
3
Related Work

There are several approaches to solve UBQP, we will now briefly discuss

some of them:

Since some of them are actually algorithms for the Max Cut problem

(MC), it is necessary to show their equivalence.

UBQP can model MC, as it was already shown in theorem 3, so here we

show that MC can model UBQP as well.

Theorem 5 �Max Cut can model UBQP) It is possible to model UBQP

using MC.

Proof. Let Q and b be as in definition 1, and let:

W =

�
0 (−1

2
Qe+ b)T

−1

2
Qe+ b 1

2
Q

�

(where e is the vector of all ones) be the adjacency matrix of a graph G with

node set V = {0� 1� . . . � n}, i.e., let the cost cij of the edge (i� j) be wij.

Since any cut V has the same value as its complement, we will assume

without loss of generality that 0 /∈ V , whenever we define a cut of G.

Let V be a cut of G, and define x(V ) = (x1(V )� x2(V )� . . . � xn(V )) where

xi(V ) = 1 if i ∈ V and xi(V ) = 0 if i /∈ V .

It is easy to see that x(.) is a bijective function from the cuts of G to

{0� 1}n. We will now show that if the cut V � has value K then f(x(V �)) = −K.

Let V be a cut of G. The value of the cut is:

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 16

K =
�

i∈V

�

j /∈V

Wij

=
�

i∈V

�

Wi0 +
�

j /∈V ∪{0}

Wij





=
�

i∈V

�

−
1

2

�

j∈{1�...�n}

Qij + bi +
�

j /∈V ∪{0}

1

2
Qij





=
�

i∈V

�

−
1

2

�

j∈V

Qij + bi

�

= −

�
1

2

�

i∈V

�

j∈V

Qij −
�

i∈V

bi

�

= −

�
1

2
x(V )TQx(V )− bTx(V )

�

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 17

3.1

SDP relaxation

This relaxation was given in a classic paper by Goemans and Williamson

[goemans1995].

Let G = (V�E) with cost matrix C = {cij} (if (i� j) �∈ E then cij = 0).

Let L = Diag(Ce) − C, where Diag(v) is the diagonal matrix with v in its

diagonal. L is called the Laplacian matrix of G.

A simple exercise shows that the max cut can be formulated as

max{xTLx|x ∈ {−1� 1}n} (note that here we are defining the cut by means of

a vector in {−1� 1}n and not {0� 1}n), which can be reformulated as:

z = max trLX

s.t. : diag(X) = e (3.1)

rank(X) = 1 (3.2)

X is positive semidefinite (3.3)

Here X is thought as being X = xxT for some x ∈ {−1� 1}n which would

define the cut.

Constraints (3.2) and (3.3) acts together to ensure X = xxT while (3.1)

says that x ∈ {−1� 1}n.

This kind of formulation, except for the rank constraint (3.2), is a SDP

(Semidefinite Programming) formulation, which can be solved polynomially

[lin1995, borchers1999, fujisawa2003].

By solving this relaxation (namely, by dropping constraint (3.2)), we get

an upper bound whose value is not worse than 1.1382z [goemans1995].

See also [goemans1995] for random procedure to generate a solution with

expected value at least 0.87856z, which gives a lower bound.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 18

These bounds can be combined in a branch and bound scheme.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 19

3.2

Branch and Bound using SDP and the Bundle

Method

This method was described at [rendl2010], and to our knowledge is the

best available today.

The triangular inequalities for the Max Cut are as follows (here X is

the matrix as in 3.1):

∀i < j < k






Xij +Xik +Xjk ≥ −1

Xij −Xik −Xjk ≥ −1

−Xij +Xik −Xjk ≥ −1

−Xij −Xik +Xjk ≥ −1

(3.4)

which says that “for any triangle, zero or two edges are in the cut”. These

constraints can be viewed as �(X) ≤ b, where � is a linear operator from

�
n×n to �

4(n
3
).

If we use the formulation in 3.1 with (3.4), we get a new problem whose

Lagrangian is L(X� γ) = trLX + γT (b−�(X))

Then the dual function is f(γ) = maxX L(X� γ), and the dual problem

is minγ≥0f(γ).

For a fixed γ the evaluation of f(γ) leads to a problem which can be

easily solved by 3.1, so it uses the bundle method to solve the dual problem.

Since the number of triangles can be very big (4
�
n
3

�
), the dual is solved

with only a portion of these triangles, and then it uses the solution (X∗� λ∗)

to drop some of these constraints and add new ones.

The solution to the dual problem gives an upper bound for the Max Cut

which is used in a branch and bound algorithm. The branching is done on the

edges of the graph.

There is also an online solver using this method called Biq Mac (Binary

Quadratic - Maximum Cut). It is available at http://biqmac.uni-klu.ac.at/.

We compare the results from this solver to the results found by the new

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 20

method.

They have also collected a big number of instances for both UBQP

and Max Cut called the Biq Mac Library (available at http://biqmac.uni-

klu.ac.at/biqmaclib.html).

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 21

3.3

Relaxing equivalent problems to find a lower

bound

This method is described at [billionnet2007], and uses a rather trivial

(but really clever) observation: Since xi ∈ {0� 1}, then x2i = xi.

With this in mind, consider the following problem:

min fλ(x) =
1

2
xTQx− bTx+

n�

i=1

λi(x
2

i − xi)

s.t.: x ∈ {0� 1}n (3.5)

It is easy to see that f(x) = fλ(x) for all λ and for all feasible x, so the

original problem can be replaced by the above problem for any λ.

Also, fλ(x) = 1

2
xT (Q + 2Diag(λ))x − (b + λ)Tx, where Diag(λ) is the

diagonal matrix with λ on its main diagonal. Let Q� = Q + 2Diag(λ) and

b� = b+ λ. So the problem of optimizing fλ(x) is again UBQP.

The point of doing that is that even if the solution is the same, the

solution to the relaxed problem (dropping the integrality constraint (3.5))

may vary, and for any λ it will be a lower bound to the original value.

If λ is such that Q� is positive definite, the relaxed problem is solvable

directly by xλ = Q�−1b�. So the objective value of the relaxed problem will be:

x∗λ = Q�−1b�

objλ = fλ(x
∗
λ)

=
1

2
x∗Tλ Q

�x∗λ − b
�Tx∗λ

=
1

2
b�TQ�−1Q�Q�−1b� − b�TQ�−1b�

= −
1

2
b�TQ�−1b�

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 3. Related Work 22

So, we can find a family of lower bounds objλ.

One very natural question that arrives is: is it possible to get the best

(maximum) lower bound? It actually is, by solving the following semidefinite

program:

min −K

s.t.: A =

�
−2K (b+ λ)T

b+ λ Q+ 2Diag(λ)

�

is positive semidefinite.

Where K is the maximum lower bound.

It follows from the positive semidefiniteness of matrix A that:

– K ≤ 0. This is always true in the original problem because the objective

value for x = 0 is zero.

– Q� = Q+2Diag(λ) is positive semidefinite. Well, no surprise here neither.

– K ≤ −1

2
b�Q�−1b�, by the Schur Complement of A (see, for instance,

[boyd2009]).

From the fact that we are maximizing K (minimizing −K) and the last

observation, we will have that (K = −1

2
b�Q�−1b�).

So, what is done in this work is: first the maximum lower bound is

found (and the corresponding λ). Then they find min(fλ(x)|x ∈ {0� 1}n)

using a general UBQP solver. This is done due to the observation that the

performance of existing UBQP solvers strongly depends on the lower bound

achieved by the relaxation of the root problem.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA




