

Felippe Borges Costa

Valoração da Flexibilidade de uma Sonda Dedicada em uma Plataforma de Petróleo: Uma Abordagem via Opções Reais

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Reinaldo Castro Souza Co-Orientador: Marco Antonio Guimarães Dias

Felippe Borges Costa

Valoração da Flexibilidade de uma Sonda Dedicada em uma Plataforma de Petróleo: Uma Abordagem via Opções Reais

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Reinaldo Castro Souza

Orientador

Departamento de Engenharia Elétrica – PUC-Rio

Marco Antonio Guimarães Dias

Co-orientador

Departamento de Engenharia Industrial – PUC-Rio

Carlos Patrício Samanez

Departamento de Engenharia Industrial – PUC-Rio

Juan Guillermo Lazo Lazo

Departamento de Engenharia Industrial – PUC-Rio

José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Felippe Borges Costa

Graduou-se em Economia na Universidade Federal de Juiz de Fora em 2007. Trabalha desde 2009 na Petrobras na área de análise econômica de projetos.

Ficha Catalográfica

Costa, Felippe Borges

Valoração da flexibilidade de uma sonda dedicada em uma plataforma de petróleo: uma abordagem via opções reais / Felippe Borges Costa; orientador: Reinaldo Castro Souza; co-orientador: Marco Antônio Guimarães Dias. – 2010.

99 f.: il. (color.); 30 cm

Dissertação (Mestrado em Engenharia Elétrica) – Pontifícia Universidade Católica do Rio de Janeiro, 2010. Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Opções Reais. 3. Petróleo. 4. Completação molhada e seca. 5. Intervenção em poço. I. Souza, Reinaldo Castro. II. Dias, Marco Antonio Guimarães. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Aos meus pais, Cleber e Fátima, pela educação, incentivo e oportunidades que sempre me proporcionaram.

Ao meu irmão, Diego, pela amizade e compreensão.

A todos os meus familiares pelo carinho e apoio.

À minha namorada, Ana Carolina, pelo incentivo e companheirismo.

Aos meus amigos e colegas pelo apoio e compreensão.

Aos meus colegas da Petrobras pelas sugestões e discussões.

Ao meu orientador, Reinaldo, pela confiança e oportunidade de realizar o mestrado.

Ao meu co-orientador, Marco Antônio, pelos valiosos ensinamentos, oportunidades e apoio.

A todos os professores e funcionários do Departamento de Engenharia Elétrica da PUC-Rio, pelos ensinamentos e apoio.

À Capes e à PUC-Rio pelo apoio financeiro e oportunidade de formação.

Resumo

Costa, Felippe Borges; Souza, Reinaldo Castro. Valoração da Flexibilidade de uma Sonda Dedicada em uma Plataforma de Petróleo: Uma Abordagem via Opções Reais. Rio de Janeiro, 2010. 99p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Diversos problemas operacionais ou falhas podem ocorrer em poços produtores e injetores em campos de petróleo e reduzir a produção. Muitas vezes a solução para esse tipo de problema é a intervenção com sonda. No caso de a plataforma de petróleo possuir uma sonda própria de intervenção, essa operação se torna mais ágil e menos dispendiosa. Apesar de proporcionar maior flexibilidade através do gerenciamento ativo da produção, a existência de uma sonda de intervenção acoplada à plataforma geralmente aumenta o investimento requerido em comparação à alternativa sem sonda dedicada. O objetivo desta dissertação foi o de apresentar uma proposta de metodologia, baseada na teoria de opções reais, para a quantificação dessa flexibilidade. A metodologia foi aplicada a um estudo de caso hipotético na área do pré-sal, no qual foram analisadas as opções de intervenção nos poços produtores. A metodologia proposta foi capaz de quantificar o ganho proporcionado pela sonda dedicada. A probabilidade de ocorrência de falhas, o tempo de espera pela sonda, o tipo de falha e a duração da intervenção foram fatores que impactaram o valor da flexibilidade.

Palavras-chave

Opções reais, petróleo, completação seca, sonda dedicada, intervenção em poços, garantia de escoamento.

Abstract

Costa, Felippe Borges; Souza, Reinaldo Castro (Advisor). Valuation of the Flexibility of a Dedicated Rig into an Oil Platform: A Real Options Approach. Rio de Janeiro, 2010. 99p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Several operational problems or failures may occur in producers and injectors wells on oil fields and reduce the production. Often the solution to this problem is the well intervention with a drillship. If the production platform itself has an intervention rig, this operation becomes more agile and less costly. Despite providing greater flexibility through the active management of production, the existence of an intervention rig attached to the platform usually increases the required investment compared to alternative without a dedicated rig. The objective of this dissertation was to propose a methodology, based on real options theory, to quantify this flexibility. The methodology was applied to a hypothetical case study in the pre-salt area in which was analyzed the options for intervention in producing wells. The proposed methodology was able to quantify the improvement provided by a dedicated rig. The probability of failure, the waiting time for the drillship, the failure type and duration of the intervention were factors that impacted the value of flexibility.

Keywords

Real options, oil, dry completion, dedicated rig, well intervention, flow assurance.

Sumário

1 Introdução	11
2 Teoria das Opções Reais	15
2.1. Introdução à Teoria das Opções Reais	15
2.2. Processos Estocásticos	28
2.2.1. Movimento Geométrico Browniano	29
2.2.2. Movimento de Reversão à Média	31
2.2.3. Processo de Poisson	35
2.3. Métodos de Cálculo das Opções Reais	37
2.3.1. Simulação de Monte Carlo	38
3 Sonda Dedicada e o Ganho de Flexibilidade	44
3.1. Introdução	44
3.2. Intervenções em Poços com Sonda de Intervenção	50
3.3. Revisão da Literatura	55
3.4. Ganho de Flexibilidade no Pré-Sal	65
4 Metodologia Proposta	69
4.1. Introdução	69
4.2. Incertezas de Mercado	72
4.3. Incertezas Técnicas	74
5 Aplicação da Metodologia	77
5.1. Introdução	77
5.2. Estudo de Caso	81
6 Conclusões	92
7 Referências Bibliográficas	95

Lista de figuras

Figura 1 – Exemplo de Curva de Gatilho	20
Figura 2 - Efeito da Convexidade no Valor das Opções Reais	24
Figura 3 – Opções Reais em Petróleo	27
Figura 4 – Movimento Geométrico Browniano	30
Figura 5 – Movimento de Reversão à Média: Preço Inicial	
Maior que o Preço de Longo Prazo	33
Figura 6 – Movimento de Reversão à Média: Preço Inicial	
Menor que o Preço de Longo Prazo	34
Figura 7 – Sistema de Produção com FPSO	45
Figura 8 – SPAR com Acesso Vertical Direto aos Poços	46
Figura 9 – Sistema de Produção Baseado em Completação Seca	47
Figura 10 – Esquema de um Poço Produtor Equipado com Gas Lift	48
Figura 11 – Exemplo de uma Linha Obstruída por Depósito de Parafina	51
Figura 12 – Número de Poços Produtores e de Intervenções	63
Figura 13 – Principais Causas de Intervenções em Poços	63
Figura 14 – Duração Total das Intervenções por Motivo	64
Figura 15 – Recordes de Profundidade de Perfuração de Poços	65
Figura 16 – Evolução Histórica do Óleo <i>Brent</i> e da Taxa de Sonda	72
Figura 17 – Exemplo do Impacto de uma Incrustação	
na Produção de um Poço	75
Figura 18 – Curva de Produção Total Potencial	78
Figura 19 – Curvas de Produção de uma Iteração para	
a Alternativa Completação Molhada	84
Figura 20 – Curvas de Produção de uma Iteração para	
a Alternativa Completação Seca	84
Figura 21 – Distribuição do VPL da Alternativa Completação Seca	
para o Caso Base	85
Figura 22 – Distribuição do VPL da Alternativa Completação Seca	
para o Caso Base	85
Figura 23 – Distribuição do Total de Falhas dos Poços para o Caso Base	86

Lista de tabelas

Tabela 1 - Analogia entre a Opção Financeira de Compra	
e a Opção Real de Desenvolver um Campo de Petróleo	22
Tabela 2 - Impacto das Variáveis no Valor do Gatilho e da Opção Real	23
Tabela 3 – Prós e Contras das Unidades Dotadas	
de Sonda Própria para o Pré-sal	66
Tabela 4 – Fluxo de Caixa Adotado na Análise	71
Tabela 5 – Cronograma e Pico de Produção dos Poços Produtores	78
Tabela 6 – Premissas Gerais do Estudo de Caso	79
Tabela 7 – Probabilidade de Ocorrência de Falha nos Poços Produtores	
de Acordo com o Parâmetro de Escala da Distribuição de Weibull	82
Tabela 8 – Premissas para o Caso Base	82
Tabela 9 - Resultado da Simulação para o Caso Base	83
Tabela 10 – Impacto da Probabilidade de Ocorrência	
de Falhas dos Poços Produtores no Valor da Flexibilidade	87
Tabela 11 – Impacto do Tempo de Espera pela Sonda	
no Valor da Flexibilidade	88
Tabela 12 – Impacto da Duração da Intervenção no Valor da Flexibilidade	89
Tabela 13 – Impacto do Tipo de Falha no Valor da Flexibilidade	90
Tabela 14 – Premissas do Modelo de Marlim	90
Tabela 15 – Impacto da Modelagem do Óleo Brent e da Taxa de Sonda	
através do Modelo de Marlim no Valor da Flexibilidade	91

Lista de Siglas

ANP - Agência Nacional do Petróleo

CAPM – *capital asset pricing model* (modelo de precificação de ativos de capital)

E&P – exploração e produção

FCD - fluxo de caixa descontado

FOB – free on board

FPDSO – floating production drilling storage and offloading

FPSO – floating production storage and offloading

MGB – movimento geométrico Browniano

MRM - movimento de reversão à média

OPEP - Organização dos Países Produtores de Petróleo

SS-semi-submersível

TLP – tension leg platform

TLWP - tension leg wellhead platform

VBA – Visual Basic for Applications

VPL – valor presente líquido