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Abstract

In the recent literature, it is shown that a recursive set up for risk
averse dynamic stochastic programming problems ensures time consis-
tency of the generated optimal policies. However, a lack of suitable eco-
nomic interpretation for this complex objective function is the main reason
why this formulation is not commonly used in practical applications. In
this paper, we develop a clear economic interpretation for this recursive
objective function as the certainty equivalent w.r.t. the time consistent
dynamic utility generated by one period preference functionals. In order
to motivate this modeling choice, we use a CVaR based portfolio selec-
tion problem to show some practical consequences of a time inconsistent
optimal policy and propose a time consistent alternative. We use a nu-
merical example to compare those optimal solutions and to illustrate our
economic interpretation.

1 Introduction

In a stochastic programming context, the Conditional Value at Risk (CVaR)
became one of the most widely used risk measures for three reasons: first, it is
a coherent risk measure (see [1]); second, it has a clear and suitable economic
interpretation (see [14] and [18]); and last, but not least, it can be written as a
linear stochastic programming model as shown in [14]. For these three reasons,
the CVaR has been applied to static and even to dynamic models. However, to
choose a coherent risk measure as objective function of a dynamic model is not a
sufficient condition to obtain suitable optimal policies. In the recent literature,
time consistency is shown to be one basic requirement to get suitable optimal
decisions, in particular for multistage stochastic programming models. Papers
on time consistency are actually divided in two different approaches: the first
one focuses on risk measures and the second one on optimal policies.

The first approach states that, in a dynamic setting, if some random payoff
A is always riskier than a payoff B conditioned to a given time ¢ + 1, than A



should be riskier than B conditioned to t. It is well known that this property is
achieved using a recursive setting leading to so called time consistent dynamic
risk measures proposed by various authors, e.g., [3, 9, 13, 6, 15, 11]. Other
weaker definitions, like acceptance and rejection consistency, are also developed
in these works (see [6, 11] for details).

The second approach, formally defined by [17], is on time consistency of
optimal policies in multistage stochastic programming models. The interpre-
tation of this property given by the author is the following: “at every state
of the system, our optimal decisions should not depend on scenarios which we
already know cannot happen in the future”. This interpretation is an indirect
consequence of solving a sequence of problems whose objective functions can be
written recursively as the former cited time consistent dynamic risk measures.
It is shown in [17] for instance that if, for every state of the system, we want
to minimize the CVaR of a given quantity at the end of the planning horizon,
we would obtain a time inconsistent optimal policy. Indeed, this sequence of
problems does not have recursive objective functions and the optimal decisions
at particular future states might depend on scenarios that “we already know
cannot happen in the future”. However, if for ¢ = 0 we want to minimize the
CVaR of a given quantity at the end of the planning horizon and for ¢ > 0 we
actually follow the dynamic equations of the first stage problem, then we obtain
a time consistent optimal policy even though it depends on those scenarios we
already know cannot happen. On the other hand, one can argue that this policy
is not reasonable because for ¢ > 0 the objective function does not make any
sense economically speaking.

In this paper, we use a direct interpretation for time consistency of optimal
policies based on its formal definition. We actually state that a policy is time
consistent if and only if the future planned decisions are actually going to be
implemented. In the literature, time inconsistent optimal policies have been
commonly proposed, in particular [2] at section 3 and 4.1 and [10] have developed
portfolio selection models using CVaR in a time inconsistent way. In our work,
we show with a numerical example that a time inconsistent CVaR based portfolio
selection model can lead to a suboptimal sequence of implemented decisions
and may not take risk aversion into account at some intermediate states of the
system. Therefore, we propose a time consistent alternative with a recursive
objective function and compare its optimal policy to the time inconsistent one.
Other alternatives have been proposed by [5] and [8], however none of them
used the recursive set up of time consistent dynamic risk measures. Since the
lack of a suitable economic interpretation for this recursive set up is one of the
main reasons why it is not commonly proposed, we prove for a more general
set of problems that this objective function is the certainty equivalent w.r.t.
the time consistent dynamic utility defined as the composed form of one period
preference functionals. We show that our application fits into this general set
of problems and develop the interpretation for the numerical example.



2 Assumptions and notation

In this paper, we assume a multistage setting with a finite planning horizon 7.
We consider a probability space (2, F,P) with a related filtration Fy C ... C
]:T7 where .7:0 = {@, Q} and F = .FT.

Since our application is on portfolio selection, we use a unique notation for
all models developed here. This section includes definition of sets, stochastic
processes, decision and state variables.

Let us define the set of assets, A = {1,..., A}, the set stages, H = {0,...,T—
1}, and the set of stages starting from 7, H(7) = {7,..., T —1}, V7 € H. In ad-
dition, we define the excess return of asset i € A, between stages t € {1,...,T}
and t — 1, under scenario w € €, as the stochastic process r; ¢ (w) where we
denote ,

ry (w) = (e (W), ..., may (W)
and for s <t
I's.t] (W) = (rg (w),...,re (w)) .

Let us also denote the state variable W; (w) to be the wealth at stage ¢t €
HU{T} under scenario w € Q and the decision variable z; ; (w) to be the amount
invested in asset i € A, at stage t € H under scenario w € {2 where

xt (W) = (16 (W), zae (W)
and for s <t
X[s,t] (W) = (Xs (W), ..., %¢ (w)) .

Without loss of generality, we assume that there is a risk free asset, indexed
by ¢ = 1, with null excess return for each state of the system, i.e., 71 (w) =
0, Vt € HU{T},w € Q. Moreover, we assume that Wy, r;,, x;, € L®(F;), Vt €
HU{T}.

Let W be a F measurable function and consider a realization sequence

¥, = (T1,...,T) of the asset returns. Then, we define the conditional expec-
tation as

E[W | Fpq) =E[W [ rpg =T = /RW(w)dP (@ | g (@) =F),
where R = {w e N ’ (W) =Ty }, and the unconditional one as
B = | Ww)ap()
We also use the negative of the CVaR developed by [14] as an “acceptability”

measure (see [11] for details) whose conditional and unconditional formulations
are defined respectively as

oy (VV, T[Lt]) = —-CVaR, (W ‘ f[1,t]) =supK z — T
z€R -«



and
E [(W - z)—]

og (W) =—-CVaR, (W)=supqz— ———= 5,
z€R l-«a

where = = —min(z, 0).

Note that, E [ | f[1,tﬂ JE[], 08 (-, f[1,t]) and ¢ () are real valued functions,
ie, L (Q,F,P) — R. It is also important to note that all constraints repre-
sented in this paper are defined for almost every w € €, in the P a.s. sense, that
affects the objective function. For instance, if the objective function of a partic-
ular optimization problem is a conditional expectation E [ | f[l,t]] , then the con-
straints of this problem are defined for almost every w € {(IJ €N | ry (@) =Ty }

3 Motivation

The major reason for developing dynamic (multistage) models instead of static
(two-stage) ones is the fact that we can incorporate the flexibility of dynamic
decisions to improve our objective function. In other words, the possibility
of changing a policy after the realization of some random variables increases
the objective function (for a maximization problem) and allows the first stage
decisions to be less conservative than their counterpart in the static case. How-
ever, it doesn’t make any sense to incorporate this flexibility if the intermediate
decisions are not actually going to be implemented.

As we stated before, an optimal policy is time consistent if and only if the
future planned decisions are actually going to be implemented. Only under this
property we can guarantee that the flexibility and optimality of a dynamic policy
will not be polluted by any spurious future planned decisions. Said so, one can
even argue that the first stage decisions of a time inconsistent policy are, for
practical reasons, suboptimal considering that the optimal policy would not be
followed in the future.

In a multistage stochastic programming context, a policy is a sequence of
decisions for each stage and for each scenario (a realization of the uncertainty).
As in [17], one has to define which (multistage) optimization problem should
be solved when the current time is a particular stage t € H of the planning
horizon. Said that, when the current time is ¢ = 0, we solve the corresponding
optimization problem and obtain the first stage optimal decision and the future
planned optimal policy. This policy is time consistent if and only if these future
planned decisions for each scenario are also optimal for each problem when the
current time is ¢ > 0.

In order to motivate this discussion, we develop a CVaR based portfolio
selection model which incorporates the well known mean-risk trade-off presented
by [12]. As a coherent risk measure, the CVaR should be a suitable way to
assess risk, however we want to point out the fact that if one chooses a dynamic
model, time consistency should also be take into account. Assessing risk in a
time inconsistent way may lead to a time inconsistent policy and therefore to a
suboptimal sequence of implemented decisions.



For an illustrative purpose, we apply the CVaR in a time inconsistent way
to the portfolio selection problem and show some practical consequences of the
related optimal policy.

3.1 Example of a time inconsistent policy

The portfolio selection problem is normally formulated to consider the mean-risk
trade-off. Some models use the expected value as the objective function with
a risk constraint while others minimize risk with a constraint on the expected
value. In this paper, we combine these two approaches defining our objective
function as a convex combination of the expected value and the acceptability
measure previously stated. In other words, the investor wants to maximize
its expected return and also minimize risk, given his current state. It is very
important to note that the planning horizon is a fixed date in the future and,
depending on the investor’s current state, he / she solve a different optimization
problem.

Then, we define the problem Q. (WT, F[lﬂ) solved by the investor, given his
/ her current stage 7 and the current realization ¥[; ;) of the random process,

as
maximize (1 — A E [Wr | Ty ] + A2 (Wr, F,1)

Wir1,7):X[r, 7-1]
subject to Witi =2 e M+ 1) zig, VEeH(T)
YieaZip =Wy, VteH(r)
x; > 0,
where A € [0, 1].
Using (1), the problem can be equivalently formulated as

(1_A)WT+A(Z_<WT_Z)_)

maximize E

Wiri1, 11X [r, 7112 1l-«a

fm}

subject to Wig1 =2 ea L+ ripr) wie, VteH(T)
ZiEA Iivt = Wt, Vt S H(T)
Xt Z 0.

Note that, the first stage problem Qg (W) is defined equivalently as follows:

maximize E [(1 —A) Wz + A (z _ WVTZ))]
1,2

Wi, 1), X[0,7—1 11—«
subject to  Wipr =3 e 4 (L +7iq1) wie, Vte H(T) (2)
Sieatiz =Wy, VteH(r)
x; > 0.

In order to have a numerical example, Let us assume our probability space
to be represented by a discrete event tree. For instance, consider T = 2 and



Figure 1: Return tree for ¢ = 2

the tree represented in Figure 1, where the scenarios w € Q = {1,2,3,4} are
numbered by the terminal nodes. In our notation, a node is a subset of 2, e.g.,
the root node is defined as Q = {1, 2, 3,4}, the intermediate nodes as {1,2} and
{3,4} and the terminal nodes as {1}, {2}, {3}, {4}. Now, Let us denote N; the
set of nodes at stage ¢t and F; the o-algebra generated by it. In our example,
N = {Q}a Ny = {{17 2}7 {374}} and N3 = {{1}’ {2}7 {3}7 {4}}

For sake of simplicity, we consider a two-asset model, i.e., 4 = {1,2}, and
a probability measure defined as P (w) = 0.25, Vw € Q = {1,2,3,4}. The first
asset indexed by i = 1 is risk free and it has null excess return for every state
of the system, i.e, 71 (w) = 0, ¥Vt € {1,2}, w € Q. The second one is assumed
to have a iid returns given by

1, fort=1we{1,2}
—0.5, fort=1,we {34}
B 1, fort=2,we {1}
T2t (W) = —0.5, fort=2we {2}
17 fOrt:2’w€{3}
—0.5, fort =2,w e {4}

and graphically represented in Figure 1. It is straightforward to see that the
risky asset has greater expected return and higher risk than the risk free one.
This represents the mean-risk trade-off of a typical portfolio selection problem.

Now, we write an equivalent deterministic linear programming model for
the problem Qo (Wp) defined in (2) assuming, without loss of generality, that



Wy = 1. Then we have the following:

maximize ‘11;2 [(1 — ) Wy (w) + A (Z _ q(‘”))]

@, W,21,%(0,1],% l1-a
subject to  Wip1 (w) = e 4 (14741 (W) 24 (W), VEEH, weQ
doieaTit (W) =Wi(w), VteH, we
x(w) >0, VteH, we
qw) > z—Wy(w), Ywel

q(w) >0, Ywe Q.

(3)
where x; is Fi-adapted, i.e., xo(1) = x0(2) = x0(3) = x0(4), x1(1) = x1(2) and
x1(3) = x1(4), which are the well known non-antecipativity constraints. Note
that g is a Fp-adapted auxiliar variable to represent the CVaR as developed in
[14].

Solving this problem for o = 95% and A = 0.5, we have the following optimal

solution:
0.5, fort=0,weN

77, (w)=4 0, Vt=1,w e {1,2}
0.75, Wt =1,we {34},

0.5, fort=0,we
3, (w) =1 15 Vit=1we{l,2}
0, Vt=1lwe {34}

At the root node, it is optimal to split evenly the investment, while at node
{1, 2} everything is invested in the risky asset and at node {3,4} everything is
invested in the risk free one.

Now, Let us suppose one period has passed and the current state is at time
7 =1 and at node {1,2}. Let us write an equivalent deterministic problem for
Q1(Wy,Ty), for Wy = 1.5 and ¥ = (0,1)" as

2
rfll’%(ziﬁrgli’zze ;u; [(1 —A)Wa (w) + A (z - f(_w(l)]
subject to Wa (w) =D ,c 4 (1 + 72 (W) w1, YVwe {1,2}
Zz’eA zi1 =W (5)
x1 >0

q(w)>z-—Wr(w), Ywe{l,2}
qw) >0, Vwe{l,2}.

This problem reflects what the investor would do at 7 = 1 and at node {1,2}
if the optimal decision x{; in (4) had been implemented. In other words, given
x7, and x5, for t = 0, the optimal solution of (5) is the decision implemented



at 7 = 1 and at node {1, 2} of an agent that maximizes the chosen acceptability
measure of terminal wealth.

We want to show that the optimal solutions for this problem at node {1,2}
are different from the ones in (4), meaning that at ¢ = 0 the future planned
decisions for ¢ = 1 are different from the ones that are actually going to be
implemented. It is also important to understand why it happens and what kind
of error a investor would do with this time inconsistent policy. The optimal
solution of (5) is given by the following:

7y (w) =15, Vit=1lwe{l,2},
(6)
75, (w) =0, Vt=1we{l,2}

The optimal planned strategy at node {1,2} obtained by solving (3) is to
invest everything in the risky asset, while the solution of problem (5) (the one
that is actually going to be implemented) is to invest everything on the risk free
asset (see equation (6)). This happens because, in problem (3), the CVaRgs5y
is the worst case loss at scenario w = 4 given by —W5(4). Then, at node {1, 2},
it is optimal for first stage problem to choose the investment strategy with the
highest expected return since this decision will not affect the terminal wealth
at scenario w = 4.

This example points out that a time inconsistent policy may lead to a se-
quence of optimal decisions where a risk averse decision maker shows a risk
neutral preference at some intermediate state. In other words, risk aversion
may not be taken into account at some intermediate states of the system. Fur-
thermore, one could argue that this policy is “suboptimal” in the sense that the
first stage decisions is the solution for a sequence of dynamic equations different
from the one that is going to implemented.

3.2 Time consistent alternative

In this section, we propose an alternative to the previous time inconsistent
policy. We base our formulation on [16] and develop dynamic equations. For
t =T — 1, we define the problem Vyr_; (Wr_1,Fr_1) as follows:

maximize (1—A)E [WT | f'[l,T—l]] + A0 (WTaf[l,T—l])

Wrxr_1
subject to Wr =3, 4 (1 +ri7)zir—1
YieaTiT—1=Wr_y

x7r-1 2 0.

Using the definition of ¢¢ (I/V, F[LT,l]) given in (1), we rewrite the problem



as follows:

maximize [E [(1 —\)Wr + A <z _ (VvlT_Z)>

Wr,xr-1,2 —

f[l,T—l]‘|

subject to Wr =3, c (1 +ri1) w11
YieaTiT-1=Wr_y
xr—_1 2> 0.
For the last period, our proposed model is to maximize the convex combina-
tion of the expected terminal wealth and the acceptability measure ¢§ (VV, Ti7-1 )
Now, for t < T'—1, we propose a nested value function, based on the conditional

version of the same convex combination. Then, V; (Wt, 1_"[1,t]) ,Vt=0,...,T-2,
is defined as follows:

maximize (1= A)E [Vig1 | Fpg] + A 6§ (Vig1, T )

Wit X
subject to Wipr =>4 (147 eq1) iy
ZieA Tip =Wy
x; > 0.

where Vit stands for V41 (Wt_H, I'[l,t+1])~
Equivalently to t =T — 1, we rewrite problem (7) as follows:

1=V + A <Z - MH_Z)) f[l,t]‘|

maximize [E

Wii1,Xt,2 11—«

subject to Wit1 =D ;e 4 (1475 0q1) iy (8)
YieaTit =Wy
x; > 0.

For comparison purposes, we solve this model for the numerical example
proposed in section 3.1. To do so, we use the result shown in [4] that, for stage-
wise independent returns such problem has a myopic optimal policy which is
obtained as the solution of the following two-stage problem for t € H:

maximize E [(1 — A Wi+ A <z _ W)]

Wit1,Xt,2 l—«

subject to Wiy = ZieA (L4 7i41) it (9)
Dica iz =W
x; > 0.

For Wy = 1, the (time consistent) optimal policy obtained by solving prob-



lem (8) is the following;:

i, (w)=Wy=1, VteH,weQ,

34 (w) =0, VteH,we.

The optimal policy is to always invest the total wealth in the risk free asset.
Note that this strategy is more conservative compared to the time inconsistent
one, because it takes risk into account at every state of the system.

The proposed time consistent model has significant advantages over the time
inconsistent one. Actually, it incorporates the flexibility of a dynamic decision
model ensuring that the future planned decisions are actually going to be imple-
mented. However, the major problem of this formulation is the lack of a simple
economic interpretation for the first stage objective function. In the following
section, we develop such a interpretation for a certain class of problems.

4 Economic interpretation

The problem of choosing the proposed recursive set up is usually the lack of a
suitable economic interpretation for the objective function. How can a investor
choose a policy if he / she does not know what is actually going to be optimized?
For this reason, we prove that the objective function is the certainty equivalent
w.r.t. the time consistent dynamic utility generated by one period preference
functionals.

Let us consider a generic one period preference functional ¢, : L (Fy1) —
L (F;) and, for a particular realization sequence of the uncertainty ¥(; 4, the
related real valued function vy (- | 714) @ L°(Fiq1) — R. Let us also denote
(Ut) ey as the time consistent dynamic utility function generated by v; (see [7]
for details). Formally speaking, U; : L (Fr) — L (F;) is defined as follows:

Ur (WT) =Wy and U, (WT) = Yy (Ut+1 (WT)), YVt € H,

where Wr € L™ (Fr). Note that we can also use a conditional version of U; as
follows:
U (Wr | Tig) = ¢ (Uir Wr) | Fpag) , VE € H.

Now, Let us define the following dynamic stochastic programming model
where the value function at time ¢ depends on the decisions at ¢ — 1 and the
realization sequence of the uncertainty until ¢. Thus, for ¢t = T we define it as
follows:

Vr (xr—1,F,1) = Wr (%0-1, T ,77) »

where W = Wy (xp—1,F1,7)) is a real valued function.
For t € H, we define the following:

Vi (x¢=1,F1,1) = sup ¢ (Vi1 (%6, 710017) | Fpg),

Xt €EXt

10



where X; = X} (thlaf[l,t]) is the feasible set for each time ¢. Note that for
t =0, we have

Vo = sup ¢ (V1 (x0,11)),

x0€EXp

where X} is a deterministic set.
Then, we develop the following results.

Proposition 1. If i, is a translation invariant, monotone functional normal-
ized to zero, then for t € H the value function can be written as

Ve (%41, ) = x VSBEt T—1Ct (Wr | Tay),

where Cy (WT | T[l,t]) is the certainty equivalent of W w.r.t. Uy conditioned on
the realization sequence T[y .

Proof. By definition we have

sup ¥y (Ver1 (X6, T1,641)) | Fiug)
Xt EX

Vi (Xt—la F[1,t])

sup ( .. sup  Yr_1 (Wr)

Xt EX X7 1€EXT 1

f[l,t])-

Using the monotonicity of 1, and the definition of U; we have the following;:

Vi (Xt_l, F[l,t]) = sup . 1/),5 ( .. ’(/)T_l (WT) | F[l,t]) (10)

X, E€EX, Vr=t,... T—

= sup X Uy (WT | f[l,t])-

By the certainty equivalent definition we have that C, (WT | F[Lt]) satisfies
U, (C’t (WT | F[Lt]) | F[Lt]) =U; (WT | T[Lt]). It is easy to show that Uy ( | f[l,t])
is translation invariant and normalized to zero, since its generators i), have
the same properties. Then, U, (Ct (WT | f[l,t]) | f[l,t]) =C, (WT | f[l,t]) and
consequently, Uy (WT | F[Lt]) =C4 (WT | F[Lt]).

Finally we have that

Vi (Xe-1,F1,y) = ey S T—1Ct (Wr | ).

O

Corollary 2. If v is a translation invariant, monotone functional normalized
to zero, then for t € H the value function can be written as
1_”[1,t]),

where Cy and Cy(- | T[1,4]) are the certainty equivalent w.r.t. by and Yy (- | T e),
respectively.

Vi (%1, T y) = ex VSBEt - C, ( ..Cr_1 (Wr)

11



Proof. By the certainty equivalent definition we have that C, ( | f[1,t]) satis-
fies (Ct ( | F[Lt]) | F[l,t]) = 1y ( | f[l,t]) and using the assumption that v is
translation invariant and normalized to zero, we have i; = C't. Note that this
property also holds true for the conditional version. Then, from equation (10)
we have the following:

Ve (xe—1,Tpy) = e VSEEt T_li/Jt (- r—1 (Wr) | F1g)
= sup C, ( Cr_y (W) } F[Lt]).
XX, V7T=t,....,T—1

O

Note that we could also include intermediate “costs” as in [16] and our results
would still hold true for a more general set of problems. It is worth mentioning
that we define the feasible sets, X;, Vt € H, and the terminal wealth function,
W (xT_l,r[l,T]) generically depending on the application. For the portfolio
selection problem, we define them to fit the original constraints. Then, we have
that

Xy (xe-1,Tpyg) = {xe € R Y a@ie =D e a (L4 Tig) Tiv—1},
Xy = {a)‘() € R4 : ZieAwivo = Wo},

Wr(xr—1,Tn1,1) = > iea L+ Tir) Tir—1.

For the proposed portfolio selection model, we define our one period trans-
lation invariant, monotone and normalized utility functional 1), as the convex
combination of the expected value and the CVaR based acceptability measure,
formally defined as

Ve V1) = =N E Vigr | tpg] + 268 Ver1, 1) »

which is again a coherent acceptability measure. As before, Vi1 € L (Fiy1)
and we can write the conditional version as the real valued function

Ve Ve | Tpigg) = A= N E [Vegr | Frug] + 205 (Vigr, Trag) -

The objective function of the proposed model at t is the certainty equivalent
w.r.t. the time consistent dynamic utility function generated by the one period
preference functional of the investor. This recursive formulation ensures time
consistent optimal policies and it is also motivated by Corollary 2. The objective
at ¢ = T — 1 is to maximize the certainty equivalent (CE) of terminal wealth
w.r.t. the one period preference functional ¥r_;. Indeed, we can interpret the
optimal CE as the portfolio value since it is the deterministic amount of money
the investor would accept instead of the (random) terminal wealth obtained by
his / her optimal trading strategy. At ¢t =T —2,...,0, the preference functional
1y is applied to the (random) portfolio value whose realizations are given by all

12



Wr(1)

Wr(2)
Wr(3)

Vo

Figure 2: Conditional certainty equivalents

possible optimal CE’s at t 4+ 1. Thus, the problem at time ¢ is to maximize the
CE of the portfolio value w.r.t. the one period preference functional v; of the
investor.

For instance, in our numerical example the (random) portfolio value at ¢t = 1
is given by the realizations v; and v in Figure 2 obtained by solving problem
(9) for nodes {1,2} and {3,4}, respectively. The portfolio value vy (see also
Figure 2) obtained by solving (9) for ¢ = 0 is the optimal certainty equivalent
of the (random) portfolio value at ¢t = 1.

5 Conclusions

In this paper, we developed a suitable economic interpretation for a particular
set of risk averse dynamic problems based on a recursive objective function.
We prove that the objective function is the certainty equivalent with respect
to the time consistent dynamic utility function defined as the composed form
of one period preference functionals. We also prove that this objective is the
composed form of certainty equivalents with respect to these one period prefer-
ence functionals. This result gives us the intuition that at stage ¢ the agent is
maximizing the certainty equivalent of the portfolio value w.r.t. his / her one
period preference functional.

In addition, we developed a time consistent dynamic stochastic programming
model for portfolio selection in which the objective function is a recursive setting

13



of a convex combination between expectation and (negative of) CVaR applied
to terminal wealth.

We motivated our modeling choice using a numerical example to show some
practical consequences of a time inconsistent policy and to compare the optimal
solution to our time consistent alternative. We conclude that the first stage deci-
sions might be suboptimal if an investor considers future planned decisions that
are not actually going to be implemented. We also verify that time inconsistent
policies may not take risk aversion into account at some intermediate states of
the system. Finally, we illustrated our economic interpretation with a numerical
example and we state that our model maximizes the certainty equivalent of the
investor, given his / her one period preference functional.
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