6 SIMULAÇÕES

Neste capítulo, o desempenho dos métodos propostos será avaliado através de imagens artificialmente modificadas com ajuda das ferramentas para processamento de imagens disponibilizadas pelo programa Matlab®.

A simulação de uma deformação é feita a partir de uma função de deslocamento definida pelo usuário, contendo parâmetros de deformação a serem arbitrados. A imagem de referência é capturada de um corpo de prova real, com a máxima resolução da câmera digital Nikon D50. A Figura 6.1 mostra que a superfície metálica foi previamente lixada, da forma mais aleatória possível.

Figura 6.1 Imagens de uma peça metálica com furo.

A técnica SIFT consegue então extrair e descrever pontos-chaves da imagem de referência (Figura 6.2), os quais serão procurados nas imagens subsequentes deformadas artificialmente pelas ferramentas computacionais do Matlab®. Através da metodologia desenvolvida, tenta-se estimar os valores dos parâmetros de deformação que foram previamente definidos pelo usuário.

Figura 6.2 Localização de pontos-chave pelo SIFT.

6.1. Campo de Deformações Uniforme

Considere-se, para a primeira simulação, uma tração biaxial uniforme relativa aos eixos x e y. Para simular a deformação uniforme envolvida nesta análise, definem-se as seguintes funções lineares de deslocamento:

$$\begin{cases} f_x = a_0 + a_1 x \\ f_y = b_0 + b_1 y \end{cases}$$
(6.1)

As deformações uniformes são determinadas por:

$$\mathcal{E}_x = \frac{\partial f_x}{\partial x} = a_1 \tag{6.2}$$

e

$$\mathcal{E}_{y} = \frac{\partial f_{y}}{\partial y} = b_{1} \tag{6.3}$$

Definem-se arbitrariamente os valores para os parâmetros de deformação $a_1 = 0.01$ e $b_1 = 0.02$ nas direções *x* e *y*, respectivamente. A imagem original será numericamente deformada pela aplicação do deslocamento bidirecional definido pelas Equações (6.4) e (6.5), como mostrado na Figura 6.3.

$$\begin{cases} u = a_1 x \\ v = b_1 y \end{cases}$$
(6.4)

$$\begin{cases} x_f = x_o + 0.01 x_o \\ y_f = y_o + 0.02 y_o \end{cases}$$
(6.5)

Figura 6.3 Imagem original e final, depois da aplicação de deslocamentos bidirecionais.

Os resultados obtidos das simulações são mostrados na Tabela 6.1. A técnica SIFT aplicada à correlação entre as 2 imagens da Figura 6.3, juntamente com o método dos mínimos quadrados aplicados a funções lineares de deslocamento, é capaz de identificar as deformações teóricas impostas com erros menores que 1%.

Tabela 6.1 Resultados dos parâmetros de deformação para o caso de uma deformação uniforme.

Parâmetros Deformação	Valores Teóricos	Valores Estimados
	0,01	0,0101
b_1	0,02	0,0200

6.2. Campo de Deformações Variável

Nesta segunda simulação, define-se uma deformação variável de um corpo representada pelas equações de deslocamento

$$\begin{cases} f_x = a_0 + a_1 x + a_2 xy \\ f_y = b_0 + b_1 y + b_2 xy \end{cases}$$
(6.6)

Utilizando a metodologia descrita, os campos de deformações em cada eixo *x* e *y*, respectivamente, são determinados pelas expressões

$$\mathcal{E}_x = \frac{\partial f_x}{\partial x} = a_1 + a_2 y \tag{6.7}$$

$$\mathcal{E}_{y} = \frac{\partial f_{y}}{\partial y} = b_{1} + b_{2}x \tag{6.8}$$

Nesta simulação, as deformações em y serão arbitradas como nulas, portanto definem-se $b_1 = b_2 = 0$ para as deformações artificiais da imagem, e com deslocamento nulo em y, i.e., $b_0 = 0$. Só haverá deslocamento na direção x, definido pelos termos arbitrados $a_1 = 0,03$ e $a_2 = 0,002$, resultando em um campo não-uniforme na direção x, pois $\varepsilon_x = 0,03 + 0,002 \cdot y$ varia na direção y. Este campo variável seria obtenível na prática por uma combinação de tração e flexão na direção x. Estes deslocamentos serão então artificialmente impostos à imagem, através das transformações

$$\begin{cases} u = a_1 x + a_2 x y \\ v = 0 \end{cases}$$
(6.9)

$$\begin{cases} x_f = x_o + 0.03x_o + 0.002y_o \\ y_f = y_o \end{cases}$$
(6.10)

A Figura 6.4 mostra a imagem final artificialmente deformada, resultado da execução dos deslocamentos descritos na Equação 6.6 na imagem original.

Figura 6.4 Imagem original e final, depois da aplicação de deslocamentos bidirecionais.

As equações (6.9-6.10) resumem os campos de deformações arbitrados para ambos os eixos x e y, respectivamente:

$$\mathcal{E}_x = 0,03 + 0,002 \, y$$

 $\varepsilon_{y} = 0$

Os resultados obtidos da simulação para cada parâmetro de deformação são mostrados na Tabela 6.2. Nota-se um erro de 7% no termo constante a_1 de ε_x (associado e.g. à contribuição da tração) e um erro desprezível no coeficiente a_2 (associado e.g. à contribuição da flexão).

Tabela 6.2 Resultados dos parâmetros de deformação para o caso de uma deformação variável.

Parâmetros Deformação	Valores Teóricos	Valores Estimados	
a_1	0,03	0,0278	
<i>a</i> ₂	0,002	0,0020	
b_1	0,0	0,0	
b_2	0,0	0,0	

6.3. Campo de Deformações de uma Placa com Furo Central

O estado de deformações normais de uma placa com furo circular pode ser caracterizado pelas suas componentes do vetor deformação associadas às duas direções no espaço bi-dimensional.

Figura 6.5 Imagem criada artificialmente de uma placa com furo

Geometria				
Comprimento	L = 20 [mm]			
Largura	D = 10 [mm]			
Espessura	t = 4[mm]			
Diâmetro do furo	d = 4 [mm]			

Tabela 6.3 Geometria da placa simulada

Tabela 6.4 Propriedades mecânicas adotadas.

Propriedades do material simulado				
Módulo de elasticidade	E = 70 GPa			
Coeficiente de Poisson	v = 0,33			

As seguintes expressões definem o comportamento dos deslocamentos (equações 5.33 e 5.34) radial e tangencial respectivamente

$$u_{r} = \frac{\sigma_{n}}{2E} \left(a_{1}r - a_{2}\frac{R^{2}}{r} + a_{3}r\cos 2\theta - a_{4}\frac{R^{2}}{r}\cos 2\theta - a_{5}\frac{R^{4}}{3r^{3}}\cos 2\theta - a_{6}vr + a_{7}v\frac{R^{2}}{r} - a_{8}vr\cos 2\theta + a_{9}v\frac{R^{2}}{r}\cos 2\theta + a_{10}v\frac{R^{4}}{3r^{3}}\cos 2\theta \right)$$

$$\left(-a_{6}vr + a_{7}v\frac{R^{2}}{r} - a_{8}vr\cos 2\theta + a_{9}v\frac{R^{2}}{r}\cos 2\theta + a_{10}v\frac{R^{4}}{3r^{3}}\cos 2\theta \right)$$

$$u_{\theta} = \frac{\sigma_{n}}{2E} \begin{bmatrix} -a_{1}(\nu+1)\theta - a_{2}(\nu-1)\theta \frac{R^{2}}{r^{2}} - a_{3}\frac{(\nu+1)}{2}sen2\theta - a_{4}(\nu-1)\frac{R^{2}}{2r^{2}}sen2\theta \\ -a_{5}\left(\nu - \frac{1}{3}\right)\frac{R^{4}}{2r^{4}}sen2\theta + a_{6}(\nu+1)\theta + a_{7}(1-\nu)\theta\frac{R^{2}}{r^{2}} + a_{8}\frac{(\nu+1)}{2}sen2\theta \\ +a_{9}(1-\nu)\frac{R^{2}}{2r^{2}}sen2\theta + a_{10}\left(1 - \frac{\nu}{3}\right)\frac{R^{4}}{2r^{4}}sen2\theta \end{bmatrix}$$

como foi deduzido anteriormente no Capitulo 5.

Uma determinada tensão de tração σ_n (definida na direção *x*) aplicada à placa está associada aos parâmetros obtidos analiticamente (equação 5.24), mostrados a continuação:

$$a_1 = 1$$
 $a_2 = -1$ $a_3 = 1$ $a_4 = 4$ $a_5 = 3$
 $a_6 = 1$ $a_7 = 1$ $a_8 = -1$ $a_9 = 0$ $a_{10} = -3$

A Figura 6.6 mostra a imagem final modificada numericamente, assumindo os valores de a_i definidos acima para simular o efeito de uma tensão nominal σ_n associada a uma deformação máxima no furo no valor próximo a 1%.

Figura 6.6 Imagem final deformada após a aplicação de deslocamentos bidirecionais associados a uma tensão nominal σ_n na direção horizontal.

Nesta simulação, os parâmetros a serem identificados serão os coeficientes a_1 até a_{10} envolvidos nas equações da placa com furo. Como estes parâmetros são conhecidos a partir da solução analítica para esta placa, a metodologia proposta poderá ser quantitativamente avaliada.

Aplicando-se a metodologia às imagens original e modificada, obtêm-se os coeficientes a_i desejados.

Como o campo de deformações da placa com furo, no sistema de coordenadas polares, é definido por

$$\varepsilon_{r} = \frac{\sigma_{n}}{2} \left(a_{1} + a_{2} \frac{R^{2}}{r^{2}} + a_{3} \cos 2\theta + a_{4} \frac{R^{2}}{r^{2}} \cos 2\theta + a_{5} \frac{R^{4}}{r^{4}} \cos 2\theta - a_{6}v \right)$$
$$-a_{7}v \frac{R^{2}}{r^{2}} - a_{8}v \cos 2\theta - a_{9}v \frac{R^{2}}{r^{2}} \cos 2\theta - a_{10}v \frac{R^{4}}{r^{4}} \cos 2\theta \right)$$
$$\varepsilon_{\theta} = \frac{\sigma_{n}}{2} \left(-a_{1}v - a_{2}v \frac{R^{2}}{r^{2}} - a_{3}v \cos 2\theta - a_{4}v \frac{R^{2}}{r^{2}} \cos 2\theta - a_{5}v \frac{R^{4}}{r^{4}} \cos 2\theta \right)$$
$$+a_{6} + a_{7} \frac{R^{2}}{r^{2}} + a_{8} \cos 2\theta + a_{9} \frac{R^{2}}{r^{2}} \cos 2\theta + a_{10} \frac{R^{4}}{r^{4}} \cos 2\theta \right)$$

(equações 5.27 e 5.28) radial e tangencial respectivamente, sendo os coeficientes a_i identificados, é possível desenhar a distribuição das deformações da placa simulando uma força de tração aplicada no eixo horizontal, vide Figura 6.7.

Como esperado, as deformações máximas alcançadas estão em torno de 1% (deformações ε_x acima e abaixo do furo, nas interseções entre a borda do furo e uma linha vertical passando por seu centro).

Figura 6.7 Simulação da distribuição do campo de deformações de uma placa com furo central, para uma tensão nominal $\sigma = 9KN$.

Os resultados estimados para cada parâmetro de deformação, para diversas simulações com diferentes resoluções de câmera em *pixels*, são mostrados na Tabela 6.5.

Concluímos que, com altas resoluções, consegue-se obter com boa precisão o gradiente de tensões e deformações ao redor de um furo no caso elástico (obtendo os coeficientes a_1 até a_{10}). Note que os coeficientes a_9 e a_{10} possuem os maiores erros, porém eles estão associados a termos de 4^a ordem em relação a R/r, possuindo pouca influência no resultado final, pois $(R/r)^4 << (R/r)$ para a maioria dos pontos da placa.

Valores	Resolução virtual					
analíticos	800x400	1600x800	1800x900	2000x1000	3200x1600	
$a_1 = 1$	0.7335	1.0363	1.0508	1.0305	1.0072	
$a_2 = -1$	-0.4470	-0.9663	-1.3536	-1.2485	-0.9676	
$a_3 = 1$	0.8439	1.1821	0.8875	0.9988	0.9017	
$a_4 = -4$	-5.9385	-3.1249	-4.7546	-4.0124	-3.8729	
$a_5 = 3$	5.2375	-3.1150	0.9165	2.3216	1.7986	
$a_6 = 1$	0.7642	1.0510	1.0784	1.0606	1.0186	
$a_7 = 1$	0.4134	1.0048	0.9688	0.8203	0.7213	
$a_8 = -1$	-1.5940	-0.7584	-0.9201	-0.9472	-1.1508	
$a_9 = 0$	-3.5396	-4.7378	-4.5878	-1.3595	0.6517	
$a_{10} = -3$	-0.6273	1.5537	0.9984	-5.2514	-3.9777	
Desvio Padrão	2.0789	1.9746	1.8493	0.6988	0.4728	

Tabela 6.5 Resultados da estimação dos parâmetros de deformação para diferentes resoluções virtuais.

A Figura 6.8 ilustra os erros em porcentagem de deformação devido à resolução limitada do sistema de aquisição das imagens, para o caso da placa sem furo e para a câmera utilizada (em sua maior resolução).

Nóta-se que para pequenas deformações, desvios significativos na localização dos pontos correspondentes na imagem deformada (da ordem de 1 *pixel*) ocasionam erros na medição visual de deformação da ordem 0,033%. À medida que a deformação a ser medida aumenta, este valor do erro diminui, porque maiores deformações são mais fáceis de serem detectadas. O erro médio na deformação medida na faixa de deformações entre 0 e 10000 μ é de 0,028%. Por outro lado, para pequenos desvios de localização da ordem de 0,1 *pixels*, o erro na deformação medida visualmente é de 0,003% para toda a faixa de deformação.

Figura 6.8 Gráfico dos erros na medição visual da deformação associados à resolução.

As simulações demonstraram que a técnica SIFT é capaz de identificar campos não-uniformes de deformação, desde que as funções de deslocamentos sejam apropriadamente escolhidas, e a resolução das imagens seja suficientemente alta.

No capítulo seguinte, experimentos são conduzidos para validar a metodologia.