

Ronald Rojas Hacha

Caracterização Mineralógica do Minério de Ouro da Rio Paracatu Mineração (RPM), visando a determinação de minerais portadores de titânio.

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC - Rio.

> Orientadores: Prof. Maurício Leonardo Torem Co-orientador: Prof. Luiz Carlos Bertolino

> > Rio de Janeiro Agosto de 2010

Ronald Rojas Hacha

Caracterização Mineralógica do Minério de Ouro da Rio Paracatu Mineração (RPM), visando a determinação de minerais portadores de titânio.

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de da PUC -Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Maurício Leonardo Torem Orientador Departamento de Engenharia de Materiais – PUC - Rio

> > Prof. Luiz Carlos Bertolino Co-orientador Centro de Tecnologia Mineral – CETEM / MCT

> > Prof. Marisa Bezerra de Mello Monte Centro de Tecnologia Mineral – CETEM / MCT

> > Prof. Otávio da Fonseca Martins Gomes Centro de Tecnologia Mineral – CETEM / MCT

Prof. Francisco José Moura Departamento de Engenharia de Materiais – PUC - Rio

Prof. José Eugenio Leal Coordenador (a) Setorial do Centro Técnico Científico - PUC - Rio

Rio de Janeiro, 23 de agosto de 2010.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ronald Rojas Hacha

Graduou-se em Engenharia Química na Universidade Nacional de San Agustín de Arequipa (Peru) em 2004. Obteve o título de Engenheiro Químico pela Universidade Nacional de San Agustín de Arequipa em 2007.

Ficha Catalográfica

Rojas, Ronald Hacha.

Caracterização mineralógica do minério de ouro da Rio Paracatu Mineração (RPM), visando a determinação de minerais portadores de titânio / Ronald Rojas Hacha; orientadores: Maurício Leonardo Torem; co-orientador: Luiz Carlos Bertolino. – 2010.

118 f. : il. (color.) ; 30 cm

Dissertação (Mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Ciência dos Materiais e Metalurgia, 2010.

Incluí bibliografia.

1. Ciência dos Materiais e Metalurgia – Teses. 2. Caracterização mineral. 3. Titânio. 4. Liberação. I. Torem, Maurício Leonardo. II. Bertolino, Luiz Carlos. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título.

CDD: 620.11

PUC-Rio - Certificação Digital Nº 0821582/CA

Para meus pais Agustino e Alejandrina, pela vida, amor e educação, para meus irmãos pelo amor e amizade.

Agradecimentos

A Deus por me amparar nos momentos difíceis, me dar força interior para superar as dificuldades e mostrar os caminho nas horas incertas.

Ao Professor Doutor Maurício Leonardo Torem, meu orientador, pela confiança, paciência e compreensão oferecidos durante a orientação.

Ao Professor Doutor Luiz Carlos Bertolino, meu co-orientador, pela competência científica e acompanhamento do trabalho, pela disponibilidade e generosidade reveladas ao longo do trabalho, assim como pelas críticas, correções, sugestões e amizade então demonstradas.

À Doutora Marisa Bezerra de Mello Monte, pela permanente disponibilidade, me permitindo encontrar informações e soluções que em muito contribuíram para a execução desta dissertação.

Aos Doutores Otávio da Fonseca Martins Gomes e Reiner Neumann, pelo apoio prestado na realização do estudo de caracterização com o MLA.

À CAPES pela bolsa concedida durante a realização deste mestrado, o que contribuiu para a concretização desta dissertação.

Ao CETEM/MCT pela oportunidade e apoio para a realização deste trabalho.

Ao Departamento de Engenharia de Materiais (DEMa) da PUC - Rio, seus professores, pesquisadores e funcionários.

Aos meus colegas do Mestrado, pela excelente relação pessoal que criamos e que espero que não se perca e pela ajuda e intercâmbio de idéias e informação para a elaboração deste trabalho, pelas informações prestadas por toda a colaboração, apoio e amizade.

Aos meus amigos, Fernanda, Carla, Adriana, Mirella, Diana, Antonio, Julio e Diego, pela disponibilidade, colaboração, e amizade demonstradas na culminação desta dissertação.

A Adauto, Edivaldo, Vagner, Felipe, Edinaldo, Patrik, Antonieta e Jackson, técnicos do CETEM/MCT, pela ajuda prestada na preparação e análises das amostras.

Agradeço ao Grupo Kinross e a Rio Paracatu Mineração pelo apoio financeiro oferecido para o desenvolvimento deste trabalho na pessoa do diretor de exploração da RPM Brian Tomson.

A minha família adotiva no Brasil Abbud, Alex, Jane, Jean, Raquel, Jennifer e Jonathan.

Resumo

Rojas, Ronald Hacha; Torem, Mauricio Leonardo. **Caracterização Mineralógica do minério de Ouro da Rio Paracatu Mineração (RPM), visando a determinação de minerais de titânio.** Rio de Janeiro, 2010, 118p. Dissertação de Mestrado - Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

apresentados os resultados da caracterização Neste trabalho são mineralógica de uma amostra de minério de ouro da RPM – Kinross, que teve como objetivo principal, identificar os minerais portadores de titânio e avaliar o espectro de liberação dos minerais de interesse. A metodologia empregada compreendeu a realização de análises granulométricas, separações em meio denso e magnética. Os estudos mineralógicos foram realizados por meio da difratometria de raios X (DRX), microscopia ótica e microscopia eletrônica de varredura (MEV) por meio do sistema "Mineral Liberation Analyzer" - MLA. Os produtos obtidos foram submetidos à análise química por espectrometria de fluorescência de raios X (FRX). As análises químicas indicaram que a amostra estava constituída essencialmente por SiO₂ (66,4%), Al₂O₃ (14,2%), Fe₂O₃ (7,22%) e TiO₂ (1%). Visando avaliar o espectro de liberação dos minerais portadores de titânio, o estudo foi focado em seis faixas granulométricas (-300+212; -212+150; -150+104; -104+74; -74+53; e -53+37µm). Cerca de 20% do material de todas as frações foi constituída por material afundado (meio denso), sendo composto principalmente de SiO₂ (35%), Fe₂O₃ (30%), Al₂O₃ (>7%) e TiO₂ (<5%). A fração flutuada é composta em sua maioria de SiO₂ e Al₂O₃. As análises de DRX da fração afundada indicaram a presença de ilmenita, anatásio e rutilo. As frações afundadas foram submetidas à separação magnética no separador Frantz em diferentes intensidades de corrente (0,3 até 1,75A), através desta operação se concentrou até 8% em massa de TiO₂ na fração -104+74µm e a 0,5A. As frações afundadas foram submetidas a estudos sistemáticos no MEV com o sistema MLA, confirmando a presença de ilmenita, anatásio e rutilo como os minerais portadores de titânio. A liberação completa dos minerais carreadores de titânio foi aproximadamente de 1% em massa, já a ganga liberou-se mais de 90% em massa. A partir dos resultados obtidos se observou que é possível concentrar o TiO_2 contido no minério.

Palavras chave

Caracterização mineralógica; liberação; titânio.

Abstract

Rojas, Ronald Hacha; Torem, Mauricio Leonardo (Advisor). Mineralogical Characterization of Gold Ore the Rio Paracatu Mineração (RPM), aiming at the determination of Titanium-Bearing Minerals. Rio de Janeiro, 2010, 118p. MSc. Dissertation – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents studies in Minerals Characterization of gold ore sample from RPM-Kinross with objective to identify their titanium-bearing minerals and to assess its behavior in different size fraction (spectrum release). The methodology involved particle size analysis and minerals separation (separation in dense medium and magnetic separation), followed of mineralogical studies by X-Ray Diffraction, Optical Microscopy and Scanning Electron Microscopy (SEM) by using the Mineral Liberation Analyzer-MLA. The products obtained were submitted to Chemical Analysis of X-Ray Fluorescence. The analysis of X-Ray Fluorescence revealed that the sample studied was formed essentially by SiO_2 (66,4%), Al₂O₃ (14,2%), Fe₂O₃ (7,22%) and TiO₂ (1%). The studies were focused in six different sizes (-300+212; -212+150; -150+104; -104+74; -74+53 and - $53+37\mu$ m).). About 20% of the material from all fractions material is sunk (dense medium), composed mainly of SiO₂ (35%), Fe₂O₃ (30%), Al₂O₃ (> 7%) and TiO₂ (<5%). The floated fraction was composed mainly of SiO2 and Al2O3. The XRD of the sunken fraction indicated the presence of ilmenite, rutile and anatase. The sunken fractions were subjected to magnetic separation in the Frantz separator at different current intensities (0.3 to 1.75A), this operation was concentrated up to 8 wt% TiO₂ in the fraction -104 +74 μ m and 0.5A. The sunken fractions were subjected to systematic studies in the SEM system with MLA, confirming the presence of ilmenite, rutile and anatase as the titanium-bearing minerals. The gangue has been release of the mineral carrier of titanium was approximately 1% wt%, the denim has released more than 90% wt%. From the results it was observed that it is possible to concentrate the TiO₂ contained in the ore.

Keywords

Mineralogical characterization; liberation; titanium.

Sumário

1 Introdução	19
2 Objetivos e Relevância do Trabalho	21
2.1. Objetivo Geral	22
2.2. Objetivos Específicos	22
3 Revisão Bibliográfica	23
3.1. Titânio	23
3.1.1. Geologia dos Depósitos de Titânio	23
3.1.2. Reservas e Concentrados de Titânio	27
3.1.3. Dióxido de Titânio (TiO ₂)	30
3.2. Rio Paracatu Mineração (RPM)	32
3.2.1. Descrição geral das instalações de processo da RPM	33
3.2.2. Geologia do Depósito de Ouro da RPM	36
3.3. Caracterização mineralógica	40
3.3.1. Separação em meio denso	40
3.3.2. Separação magnética	41
3.3.3. Difratometria de raios X (DRX)	41
3.3.4. Microscopia Ótica (MO)	43
3.3.5. Espectrometria de Fluorescência de Raios X (FRX)	43
3.3.6. Microscopia Co-localizada	44
3.3.7. Automatização da Microscopia Eletrônica de Varredura	
(MEV) baseada no Sistema de Liberação Mineral	44
3.3.8. Mineral Liberation Analizer - MLA	48
3.3.9. Análises de imagens digitais	53
3.3.10. Liberação mineral	54
4 Materiais e Métodos	57
4.1. Amostragem e Preparação	58
4.2. Análise granulométrica	59

4.3. Separação em meio denso	59
4.4. Separação magnética - Separador Frantz	60
4.5. Análise por Difratometria de Raios X (DRX)	62
4.6. Análise por Espectrometria de Fluorescência de Raios X	
(FRX)	62
4.7. Preparação de amostras para Microscopia (MO e MEV)	62
4.8. Microscopia ótica aquisição de imagens	63
4.9. Aquisição e Processamento de dados de MEV - MLA	64
5 Resultados e Discussões	66
5.1. Distribuição granulométrica a úmido	66
5.2. Ensaios de separação em meio denso	69
5.3. Ensaios de separação magnética	70
5.4. Técnicas de caracterização	71
5.4.1. Lupa Binocular	71
5.4.2. Análise por Difração de Raios X	74
5.4.3. Análise química por Espectrometria de Fluorescência de	
Raios X	80
5.4.4. Microscopia Co-localizada MO-MEV	87
5.4.5. Mineral Liberation Analyzer (MLA)	90
6 Conclusões	107
7 Referencias Bibliográficas	108
8 Anexos	115

Lista de figuras

Figura 1 – Mapa de operações da Rio Paracatu Mineração. Fonte:	
http://www.rioparacatumineracao.com.br acesso em	
01/10/09.	32
Figura 2 – Fluxograma de Processo – Moagem. Fonte: RPM.	34
Figura 3 – Fluxograma de Processo – Flotação. Fonte: RPM.	35
Figura 4 – Fluxograma simplificado – Remoagem e	
Espessamento. Fonte: RPM	35
Figura 5 - Mapa geológico e posicionamento estratigráfico das	
unidades Proterozóicas da Faixa de Dobramentos	
Brasília. (modificado de FUCK, <i>et al</i> . 1994).	37
Figura 6 – Mapa geológico da Rio Paracatu Mineração (modificado	
do Serviço Geográfico do Ministério do Exército/1972).	39
Figura 7 – Diagrama de aquisição de imagens usada pelo sistema	
MLA Multin Multin Manual Manual Manual Multin Multin America Manual Multin Multin Multin Multin Multin Multi	
decisões.	49
Figura 8 – Identificação de minerais: MLA <i>ParticleX</i> .	50
Figura 9 – Processamento de imagens: MLA Image Processing	
Tool.	51
Figura 10 – Base de dados: MLA <i>Mineral Database Maker</i> 2008.	52
Figura 11 – Ilustração geral da variação do teor limite -	
liberação/curva de recuperação. Adaptação de	
MILLER, <i>et a</i> l., 2009.	56
Figura 12 – Fluxograma utilizado na caracterização mineralógica	
do minério da RPM.	57
Figura 13 – Fluxograma detalhado utilizado na preparação da	
amostra.	58
Figura 14 – Peneiramento a úmido. (A) Peneiramento de finos, (B)	
Série de peneira Tyler.	59
Figura 15 – Ensaio de separação em meio denso. (A) Funil de	
separação, (B) Descarga do material.	60

Figura 16 – Separador magnético Frantz. (A) Separação	
magnética, (B) descarga do material magnético e não	
magnético.	61
Figura 17 – Em (A), amostras embutidas, em (B), amostras polidas	
recobertas com carbono, em (C), banho ultrassônico	
câmera de vácuo e câmera de pressão, em (D), politriz	
automático Struers Tegra.	63
Figura 18 – Microscópio Eletrônico de Varredura FEI Quanta 400.	64
Figura 19 - Fluxograma de processamento de dados Sistema	
MLA.	65
Figura 20 - Representação gráfica dos resultados da distribuição	
granulométrica.	67
Figura 21 - Representação gráfica dos resultados da distribuição	
granulométrica apos a britagem no britador de	
mandíbulas.	68
Figura 22 - Representação gráfica dos resultados obtidos na	
separação em meio denso.	69
Figura 23 - Representação gráfica dos resultados obtidos na	
separação magnética.	71
Figura 24 - Fotografias do minério, em (A), fração -600+425 µm,	
em (B), fração -3400+2400 µm, em (C) e (D), fração -	
1700+1200 μm. Notação utilizada: Qz - quartzo, Msc -	
muscovita, Cal - calcopirita, Sd - siderita, III - illita, Fdp -	
Feldspato.	72
Figura 25 - Fotografia do produto da separação em meio denso,	
em (A) material flutuado, em (B), material afundado, as	
duas figuras são frações de -300+212 µm. Notação	
utilizada; Qz: Quartzo, Sd: Siderita, Fdp: feldspato.	73
Figura 26 - Fotografia da separação magnética. Em (A), material	
de fração -300+212 µm susceptível a 0,3 A., em (B)	
material de fração de -104+74 µm susceptível a 0,30 A.	
Notação utilizada; Qz: Quartzo, Sd: Siderita.	73
Figura 27 - Fotografia da separação magnética. Em (A) e (B)	

material susceptível a 0,5A de uma fração de -104 +74	
µm. Notação utilizada; Qz: Quartzo, Sd: Siderita, Msc:	
Muscovita, Ilm: Ilmenita.	74
Figura 28 – Difratogramas de raios X da amostra do minério da	
RPM. Radiação Co Kα (40 kV/40 mA).	75
Figura 29 – Difratogramas de raios X de frações grossa e fina do	
minério da RPM. Radiação Co Kα (40 kV/40 mA).	75
Figura 30 – Difratogramas de raios X das amostras obtidas na	
separação em meio denso. Radiação Co Kα (40 kV/40	
mA).	76
Figura 31 - Difratogramas de raios X da amostra do minério de	
ouro da RPM, fração -37μm. Radiação Co Kα (40	
kV/40 mA).	77
Figura 32 – Difratogramas de raios X de uma fração de -	
212+150µm, a diferentes intensidades de corrente.	
Radiação Co Kα (40 kV/40 mA).	78
Figura 33 – Difratogramas de raios X de uma fração de -	
150+104µm a diferentes intensidades de corrente.	
Radiação Co Kα (40 kV/40 mA).	78
Figura 34 – Difratogramas de raios X de uma fração de -	
104+74µm a diferentes intensidades de corrente.	
Radiação Co Kα (40 kV/40 mA).	79
Figura 35 – Difratogramas de raios X de uma fração de -74+53µm	
a diferentes intensidades de corrente. Radiação Co Kα	
(40 kV/40 mA).	79
Figura 36 – Composição química do material afundado.	81
Figura 37 – Distribuição do TiO2 obtidas na separação magnética.	85
Figura 38 – Gráfico comparativo da distribuição do TiO2 na	
separação magnética em diferentes granulométricas e	
em intensidades de corrente.	86
Figura 39 – Porcentagem de TiO ₂ presente no material magnético	
para uma intensidade de corrente 0,3A das diferentes	
frações separadas.	86

Figura 40 – Imagem obtida no microscópio óptico.	88
Figura 41 – Comparação de fases: (A) tabela de cores do MLA; (B)	
imagem de MEV (BSE); (C) imagem de MLA; (D)	
imagem de MO.	89
Figura 42 – Apresentação de alguns minerais que foram	
segmentados (fração -150+104µm): MLA <i>Image</i>	
Processing Tool.	90
Figura 43 – Microfotografia da ilmenita obtida no MEV.	91
Figura 44 – Microfotografia da ilmenita após a segmentação no	
MLA.	91
Figura 45 – Microfotografia do rutilo obtida no MEV.	92
Figura 46 – Microfotografia do rutilo após a segmentação no MLA.	92
Figura 47 – Composição mineralógica do material afundado na	
separação no meio denso.	94
Figura 48 – Comportamento da ilmenita e o quartzo em diferentes	
frações	94
Figura 49 – Associação mineralógica da ilmenita na separação em	
meio denso realizada no minério total (fração	
granulométrica: -300+37µm).	96
Figura 50 – Associação mineralógica da ilmenita na fração -	
150+104µm.	97
Figura 51 – Associação mineralógica da ilmenita na fração -	
150+104µm: MLA Image Processing Tool.	98
Figura 52 – Associação mineralógica do anatásio na separação	
em meio denso realizada para o minério total.	99
Figura 53 - Associação mineralógica do anatásio na fração -	
104+74µm: MLA <i>Image Processing Tool</i> .	99
Figura 54 – Variação da liberação – teor limite/curva de	
recuperação da ilmenita para uma faixa de tamanho de	
-300+37µm.	100
Figura 55 – Variação da liberação – teor limite/curva de	
recuperação para a ilmenita em diferentes frações.	101
Figura 56 – Variação da liberação – teor limite/curva de	

recuperação para o anatásio em diferentes frações.	101
Figura 57 – Distribuição da liberação de partículas de ilmenita em	
função à composição para uma faixa de tamanho de -	
300+37µm.	102
Figura 58 – Distribuição da liberação de partículas de ilmenita em	
função à composição em diferentes frações	
granulométricas.	103
Figura 59 – Distribuição da liberação de partículas de ilmenita em	
função à composição em diferentes frações com um	
corte no limite da escala do eixo Y de 10%.	103
Figura 60 – Distribuição da liberação de partículas de anatásio em	
função á composição para uma faixa de tamanho de -	
300+37µm.	104
Figura 61 – Distribuição da liberação de partículas de para a	
composição de anatásio em diferentes frações	
granulométricas.	105
Figura 62 – Distribuição da liberação de partículas de anatásio em	
função à composição em diferentes granulométricas	
com um corte no limite na escala do eixo Y de 10%.	105
Figura 63 – Tipo de liberação para a ilmenita.	106
Figura 64 – Tipo de liberação para o anatásio.	106

Lista de tabelas

Tabela 1 – Composição química do minério <i>Bulk</i> da RPM.	20
Tabela 2 - Conteúdos típicos e proporções de titânio em algumas	
rochas comuns.	24
Tabela 3 – Composição de alguns minerais de titânio comuns.	26
Tabela 4 - Tipos de depósitos de minerais de titânio e seus	
minerais.	26
Tabela 5 – Reserva e produção mundial de minerais de titânio.	28
Tabela 6 – Distribuição granulométrica do minério da RPM	
(alimentação SAG).	67
Tabela 7 – Distribuição granulométrica após a britagem.	68
Tabela 8 - Resultados do Afunda - Flutua com o uso de	
bromofórmio (CHBr ₃)	69
Tabela 9 – Resultados da separação magnética realizada no	
separador Frantz (% em massa).	70
Tabela 10 - Composição química do material afundado no meio	
denso (% em massa).	80
Tabela 11 - Composição química (% em massa) da fração -	
300+212μm.	82
Tabela 12 – Composição química (% em massa) da fração -	
212+150µm.	82
Tabela 13 – Composição química (% em massa) da fração -	
150+104µm.	83
Tabela 14 – Composição química (% em massa) da fração -	
104+74µm.	83
Tabela 15 – Composição química (% em massa) da fração -	
74+53µm.	84
Tabela 16 – Composição química (% em massa) da fração -	
53+37µm.	84
Tabela 17 – Resultados da separação de % em massa do TiO ₂ na	
separação magnética.	85

Tabela 18 – Alguns minerais presentes no minério de ouro da	
RPM.	87
Tabela 19 – Composição mineralógica do minério da RPM em	
diferentes frações.	93
Tabela 20 – Composição elementar do minério da RPM	95