we can use the same idea of section 3.3 and solve it for

Q� = Q+ 2Diag(λ) and b� = b+ λ for some λ to get even better results.

In section 5.1.1 we will show how to actually solve (5.1) if Q is positive

definite.
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5.1.1

Minimizing a linear function subject to a convex

quadratic constraint

The following theorem shows how to optimize (5.1) in the special case

that Q is positive definite. Since we will use the same idea as in section 3.3,

we may assume it.

Theorem 12 It is possible to minimize a linear function subject to one convex

quadratic constraint in polynomial time.

Proof. Let P be the problem stated at (5.1), withQ symmetric positive definite.

The function 1

2
xTQx− bTx is convex, so the feasible region is compact.

Since the feasible region is compact and the objective function is contin-

uous the optimum exists. Since the objective function is linear, the optimum

is reached on the boundary of the feasible region.

By the Fritz John optimality condition, there must exist µ1� µ2 ∈ R such

that µ1c
Tx∗ = min(µ1c

Tx + µ2(
1

2
xTQx − bTx − U)), where x∗ is the optimal

solution.

Since µ2 �= 0 (if µ2 = 0, the problem is unbounded. We al-

ready know this is not the case), we can set µ = µ�

µ2

, and µcTx∗ =

min(µcTx+ (1
2
xTQx− bTx− U)).

So, to solve minµcTx + (1
2
xTQx − bTx − U) we can differentiate at x

arriving at: µc+ (Qx∗ − b) = 0.

µc+ (Qx∗ − b) = 0 (5.2)

Qx∗ = b− µc (5.3)

x∗ = Q−1(b− µc) (5.4)
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As seen in (5.4), there is a whole line that satisfies the Fritz John

condition. It rest to determine the intersection of this line with the boundary

of the feasible region.

1

2
x∗TQx∗ − bTx∗ = U (5.5)

1

2
(Q−1(b− µc))TQQ−1(b− µc)− bTQ−1(b− µc) = U (5.6)

1

2
µ2cTQ−1c−

1

2
bTQ−1b = U (5.7)

µ2cTQ−1c = 2U + bTQ−1b (5.8)

µ = ±

�
2U + bTQ−1b

cTQ−1c
(5.9)

So we may first calculate µ by (5.9) and then use it on (5.4) to find the

optimum in polynomial time.

It should be noted that there are two different µ’s, one corresponding to

the minimum and one to the maximum.

Since the optimum value for µ is cTQ−1b− µcTQ−1c and Q−1 is positive

definite, the positive µ will give the desired minimum.

If we know the Cholesky factorization of Q it is easy to optimize 5.1 in

O(n2) by calculating Q−1c and Q−1b.
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5.2

“Inverse computation”

In section 5.1 the problem of minimizing a linear function subject to a

convex quadratic constraint was considered. In terms of UBQP, this means:

“What is the minimum value of cTx∗ given an upper bound K?”.

We can now consider a somewhat different problem: “What is the best

(lowest) upper bound U � that we can know, such that cTx can be less than or

equal to l?”, that means that if the actual known upper bound is better (less)

than U �, cTx must be greater than l.

First let’s think about the utility of such problem. Suppose we can

indeed find U �. What can we do with it?

To partially answer this question, let me show some special pairs (c� l):

1. c = (0� . . . � 0� 1� 0� . . . � 0) = ei, l = 0. The solution (U �) for this problem

will be called U0(i).

2. c = (0� . . . � 0�−1� 0� . . . � 0) = −ei, l = −1. The solution for this problem

will be called U1(i).

We can find all U0(i) and U1(i) by computing the Cholesky Decompo-

sition of a n × n matrix followed by a O(n3) computation (fast in practice).

The details are explained in section 5.2.1.

Suppose we know all U0(i) and U1(i), and also an upper bound U . Now

we can:

1. fix variables, achieving the same result as in section 5.1.

If U0(i) > U then xi = 1 and if U1(i) > U then xi = 0.

2. get lower bounds. For all i, min(U0(i)� U1(i)) is a lower bound.

So maxi(min(U0(i)� U1(i))) is also a lower bound for the problem.

3. decide on the branching variable (more details in section 6.2).

4. guide heuristics (see section 6.4).
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5.2.1

Solving the “inverse problem”

Theorem 13 It is possible to solve the problem stated at 5.2

Proof. Let P be the problem stated at (5.1), withQ symmetric positive definite.

The feasible set shrinks continuously as U gets smaller, and also, the

optimal value gets continuously greater. So the “largest U such that cTx can

be less or equal to l” is the unique U for which the optimal value of P is l.

Using the results from 5.1.1, it follows that:

cTQ−1b− µcTQ−1c = l From (5.4) (5.10)

µ2 =

�
cTQ−1b− l

cTQ−1c

�2

(5.11)

µ2 =
2U + bTQ−1b

cTQ−1c
From (5.9) (5.12)

2U + bTQ−1b

cTQ−1c
=

�
cTQ−1b− l

cTQ−1c

�2

From (5.11) and (5.12) (5.13)

2U + bTQ−1b =

�
cTQ−1b− l

�2

cTQ−1c
(5.14)

U =
1

2

��
cTQ−1b− l

�2

cTQ−1c
− bTQ−1b

�

(5.15)

Again, if we know the Cholesky factorization of Q it is easy to solve the

“inverse problem” in O(n2) by calculating Q−1c and Q−1b.

Of course, the same idea used on 3.3 can be used here, and we can solve

the problem for several values of λ.
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5.3

Further Improving the Bound

We can further improve the results of sections 5.1 and 5.2 by adding the

constraints 0 ≤ xi ≤ 1.

Get, for instance, the problem in 5.1 and augment it with these con-

straints.

min z = cTx (5.16)

s.t.:
1

2
xTQx− bTx ≤ U

− xi ≤ 0 ∀i ∈ {0� . . . � n} (5.17)

xi − 1 ≤ 0 ∀i ∈ {0� . . . � n} (5.18)

We can get the Lagrangian dual of the above problem, with respect to

(5.17) and (5.18), and arrive to the following:

LD(α� β) = min cTx− αT (−x)− βT (x− 1)

= min(c+ α− β)Tx+
�

i

βi

s.t.:
1

2
xTQx− bTx ≤ U

So, one can compute LD(α� β) for a given (α� β) ∈ �
2n in exactly the

same way described in 5.1.1 (by letting c = (c + α − β)). Also, the dual

function is always concave [ruszczynski2006].

Then, the dual problem:

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 5. A New Bounding Method 40

max LD(α� β)

s.t.: α ≥ 0

β ≥ 0

can be solved by a convex optimization method. Note that it is easy to

differentiate LD.

This dual problem will give a lower bound on the value of (5.16), which

can be used to the same purpose as the lower bounds on (5.1).

A similar approach can be used to improve the problem of section 5.2.
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