

Víctor Manuel Aréstegui Meléndez

Avaliação Experimental dos Parâmetros de Transporte em Folhelhos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Sergio A. B. da Fontoura

Rio de Janeiro Junho de 2010

Víctor Manuel Aréstegui Meléndez

Avaliação Experimental dos Parâmetros de Transporte em Folhelhos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sergio Augusto Barreto da FontouraOrientador
Departamento de Engenharia Civil - PUC-Rio

Prof. Alberto Sampaio Ferraz Jardim Sayão Departamento de Engenharia Civil - PUC-Rio

> Dr. Rogério Schiffer de Souza CENPES/PETROBRAS

Prof. José Eugênio Leal Coordenador Setorial de Pós-Graduação do Centro Técnico Cientifico - PUC-Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Víctor Manuel Aréstegui Meléndez

Graduou-se em Engenharia Civil pela Universidad Nacional de San Cristóbal de Huamanga-Ayacucho no Peru em 2006. Ingressou em 2007 no curso de mestrado em Engenharia Civil da PUC-Rio, na área de Geotecnia, e linha de pesquisa de geomecânica do petróleo.

Ficha Catalográfica

Aréstegui Meléndez, Víctor Manuel

Avaliação experimental dos parâmetros de transporte em folhelhos / Víctor Manuel Aréstegui Meléndez ; orientador: Sergio A. B. da Fontoura. – 2010.

184 f.: il. (color.); 30 cm

Dissertação (mestrado)—Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2010.

Inclui bibliografia.

1. Engenharia civil – Teses. 2. Folhelho. 3. Transporte de massa. 4. Ensaios de difusão. 5. Fluido de Perfuração. 6. Estabilidade de poços. I. Fontoura, Sergio A. B. da. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Agradecimentos

Agradeço em primeiro lugar a Deus que iluminou o meu caminho durante esta longa caminhada.

A CAPES e PRONEX pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao meu orientador Sérgio A. B. da Fontoura, pelo ensinamento constante, paciência, e confiança depositado em minha pessoa para o desenvolvimento deste trabalho.

Ao Eudes Siqueira Muniz, pela ajuda e apoio constante no transcorrer dos ensaios.

A todos os professores e funcionários do Departamento de Engenharia Civil pelos ensinamentos e total apoio no decorrer deste trabalho.

Aos colegas do GTEP e especialmente à equipe do Laboratório de Interação Rocha-Fluido, pela amizade e salutar convívio de gratas recordações.

A minha mãe, Elsa Meléndez, pela atenção, carinho e incentivo em todos os momentos da minha vida, sem ela nada disso seria possível.

A minhas irmãs Ingrid, Keila e Mayte, pelo apoio incondicional brindado em todos estes anos, pelas forças e ânimos transmitidos para alcançar as minhas metas.

Aos meus grandes amigos, Daniel Lemos e Thiago Henrique da Silva, pela amizade e companheirismo incondicional, pelo convívio e aprendizado.

Ao Wagner Nahas e David Bogossian, pelas correções e sugestões feitas nesta dissertação.

Aos professores que participaram da Comissão Examinadora pelas sugestões feitas.

Resumo

Aréstegui, Víctor Manuel Meléndez; Fontoura, Sergio Augusto B. **Avaliação Experimental dos Parâmetros de Transporte em Folhelhos.** Rio de Janeiro, 2010. 184p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Grande parte dos problemas de instabilidade de poços de petróleo ocorre quando rochas argilosas, como os folhelhos, são perfuradas. Tais problemas são creditados, em geral, à interação físico-química entre os fluidos de perfuração e as referidas rochas. Esta dissertação se foca no estudo experimental do comportamento de folhelhos expostos a diferentes soluções salinas, que simulam os fluidos de perfuração a base de água. O objetivo é estimar os parâmetros de transporte de massa (permeabilidade absoluta, coeficiente de reflexão e difusão) necessários para as análises de estabilidade de poços. São utilizadas um conjunto de células de difusão capazes de simular as condições de tensões in-situ e aplicar gradientes hidráulicos e químicos a corpos de prova de folhelhos. Foram caracterizados dois tipos de folhelhos típicos de plataformas "offshore" (BC-01) e "onshore" (Pierre01) provenientes, respectivamente, da Bacia de Campos (Rio de Janeiro, Brasil) e de Salt Lake City (Utah, Estados Unidos). Ensaios de porosimetria indicam que o folhelho BC-01 apresenta maiores diâmetros de poros quando comparados com o folhelho Pierre01. Resultados dos ensaios nas células de difusão sugerem que a direção dos planos de acamamento presentes nos corpos de prova afetam a permeabilidade e, por conseguinte, o coeficiente de reflexão que o folhelho possui. Os resultados sugerem que a composição mineralógica não tem influencia nos parâmetros de transporte de massa.

Palavras-chave

Folhelho; transporte de massa; ensaios de difusão; fluido de perfuração; estabilidade de poços.

Abstract

Aréstegui, Víctor Manuel Melendez; Fontoura, Sergio Augusto B.(Advisor). **Experimental Evaluation of Transport Parameters in Shales.** Rio de Janeiro, 2010. 184p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The majority of the problems related to wellbore stability occur when argillaceous rocks, such as shales, are drilled. Such problems are believed, in general, to be caused by the physical-chemical interaction between drilling fluids and the referred rocks. This dissertation focuses on the experimental study of the behavior of shales exposed to different saline solutions, which simulated water-based drilling fluids. The objective is to estimate the mass transporting parameters (absolute permeability, reflection coefficient and diffusion) necessary for the analysis of well stability. Groups of diffusion cells are used, being capable of simulating in-situ stress conditions and apply hydraulic gradients and chemicals upon shale samples. Two types of shales were characterized; representative of offshore (BC-01) and onshore (Pierre01) platforms derived, respectively, from Bacia de Campos (Rio de Janeiro, Brazil) and Salt Lake City, Utah, United States. Porosimetry tests indicate that BC-01 shales present larger pore diameters when comparing with Pierre01 Shales. Experimental results from diffusion cells suggest that the direction of foliation planes present in the samples defines its permeability and, therefore the coefficient of reflection that the shales possess. The results suggest that mineral composition does not influence the mass transporting parameters.

Keywords

Shales; mass transporting; diffusion tests; drilling fluid; well stability.

Sumário

1 Introdução	20
1.1. Motivação	20
1.2. Objetivos	22
1.2.1. Objetivo Geral	22
1.2.2. Objetivos Específicos	23
1.3. Escopo	23
2 Revisão Bibliográfica	25
2.1. Introdução	25
2.2. Definição e origem dos Folhelhos	25
2.3. Mecanismos de Transporte de Massa	27
2.4. Influência da Permeabilidade do Folhelho	34
2.5. Mecanismos de Instabilidade de Poços	36
2.6. Fluidos de Perfuração	39
2.7. Classificação dos Fluidos de Perfuração	40
3 Ensaios de Caracterização de Folhelhos	44
3.1. Introdução	44
3.2. Origem dos Folhelhos Ensaiados	44
3.3. Preparação das Amostras	45
3.4. Distribuição Granulométrica	46
3.4.1. Efeito da Cimentação (Quantidade de Carbonatos)	49
3.4.2. Comentários Gerais do Tratamento com HCL	56
3.5. Índices Físicos	57
3.6. Capacidade de Troca Catiônica (CTC) e Superfície Específica (SE)	58
3.6.1. Método do Acetato de Amônio (AA)	61
3.6.2. Metodologia Adotada na Preparação do Material	61
3.6.3. Apresentação e Discussão dos Resultados	62
3.7. Análises dos Fluidos de Poros	63
3.7.1. Procedimentos do Ensaio	64
3.7.2. Apresentação e Discussão dos Resultados	65
3.8. Composição Mineralógica	65
3.8.1. Análises Químicas	66

3.8.2. Dirração de Raios X (DRX)	67
3.8.2.1. Seleção de Material e Preparação de Lâminas	68
3.8.2.2. DRX do Folhelho BC-01	71
3.8.2.3. DRX do Folhelho Pierre01	74
3.8.2.4. Comentários Gerais da DRX	75
3.8.3. Microscopia Eletrônica de Varredura (MEV)	76
3.8.3.1. MEV do Folhelho BC-01	77
3.8.3.2. MEV do Folhelho Pierre01	81
3.9. Porosimetria por Injeção de Mercúrio	84
3.9.1. Equipamento Utilizado e Procedimento do Ensaio	85
3.9.2. Apresentação e Discussão dos Resultados	86
3.10. Antecedentes do Coeficiente de Reflexão em Função da Porosimetria	
e da Mineralogia.	90
3.11. Conclusões da Caracterização dos Folhelhos	94
4 Descrição dos Equipamentos e da Metodologia de Ensaios	96
4.1. Introdução	96
4.2. Equipamentos e Acessórios Utilizados	97
4.3. Metodologia de Ensaios nas Células de Difusão	102
4.3.1. Considerações Gerais	103
4.3.2. Montagem do Ensaio	104
4.3.3. Fases do Ensaio nas Células de Difusão	106
4.3.3.1. Fase de Saturação do Corpo de Prova	106
4.3.3.2. Fase de Adensamento do Corpo de Prova	108
4.3.3.3. Fase de Transmissão de Pressão do Corpo de Prova	110
4.3.3.4. Fase de Difusão de Íons do Corpo de Prova	111
4.4. Ensaios de Tração Indireta (Ensaio Brasileiro)	114
4.5. Análises dos Resultados Experimentais	115
4.5.1. Obtenção do Coeficiente de Reflexão Experimental (α_{exp})	116
4.5.2. Retroanálise dos Resultados Experimentais: Programa FPORO.	117
5 Ensaios Realizados e Análise dos Resultados	120
5.1. Introdução	120
5.2. Ensaios em Corpos de Prova Sintéticos nas Células de Difusão	120
5.2.1. Fase de Saturação e Adensamento	121
5.2.2 Fase de Transmissão de Pressão e Difusão de Íons	121

5.3. Ensaios em Folhelhos nas Células de Difusão	126
5.3.1. Primeira Campanha de Ensaios com o Folhelho Pierre01	127
5.3.1.1. Dados Iniciais dos Corpos de Prova	127
5.3.1.2. Fase de Saturação e Adensamento	128
5.3.1.3. Fase de Transmissão de Pressão	129
5.3.1.4. Fase de Difusão de Íons	132
5.3.1.5. Dados Finais dos Corpos de Prova	137
5.3.2. Segunda Campanha de Ensaios com o Folhelho Pierre01	137
5.3.2.1. Dados Iniciais dos Corpos de Prova	138
5.3.2.2. Fase de Saturação e Adensamento	138
5.3.2.3. Fase de Transmissão de Pressão	139
5.3.2.4. Fase de Difusão de Íons	142
5.3.2.5. Dados Finais do Corpo de Prova	145
5.3.3. Ensaios de Tração Indireta (Ensaio Brasileiro)	146
5.3.4. Primeira Campanha de Ensaios com o Folhelho BC-01	147
5.3.4.1. Dados Iniciais dos Corpos de Prova	148
5.3.4.2. Fase de Saturação e Adensamento	148
5.3.4.3. Fase de Transmissão de Pressão	149
5.3.4.4. Fase de Difusão de Íons	152
5.3.4.5. Dados Finais dos Corpos de Prova	158
5.3.5. Segunda Campanha de Ensaios com o Folhelho BC-01	158
5.3.5.1. Dados Iniciais dos Corpos de Prova	159
5.3.5.2. Fase de Saturação e Adensamento	159
5.3.5.3. Fase de Transmissão de Pressão	160
5.3.5.4. Fase de Difusão de Íons	163
5.3.5.5. Dados Finais dos Corpos de Prova	166
5.3.6. Ensaios de Tração Indireta (Ensaio brasileiro)	167
5.4. Conclusões das Campanhas de Ensaio	169
6 Conclusões e Sugestões para Trabalhos Futuros	174
6.1. Conclusões	174
6.2. Sugestões para Trabalhos Futuros	176
7 Referências Bibliográficas	178

Lista de figuras

Figura 2.1 – Amostra de folhelho com lâminas finas e paralelas esfoliáveis.	26
Figura 2.2 – Mecanismos de transporte de água através de uma membrana	
semi-permeável perfeita sob condições de campo.	30
Figura 2.3 – Mecanismos de impermeabilização promovidos na interface	
óleo-fluido de poros (Dusseault & Gray 1992, modificado por Duarte 2004).	31
Figura 2.4 – Distribuição de tamanho dos poros em ambas as direções da	
amostra (sedimentos argilosos sobre-adensado).	36
Figura 2.5 – Exemplo típico de instabilidade de folhelhos e problemas de	
poço observados no perfil caliper (van Oort, 2003).	37
Figura 2.6 – Tipos de ruptura ao redor de poços (Fjær et al., 1992).	38
Figura 2.7 – Fluido de perfuração carreando os cascalhos para a superfície	
(Duarte, 2004).	40
Figura 3.1 – Detalhe dos folhelhos adquiridos para os diferentes ensaios:	
a) Bloco do folhelho Pierre01 b) Testemunho do folhelho BC-01.	45
Figura 3.2 – Preparação dos corpos de prova em torno mecânico.	46
Figura 3.3 – Inclinação dos planos de acamamento do folhelho Pierre01.	46
Figura 3.4 – Ensaio de granulometria	48
Figura 3.6 – Fração #60 do folhelho Pierre01 após peneiramento da	
fração fina.	50
Figura 3.7 – Fração #60 do folhelho BC-01 após peneiramento da	
fração fina.	50
Figura 3.8 – Tratamento do folhelho com HCI.	51
Figura 3.9 – Imagens da lupa binocular no tratamento do folhelho BC-01	
com HCI a frio e a quente para diferentes frações granulométricas.	52
Figura 3.10 – Fotos do folhelho Pierre01 ao natural e tratada com HCl	
observadas em diferentes frações.	54
Figura 3.11 – Fotos do folhelho BC-01 ao natural e tratada com HCl	
observada em diferentes frações.	55
Figura 3.12 – (a) Destorroamento do folhelho e peneiramento na	
malha de 40# (b) Processo de centrifugação.	62
Figura 3.13 – Imagem ilustrando a lâmina da fração total preparada	
utilizando o método do pó.	68

Figura 3.14 – Seleção do material característico da dimensão argila.	69
Figura 3.15 – Preparação das lâminas por pipetagem.	70
Figura 3.16 – Processo de glicolagem das lâminas	70
Figura 3.17 – Difratograma da fração total do folhelho BC-01.	71
Figura 3.18 – Difratogramas da fração argila do folhelho BC-01 com	
tratamento e sem tratamento.	72
Figura 3.19 – Difratogramas da fração argila do folhelho BC-01. Lâmina	
natural e tratada a 350°C.	73
Figura 3.20 – Difratogramas da fração argila do folhelho BC-01. Lâmina	
natural e tratada com etilenoglicol a 350ºC.	74
Figura 3.21 – Difratograma da fração total do folhelho Pierre01.	75
Figura 3.22 – Difratograma da fração argila do folhelho Pierre01.	
Lâmina natural, aquecida e glicolada.	75
Figura 3.23 – Fotomicrografias da amostra do folhelho BC-01: (a) Textura	
homogênea, aglomerado de pirita (clara) (b) Espaço vazio na superfície da	
rocha.	78
Figura 3.24 – Fotomicrografia da amostra do folhelho BC-01:	
(a) Aglomerados de pirita (clara) na superfície do folhelho (b) EDS da zona	
indicada (FeS ₂).	78
Figura 3.25 – Fotomicrografias da amostra do folhelho BC-01: (a) Estrutura	
laminar cobrindo os aglomerados de pirita (b) Detalhe da estrutura laminar.	79
Figura 3.26 – Fotomicrografia da amostra do folhelho BC-01: (a) Aglomerado	
de pirita bem cristalizada (b) EDS dos grãos de pirita (FeS ₂).	79
Figura 3.27 – Fotomicrografia da amostra do folhelho BC-01: (a) Carapaça	
de foraminífero preenchida por calcita (b) EDS do fóssil encontrado (CaCO ₃).	80
Figura 3.28 – Fotomicrografia da amostra do folhelho BC-01: (a) Pirita	
framboidal (b) EDS da zona indicada.	80
Figura 3.29 – Fotomicrografias da amostra do folhelho Pierre01: (a) Textura	
homogênea e detalhe da laminação (b) Piritas (clara) e micas (escura)	
disseminadas no folhelho	82
Figura 3.30 – Fotomicrografia da amostra do folhelho Pierre01: (a) Vista	
geral do folhelho (b) EDS da matriz da rocha no ponto indicado.	82
Figura 3.31 – Fotomicrografias da amostra do folhelho Pierre01: (a) e (b)	
Vista geral da estrutura do folhelho, presença de grãos de quartzo	
espalhados na sua superfície.	83

Figura 3.32 – Fotomicrografia da amostra do folhelho Pierre01: (a) Vista em	
detalhe do folhelho, presença de micas e piritas (b) EDS total da zona	
observada.	83
Figura 3.33 – Fotomicrografia da amostra do folhelho Pierre01:	
(a) Aglomerados de pirita com aspecto framboidal (b) EDS do ponto indicado	,
pirita (FeS ₂).	84
Figura 3.34 – Intrusão acumulativa de mercúrio dos folhelhos	
Pierre01 e BC-01.	87
Figura 3.35 – Intrusão incremental do folhelho Pierre01.	88
Figura 3.36 – Intrusão incremental do folhelho BC-01.	88
Figura 3.37 – Intrusão acumulativa dos folhelhos B-S e B Rabe (2003) e do	
folhelho B-L Muniz (2005).	91
Figura 4.1 – Esquema da célula de difusão desenvolvida por Muniz (2003).	97
Figura 4.2 – Nova célula de difusão do LIRF-GTEP para ensaios isotrópicos.	98
Figura 4.3 – Aplicador de pressão confinante GDS de 32 MPa.	99
Figura 4.4 – Transdutores de pressão na célula de difusão.	99
Figura 4.5 – Bomba "Waters".	100
Figura 4.6 – Válvula de alívio "Swagelok".	100
Figura 4.7 – Nova interface tipo pistão – esquema ao lado.	101
Figura 4.8 – Cabeçote superior (esquerda) e inferior (direita).	102
Figura 4.9 – Vista geral das cinco células de difusão.	102
Figura 4.10 – Válvulas da célula de difusão: a) Vista traseira	
b) Vista dianteira.	104
Figura 4.11 – Etapas de montagem do ensaio. (Modificado de Muniz, 2003).	105
Figura 4.12 – Montagem utilizada para realização do Ensaio Brasileiro.	115
Figura 4.13 – Ensaio para obter a atividade química da solução	
(Rabe, 2003).	117
Figura 5.1 – Corpo de prova sintético na célula de difusão.	121
Figura 5.2 – Fase de transmissão de pressão e difusão de íons do SI01.	122
Figura 5.3 – Fase de transmissão de pressão e difusão de íons do SI02.	122
Figura 5.4 – Fase de transmissão de pressão e difusão de íons do SI03.	123
Figura 5.5 – Fase de transmissão de pressão e difusão de íons do SI04.	124
Figura 5.6 – Corpo de prova de PVC macico na célula de difusão.	124

Figura 5.7 – Fase de transmissão de pressão com corpo de prova de	
PVC (com transmissão de pressão).	125
Figura 5.8 – Fase de transmissão de pressão com corpo de prova de	
PVC (sem transmissão de pressão).	126
Figura 5.9 – Fase de transmissão de pressão com água do CP04.	130
Figura 5.10 – Fase de transmissão de pressão com água do CP05.	130
Figura 5.11 – Fase de transmissão de pressão com água do CP09.	131
Figura 5.12 – Fase de transmissão de pressão com água do CP10.	131
Figura 5.13 – Fase de transmissão de pressão com água do CP11.	131
Figura 5.14 – Fase de transmissão de pressão e difusão de íons do CP09.	132
Figura 5.15 – Fase de transmissão de pressão e difusão de íons do CP10.	133
Figura 5.16 – Fase de transmissão de pressão e difusão de íons do CP11.	133
Figura 5.17 – Ajuste numérico da concentração no CP09.	136
Figura 5.18 – Ajuste numérico da concentração no CP10.	136
Figura 5.19 – Ajuste numérico da concentração no CP11.	136
Figura 5.20 – Fase de transmissão de pressão com água do CP12.	140
Figura 5.21 – Fase de transmissão de pressão com água do CP13.	140
Figura 5.22 – Fase de transmissão de pressão com água do CP14.	140
Figura 5.23 – Fase de transmissão de pressão com água do CP15.	141
Figura 5.24 – Fase de transmissão de pressão e difusão de íons do CP12.	142
Figura 5.25 – Fase de transmissão de pressão e difusão de íons do CP13.	142
Figura 5.26 – Fase de transmissão de pressão e difusão de íons do CP14.	143
Figura 5.27 – Fase de transmissão de pressão e difusão de íons do CP15.	143
Figura 5.28 – Rupturas do corpo de prova após ensaio Brasileiro – folhelho	
Pierre01.	147
Figura 5.29 – Fase de transmissão de pressão com água do corpo de	
prova BC01.	150
Figura 5.30 – Fase de transmissão de pressão com água do corpo de	
prova BC06.	151
Figura 5.31 – Fase de transmissão de pressão com água do corpo de	
prova BC07.	151
Figura 5.32 – Fase de transmissão de pressão com água do corpo de	
prova BC08.	151
Figura 5.33 – Fase de transmissão de pressão e difusão de íons do BC01.	152
Figura 5.34 – Fase de transmissão de pressão e difusão de íons do BC02.	153
Figura 5.35 – Fase de transmissão de pressão e difusão de íons do BC06	153

Figura 5.36 – Fase de transmissão de pressão e difusão de íons do BC07.	153
Figura 5.37 – Fase de transmissão de pressão e difusão de íons do BC08.	154
Figura 5.38 – Ajuste numérico da concentração no corpo de prova BC02.	156
Figura 5.39 – Ajuste numérico da concentração no corpo de prova BC06.	157
Figura 5.40 – Ajuste numérico da concentração no corpo de prova BC07.	157
Figura 5.41 – Ajuste numérico da concentração no corpo de prova BC08.	157
Figura 5.42 – Fase de transmissão de pressão com água do corpo de	
prova BC10.	161
Figura 5.43 – Fase de transmissão de pressão com água do corpo de	
prova BC11.	161
Figura 5.44 – Fase de transmissão de pressão com água do corpo de	
prova BC12.	161
Figura 5.45 – Fase de transmissão de pressão com água do corpo de	
prova BC13.	162
Figura 5.46 – Fase de transmissão de pressão e difusão de íons do BC10.	164
Figura 5.47 – Fase de transmissão de pressão e difusão de íons do BC11.	164
Figura 5.48 – Fase de transmissão de pressão e difusão de íons do BC12.	164
Figura 5.49 – Ruptura típica do ensaio brasileiro ocorrida no BC06	
(folhelho BC-01).	168
Figura 5.50 - Rupturas ocorridas no folhelho BC-01; (a) Vista frontal	
inclinada BC10 (CP10) e (b) Vista do topo.	169

Lista de tabelas

Tabela 3.1 – Resultados dos ensaios de granulometria.	48
Tabela 3.2 – Índices físicos iniciais dos folhelhos.	58
Tabela 3.3 – Valores típicos de CTC e SE de argilominerais.	59
Tabela 3.4 – Valores de CTC obtidos pelo método do acetato de	
amônio (AA).	63
Tabela 3.5 – Concentração dos íons dissolvidos nos poros das	
amostras (mg/l).	65
Tabela 3.6 – Análises químicas dos constituintes dos folhelhos.	67
Tabela 3.7 – Parâmetros obtidos do ensaio de porosimetria por	
injeção de mercúrio.	89
Tabela 3.8 – Análises semi-quantitativa mineral dos folhelhos B, B-S	
e N e minerais presentes no folhelho B-L.	92
Tabela 3.9 – Parâmetros obtidos dos ensaios de porosimetria,	
dos ensaios de difusão e da CTC.	92
Tabela 5.1 – Dados e índices físicos iniciais e finais dos corpos de prova	
(folhelho Pierre01).	128
Tabela 5.2 – Valores do parâmetro B de Skempton para cada corpo	
de prova (folhelho Pierre01).	129
Tabela 5.3 – Valores de permeabilidade absoluta obtidos para cada	
corpo de prova (folhelho Pierre01).	132
Tabela 5.4 – Valores do coeficiente de reflexão obtidos experimentalmente	
(folhelho Pierre01).	134
Tabela 5.5 – Análises químicas do fluido presente no reservatório inferior	
(folhelho Pierre01).	134
Tabela 5.6 – Valores obtidos numericamente (folhelho Pierre01).	135
Tabela 5.7 – Dados e índices físicos finais dos corpos de prova	
(folhelho Pierre01).	137
Tabela 5.8 – Dados e índices físicos iniciais dos corpos de prova (folhelho	
Pierre01)	138
Tabela 5.9 – Valores do parâmetro B de Skempton para cada corpo	
de prova (folhelho Pierre01).	139

Tabela 5.10 – Valores de permeabilidade absoluta obtidos para cada	
corpo de prova (folhelho Pierre01).	141
Tabela 5.11 – Valores do coeficiente de reflexão obtidos experimentalmente	
(folhelho Pierre01).	144
Tabela 5.12 – Valores do coeficiente de reflexão obtidos numericamente	
(folhelho Pierre01).	145
Tabela 5.13 – Dados e índices físicos finais dos corpos de prova (folhelho	
Pierre01).	146
Tabela 5.14 – Dados e índices físicos iniciais dos corpos de prova	
(folhelho BC-01).	148
Tabela 5.15 – Valores do parâmetro B de Skempton para cada corpo	
de prova (folhelho BC-01).	149
Tabela 5.16 – Valores de permeabilidade absoluta obtidos para cada	
corpo de prova (folhelho BC-01).	152
Tabela 5.17 – Valores do coeficiente de reflexão obtidos experimentalmente	
(folhelho BC-01).	155
${\sf Tabela~5.18-An\'alises~qu\'imicas~do~fluido~presente~no~reservat\'orio~inferior~.}$	155
Tabela 5.19 – Valores obtidos numericamente (folhelho BC-01).	156
Tabela 5.20 – Dados e índices físicos finais dos corpos de prova	
(folhelho BC-01).	158
Tabela 5.21 – Dados e índices físicos iniciais dos corpos de prova	
(folhelho BC-01).	159
Tabela 5.22 – Valores do parâmetro B de Skempton para cada corpo	
de prova (folhelho BC-01).	160
Tabela 5.23 – Valores de permeabilidade absoluta obtidos para cada	
corpo de prova (folhelho BC-01).	163
Tabela 5.24 – Valores do coeficiente de reflexão obtidos experimentalmente.	165
Tabela 5.25 – Dados e índices físicos finais dos corpos de prova	
(folhelho BC-01)	167
Tabela 5.26 – Parâmetros obtidos do ensaio brasileiro no folhelho BC-01.	168
Tabela 5.27 – Resumo dos parâmetros obtidos nos ensaios do folhelho	
BC-01 e do folhelho Pierre01.	171

Lista de símbolos

Mobilidade da água

Mobilidade do soluto

 ν_{a}

 ν_{s}

a ₁	Atividade química da água na região de menor concentração iônica
a_2	Atividade química da água na região de maior concentração iônica
A_{fh}	Atividade química do fluido dos poros do folhelho
A_{f}	Atividade química do fluido de perfuração ou da solução salina utilizada
В	Parâmetro de poropressão de Skempton
CP	Corpo de prova
D	Diâmetro do corpo de prova
D ₅₀	Diâmetro dos poros correspondente a 50 % do volume total intrudido
D_o	Coeficiente de difusão molecular livre da solução
D_e	Coeficiente de difusão efetiva
dtc	Tempo de trânsito da onda compressional
dts	tempo de trânsito da cisalhante
е	Índice de vazios
E	Módulo de elasticidade
G	Densidade dos grãos
Н	Altura do corpo de prova
k	Permeabilidade
meq	Miliequivalente
n	Porosidade
η	Viscosidade dinâmica da solução
Р	Força da prensa
P_{w}	Pressão hidráulica exercida pelo fluido de perfuração
P_{c}	Pressão capilar
PM_{s}	Peso molecular do soluto
PM_{w}	Peso molecular do solvente
r	Raio do poro
R	Constante universal dos gases
S	Grau de saturação
Т	Temperatura
W	Umidade
W	Peso total do corpo de prova
V	Volts
V	Volume do corpo de prova
V_{w}	Volume molar parcial da água

V_p Volume total de mercúrio injetado

α Coeficiente de reflexão ou eficiência de membrana

 α_{num} Coeficiente de reflexão mumérico

 α_L Dispersividade longitudinal

 α_T Dispersividade transversal

γ_w Peso específico da água

θ Ângulo de contato

τ Tortuosidade

v Coeficiente de Poisson

σ_{Hg} Tensão interfacial do mercúrio

 σ_t Resistência a tração

 ρ_T Massa específica

ΔP Incremento de pressão aplicada

 ΔP_{osm} Pressão osmótica gerada experimentalmente

Δu Variação de poropressão

 $\Delta\sigma_{conf}$ Variação de pressão confinante

Π Pressão osmótica teórica