

Fabrício José Brito Barros

Traçado Tridimensional de Feixes para a Obtenção das Características de Propagação do Canal de Banda Ultralarga em Ambientes Interiores

Tese de Doutorado

Tese de Doutorado apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Emanoel Paiva de Oliveira Costa

Rio de Janeiro, julho de 2010

Fabrício José Brito Barros

Traçado Tridimensional de Feixes para a Obtenção das Características de Propagação do Canal de Banda Ultralarga em Ambientes Interiores

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Emanoel Paiva de Oliveira Costa Orientador Puc-Rio

Prof. Luiz Costa da Silva Centro de Estudos em Telecomunicações - PUC- Rio

> Prof. Maurício Henrique Costa Dias Instituto Militar de Engenharia – IME

Prof. Fernando José da Silva Moreira Instituto Militar de Engenharia – IME

Prof. Marcelo Gattass Departamento de Informática - PUC- Rio

Prof. Gláucio Lima Siqueira Centro de Estudos em Telecomunicações - PUC- Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 15 de julho de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Fabrício José Brito Barros

Graduou-se em Engenharia Elétrica pela Universidade Federal do Pará (2003), mestrado em Engenharia Elétrica pela Pontificia Universidade Católica do Rio de Janeiro (2006).

Ficha Catalográfica

Barros, Fabrício José Brito

Traçado tridimensional de feixes para a obtenção das características de propagação de canal banda ultralarga em ambientes interiores/ Fabrício José Brito Barros; orientador: Emanoel Paiva de Oliveira Costa - 2010.

220 f.: il. (color.) ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2010.

Incluí bibliografia

1. Engenharia elétrica - Teses. 2. Canal de propagação banda ultralarga. 3. Sondagem em frequência. 4. Traçado de feixes em três dimensões. I. Costa, Emanoel Paiva de Oliveira. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 0510515/CA

A meus pais, minha irmã e a minha namorada.

Agradecimentos

Ao meu orientador, Prof. Dr. Emanoel Paiva de Oliveira Costa, pela excelente orientação, apoio e confiança.

Ao prof. Dr. José Ricardo Bergmann pelos dados referentes aos diagramas de irradiação das antenas gentilmente cedidos e utilizados neste trabalho.

Ao Prof. Dr. Gláucio Lima Siqueira pelo apoio e colaboração para a obtenção das medidas, obtidas sobre sua orientação em meu mestrado, e utilizadas neste trabalho.

Ao Prof. Carlos Leônidas Sobrinho, responsável por minha iniciação científica.

A CAPES pelo apoio financeiro necessário a realização desta Tese. Aos colegas e funcionários do CETUC.

Resumo

Barros, Fabrício José Brito; Costa, Emanoel Paiva de Oliveira. **Traçado Tridimensional de Feixes para a Obtenção das Características de Propagação do Canal de Banda Ultralarga em Ambientes Interiores.** Rio de Janeiro, 2010. 220p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho descreve o método de traçado de feixes em três dimensões que permite a caracterização do canal em uma banda ultralarga. As características do canal são acessadas através do retardo médio, espalhamento de retardo RMS e banda de coerência. Uma análise adicional sobre a variação da potência ao longo da distância foi realizada. Os resultados obtidos foram comparados com mediadas realizadas, com o auxílio da técnica de sondagem em frequência, para validação do método utilizado.

Palavras-chave

Canal de propagação banda ultralarga; sondagem em freqüência; traçado de feixes em três dimensões.

Abstract

Barros, Fabrício José Brito; Costa, Emanoel Paiva de Oliveira (Advisor). **Three-Dimensional Beam Tracing Method to Obtain Ultra Wideband indoor Radio Channel Characteristics.** Rio de Janeiro, 2010. 220p. Doctoral Thesis – Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

This work describes the tridimensional beam tracing method that allows one to characterize the Ultra Wideband (UWB) indoor Radio Channel. The channel characteristics are assessed in terms of mean delay, delay spread and coherence bandwidth. An additional analysis related to power variation through distance was also evaluated. The results were compared to measurements obtained from the frequency sounding technique.

Keywords

UWB propagation channel; frequency sounding; tridimensional beam tracing method.

Sumário

1 Introdução	19
1.1 Banda Ultralarga	25
1.2 Objetivos da Tese	26
1.3 Composição da Tese	28
2 Traçado de Feixes	29
2.1. O Método de Traçado de Feixes	29
2.2. Organização do Modelo	30
2.3 Subdivisão Espacial	31
2.4. Emissão de Feixes	37
2.4.1 Feixes Iniciais	38
2.4.2 Algoritmo de Transmissão de um Feixe	39
2.4.3 Algoritmo de Reflexão de um Feixe	44
2.4.4 O Feixe de Difração	47
2.4.5 Representação do Feixe de Difração	49
2.4.6 Feixe de Difração de Primeira Ordem	53
2.4.7 Algoritmo de Transmissão e Reflexão dos Feixes de Difração de	
Primeira Ordem	56
2.4.8 Feixes de Difração de Segunda Ordem	60
2.4.9 Algoritmo de Transmissão e Reflexão dos Feixes de Difração de	
Segunda Ordem	63
2.4.10 Árvore de Feixes	66
2.5. Geração dos Percursos de Propagação	71
2.5.1 Transmissão e Reflexão	71
2.5.2 Difração	73
3 Caracterização do Canal UWB	82
3.1. O Canal de Propagação UWB	82
3.1.1. Campo Elétrico Inicial	84
3.1.2. Rastreamento de Campos ao Longo de Raios	85
4 Técnica de Sondagem do Canal Banda Ultralarga	104

4.1. Técnica de Sondagem no Domínio da Frequência	104
4.1.1 Equipamentos de Medidas	107
4.1.2. Aplicação da Técnica de Sondagem em Frequência para a Banda	
de 850 MHz	110
5 Medidas e Cálculos dos Parâmetros que Caracterizam o Canal	111
5.1. Banda de coerência	112
5.2. Perfil de Potência e Retardo	114
5.3. Retardo Médio e Espalhamento de Retardo RMS	116
5.4. Variação da Potência Recebida ao Longo da distância	118
6 Resultados	119
6.1. Corredor Leme	120
6.2. Corredores CETUC	139
6.3. Escritório	169
7 Conclusões	182
7.1. Sugestões para Trabalhos Futuros	185
Referências Bibliográficas	186
Apêndice A	194
A.1. Obtenção dos Coeficientes de Transmissão e Reflexão Correspondentes	
à Camada de Condutividade e Espessura Finitas	194
A.2. Técnica CLEAN para a Detecção de Componentes de Multipercurso	202
A.3. A influência da Difração nos Corredores do CETUC	208
A.4. Parâmetros de Dispersão do Canal para o Escritório	215

Lista de Figuras

Figura 1 - Exemplo de feixe. Feixe cônico formado por um vértice e	
uma base circular.	21
Figura 2 - Tipos de feixes poliédricos utilizados. (a) Feixe com vértice	
V e base quadrada. (b) Feixe com vértice V com base triangular. (d) e	
(e) Feixes com vértices V e bases convexas quaisquer.	30
Figura 3- Organização do modelo.	31
Figura 4- Subdivisão espacial. (a) Ambiente em três dimensões.	
(b) Ambiente formado por polígonos convexos. (c) Subdivisão espacial	
em células com auxilio de faces transparentes. (d) Vista superior da	
subdivisão espacial formada por seis células.	32
Figura 5- Ambiente virtual que representa o Centro de Estudos em	
Telecomunicações (CETUC) da PUC-Rio, composto de 596 vértices,	
597 faces planas e convexas, e 68 células.	34
Figura 6- Arquivo de saída do programa que processa arquivos DXF.	36
Figura 7- Emissão dos feixes iniciais. (a) Ambiente analisado.	
(b) Subdivisão espacial do ambiente. (c) Feixes iniciais emitidos	
no ambiente.	39
Figura 8- Transmissão de Feixes. (a) Feixe de incidência (feixe original).	
(b) Faces da célula vizinha.	41
Figura 9- Transmissão de Feixes. (a) Projeção das faces vizinhas sobre o	
plano e projeção. (b) Polígonos de interseção e base dos feixes resultantes.	42
Figura 10 - Algoritmo de transmissão de feixes na célula vizinha.	
(a) Feixe inicial incidindo sobre célula vizinha. (b)-(e) Feixes	
transmitidos na célula vizinha. (e) Feixe inicial e feixes transmitidos.	43
Figura 11- Feixe original e feixe temporário.	44
Figura 12-Ambiente de emissão dos feixes.	45
Figura 13- Feixes de transmissão e reflexão. (a) Um feixe original.	
(b) Dois feixes. (c) Três feixes. (d) Quatro feixes. (e) Cinco feixes.	
(f) Quatrocentos feixes.	46
Figura 14- Emissão de feixe sobre aresta.	47

Figura 15- Feixe de difração de Keller.	48
Figura 16- Feixe de difração. (a) Irradiação em 2D. (b) Irradiação em 3D.	49
Figura 17- Feixe de incidência que atinge a aresta do ambiente no segmento	
de reta V_1V_2 .	50
Figura 18- Feixe de difração de Keller originado pelos vértices que	
delimitam o segmento de reta V_1V_2 mostrado na Figura 16.	50
Figura 19- Volume geométrico dado por cones onde o feixe de difração	
(oriundo do feixe de incidência suposto) não se propaga. O feixe difratado	
se propaga em todo espaço geométrico com exceção dos interiores dos cones	
e da figura geométrica de coloração laranja.	51
Figura 20- Feixes difratados gerados pela aresta E_1E_2 do prisma de base	
triangular laranja em um ambiente com duas células vizinhas (A e B).	
(a) ambiente 2D. (b) ambiente 3D. (c), (d), feixes gerados na célula A.	
(e) feixes gerados nas células A e B.	52
Figura 21- Feixe de difração de primeira ordem.	54
Figura 22- Raio definido pelo segmento de reta que sai de F e atinge o ponto	
T_1 (contido no feixe de incidência) e pelo segmento de reta que sai de T_1 até	
o ponto P _o (contido no feixe difratado).	54
Figura 23- Construção que verifica se ponto de observação P_o está contido ou	
não em um feixe de difração de primeira ordem definido pela fonte F e pela	
aresta E_1E_2 .	56
Figura 24- Feixe de difração de primeira ordem que incide sobre célula	
vizinha.	58
Figura 25- Projeções das faces da célula vizinha sobre o plano que contém	
a base do feixe de difração de primeira ordem.	58
Figura 26- Fonte F, vértices $E_1 e E_2$, e bases que definem os novos feixes	
de difração transmitidos de primeira ordem para a célula vizinha.	59
Figura 27- Feixe temporário utilizado para obtenção dos feixes de difração	
refletidos de primeira ordem	60
Figura 28- Obtenção do feixe de difração de segunda ordem.	61
Figura 29- Circunferências C1 e C2, pontos auxiliares P1 e P2 e pontos	
de difração T ₁ e T ₂ contidos nas arestas E_1E_2 e E_3E_4 , que verificam se	
um ponto de observação está contido ou não em um feixe de difração	
de segunda ordem.	63

65
66
67
68
69
70
72
73
74
75
76
77
79
79
81
84
85
86
89
91

plana com condutividade e espessura finitas, levando em consideração três

meios de propagação.	95
Figura 51- Geometria 3D de obstáculo para cálculo de campo difratado em	
aresta de uma cunha.	99
Figura 52- Corte 2D em plano perpendicular à aresta.	101
Figura 53- Equipamentos utilizados para a sondagem do canal UWB no	
domínio da frequência.	105
Figura 54- Equipamentos de Medidas [48].	108
Figura 55- Função $R_{H}(\Omega)$ típica, com indicação das bandas de coerência	
definidas para os níveis 0,9 e 0,7.	113
Figura 56- Exemplo de um perfil de potência e retardo normalizado.	115
Figura 57- Foto do corredor Leme.	120
Figura 58- Planta baixa do segundo andar do prédio Cardeal Leme.	121
Figura 59- Modelo do ambiente utilizado para aplicação do método de	
traçado de feixes (corredor Leme).	123
Figura 60- Faces transparentes e faces que representam objetos existentes	
no ambiente simulado (corredor Leme).	124
Figura 61- Variação da potência recebida com a distância para o corredor	
Leme.	126
Figura 62- Retardo médio ao longo da distância para o corredor Leme.	127
Figura 63- Espalhamento de retardo RMS ao longo da distância para	
o corredor Leme.	128
Figura 64- Perfis de potência e retardo medido e simulado para a	
distância de 27,5 metros no corredor Leme.	129
Figura 65- Perfis de potência de e retardo para as distâncias de 6,5 metros	
e 18 metros no corredor Leme. (a) Perfis simulados. (b) Perfis medidos.	131
Figura 66- Perfis de potência de e retardo para as distâncias de 21 metros	
e 25 metros no corredor Leme. (a) Perfis simulados. (b) Perfis medidos.	132
Figura 67- Perfis de potência de e retardo para as distâncias de 26 metros	
e 33,5 metros. (a) Perfis simulados. (b) Perfis medidos.	133
Figura 68- Perfis de potência de e retardo para as distâncias de	
38 metros e 44 metros. (a) Perfis simulados. (b) Perfis medidos.	135
Figura 69- Banda de Coerência 0,7 ao longo da distância para o corredor	
Leme.	137

Figura 70- Banda de Coerência 0,9 ao longo da distância para o corredor

Leme.	137
Figura 71- Fotos corredores CETUC. (a) Corredor A1. (b) Corredor A2. (c)	
Corredor A3.	139
Figura 72- Planta do Centro de Estudos em Telecomunicações (CETUC)	
da PUC-Rio.	141
Figura 73- Modelo do ambiente utilizado para aplicação do método de	
traçado de feixes (CETUC).	143
Figura 74- Variação da potência recebida com a distância para o corredor	
A1 (CETUC).	145
Figura 75- Variação da potência recebida com a distância para o corredor	
A2 (CETUC).	146
Figura 76- Variação da potência recebida ao longo da distância para o	
corredor A3 (CETUC).	147
Figura 77- Retardo médio ao longo da distância para o corredor A1	
(CETUC).	148
Figura 78- Espalhamento de retardo RMS ao longo da distância para o	
corredor A1 (CETUC).	149
Figura 79- Perfis de potência de e retardo para as distâncias de 1 metro	
e 3,5 metros no corredor A1 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	150
Figura 80- Perfis de potência de e retardo para as distâncias de 4,5 metros	
e 8 metros no corredor A1 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	152
Figura 81- Perfis de potência de e retardo para as distâncias de 10 metros	
e 13,5 metros no corredor A1 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	153
Figura 82- Perfis de potência de e retardo para as distâncias de 20,5 metros	
e 31 metros no corredor A1 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	154
Figura 83- Retardo médio ao longo da distância para o corredor A2	
(CETUC).	156
Figura 84- Espalhamento de retardo RMS ao longo da distância para o	
corredor A2 (CETUC).	156
Figura 85- Perfis de potência de e retardo para as distâncias de 5,29 metros	

e 10,02 metros no corredor A2 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	157
Figura 86- Retardo médio ao longo da distância para o corredor A3	
(CETUC).	159
Figura 87- Espalhamento de retardo RMS ao longo da distância para	
o corredor A3 (CETUC).	159
Figura 88- Perfis de potência de e retardo para as distâncias de 11,18 metros	
e 14,49 metros no corredor A3 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	161
Figura 89- Perfis de potência de e retardo para as distâncias de 17,43	
metros e 21 metros no corredor A3 do CETUC. (a) Perfis simulados.	
(b) Perfis medidos.	162
Figura 90- Perfis de potência de e retardo para as distâncias de 23,78 metros	
e 27,5 metros no corredor A3 do CETUC. (a) Perfis simulados. (b) Perfis	
medidos.	162
Figura 91- Banda de Coerência 0,7 ao longo da distância para o corredor	
A1 (CETUC).	164
Figura 92- Banda de Coerência 0,9 ao longo da distância para o corredor	
A1 (CETUC).	165
Figura 93- Banda de Coerência 0,7 ao longo da distância para o corredor	
A2 (CETUC).	167
Figura 94- Banda de Coerência 0,9 ao longo da distância para o corredor	
A2 (CETUC).	167
Figura 95- Banda de Coerência 0,7 ao longo da distância para o corredor	
A3 (CETUC).	168
Figura 96- Banda de Coerência 0,9 ao longo da distância para o corredor	
A3 (CETUC).	168
Figura 97- Foto do escritório.	169
Figura 98- Planta do Escritório (escritório de Sistema de Comunicações	
do CETUC).	170
Figura 99- Modelo do ambiente utilizado para aplicação do método de	
traçado de feixes (Escritório).	171
Figura 100- Subdivisão espacial aplicada a uma região do ambiente que	
contém computadores (Escritório).	172

Figura 101- Retardo médio sobre as posições do grid centrado em Tx ₁	
(Escritório).	173
Figura 102- Espalhamento de retardo RMS sobre as posições do grid	
centrado em Tx ₁ (Escritório).	174
Figura 103- Comparação entre os perfis de potência e retardo simulados e	
medidos. (a) Posição 13 do grid centrado em Tx_1 . (b) Posição 35 do grid	
centrado em Tx ₂ . (c) Posição 6 do <i>grid</i> centrado em Tx ₃ . (d) Posição 17 do	
grid centrado em Tx_4 .	177
Figura 104- Exemplo de raio traçado entre transmissor e receptor no	
Escritório.	178
Figura 105- Banda de Coerência 0,7 sobre as posições do grid centrado	
em Tx ₁ (Escritório).	179
Figura 106- Banda de Coerência 0,9 sobre as posições do grid centrado	
em Tx ₁ (Escritório).	180
Figura 107- Incidência, transmissão e reflexão de campo elétrico sobre	
face plana com condutividade finita e espessura levando em consideração	
três meios de propagação.	194
Figura 108- Perfil de potência e retardo referência obtido no estacionamento	
da PUC.	203
Figura 109- Perfil de potência e retardo referência com indicação das cinco	
amostras utilizadas na primeira coluna da matriz A .	204
Figura 110- Perfil de potência e retardo com indicação das amostras da	
terceira linha da matriz A , a partir da segunda coluna.	205
Figura 111- Perfil de potência e retardo obtido através da técnica CLEAN.	207
Figura 112- Retardo médio ao longo da distância para o corredor A1	
(CETUC).	208
Figura 113- Espalhamento de retardo RMS ao longo da distância para	
o corredor A1 (CETUC).	209
Figura 114- Retardo médio ao longo da distância para o corredor A2	
(CETUC).	210
Figura 115 - Espalhamento de retardo RMS ao longo da distância para	
o corredor A2 (CETUC).	211
Figura 116- Retardo médio ao longo da distância para o corredor A3	
(CETUC).	212

Figura 117- Retardo médio ao longo da distância para o corredor A3	
(CETUC).	212
Figura 118- Retardo médio sobre as posições do grid centrado em Tx ₂	
(Escritório).	215
Figura 119- Espalhamento de retardo RMS sobre as posições do grid	
centrado em Tx ₂ (Escritório).	215
Figura 120- Retardo médio ao sobre as posições do <i>grid</i> centrado em Tx ₃	
(Escritório).	216
Figura 121- Espalhamento de retardo RMS sobre as posições do grid	
centrado em Tx ₃ (Escritório).	216
Figura 122- Retardo médio sobre as posições do <i>grid</i> centrado em Tx_4	
(Escritório).	217
Figura 123- Espalhamento de retardo RMS sobre as posições do grid	
centrado em Tx ₄ (Escritório).	217
Figura 124- Banda de Coerência 0,7 sobre as posições do grid centrado	
em Tx ₂ (Escritório).	218
Figura 125- Banda de Coerência 0,9 sobre as posições do grid centrado	
em Tx ₂ (Escritório).	218
Figura 126- Banda de Coerência 0,7 sobre as posições do grid centrado	
em Tx ₃ (Escritório).	219
Figura 127- Banda de Coerência 0,9 sobre as posições do grid centrado	
em Tx ₃ (Escritório).	219
Figura 128- Banda de Coerência 0,7 sobre as posições do grid centrado	
em Tx ₄ (Escritório).	220
Figura 129- Banda de Coerência 0,9 sobre as posições do grid centrado	
em Tx ₄ (Escritório).	220

Lista de Tabelas

Tabela 1- Características do analisador vetorial HP16ET.	107
Tabela 2-Parâmetros do setup de medidas.	109
Tabela 3- Características dos objetos contidos no corredor do segundo	
andar do prédio Cardeal Leme.	122
Tabela 4-Parâmetros constitutivos do ambiente simulado	
(corredor Leme).	122
Tabela 5- Parâmetros da equação (6.1) para o corredor Leme (LOS).	127
Tabela 6- Características dos objetos contidos nos corredores do	
CETUC.	142
Tabela 7-Parâmetros constitutivos do ambiente simulado CETUC.	142
Tabela 8- Parâmetros do modelo de variação da potência recebida ao	
longo da distância para os corredores do CETUC.	147
Tabela 9-Parâmetros constitutivos do ambiente simulado (Escritório A).	171
Tabela 10- Dimensões das células coloridas mostradas nas Figuras 99 e	
100.	172
Tabela 11- Retardo médio e espalhamento de retardo RMS obtidos nas	
posições analisadas no Escritório.	175
Tabela 12- Valores de banda de coerência obtidos nas posições analisadas	
no escritório.	181
Tabela 13- Erro médio e desvio padrão do erro médio ao longo da distância	
para o corredor A1 (CETUC).	209
Tabela 14- Erro médio e desvio padrão do erro médio ao longo da distância	
para o corredor A2 (CETUC).	211
Tabela 15- Erro médio e desvio padrão do erro médio ao longo da distância	
para o corredor A3 (CETUC).	213