

Ana Luísa Auler da Silva Ferreira

TECNOLOGIA ULTRASSÔNICA NA MEDIÇÃO DE VAZÃO EM ESCOAMENTOS INCOMPRESSÍVEIS

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica.

Orientador: Alcir de Faro Orlando

Rio de Janeiro Abril de 2010

Ana Luísa Auler da Silva Ferreira

Tecnologia ultrassônica na medição de vazão em

escoamentos incompressíveis

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Alcir de Faro Orlando Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Profa. Angela Ourivio Nieckele Departamento de Engenharia Mecânica – PUC-Rio

> Prof. José Alberto dos Reis Parise Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Carlos Valois Maciel Braga Departamento de Engenharia Mecânica – PUC-Rio

> **Prof. Washington Braga Filho** Departamento de Engenharia Mecânica – PUC-Rio

> > **Dr. João Paulo de Barros Leite** PETROBRAS TRANSPORTE S.A.

> > > Dra. Maria Helena Farias INMETRO

Prof. Pedro Cunha Campos Roquette Instituto de Pesquisas da Marinha

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 27 de abril de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Ana Luísa Auler da Silva Ferreira

Graduou-se em Engenharia Eletrônica na UFRJ (Universidade Federal do Rio de Janeiro) em 1979. Equipamentos na Admitida como Engenheira de PETROBRAS em 1980 após completar o curso avançado de instrumentação para engenheiros eletrônicos (CENEL-I). Obteve o título de Mestre em Engenharia Biomédica na COPPE/UFRJ em 1986. Trabalha com medição no Sistema Petrobras desde 1988. É Consultora Técnica em Medição desde 2000.

Ficha Catalográfica

Ferreira, Ana Luísa Auler da Silva

Tecnologia ultrassônica na medição de vazão em escoamentos incompressíveis / Ana Luísa Auler da Silva Ferreira ; orientador: Alcir de Faro Orlando. – 2010.

272 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2010.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Medidor ultrassônico. 4. Medição de vazão. 5. Simulação numérica. 6. Calibração. I. Orlando, Alcir de Faro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0510820/CA

Para meu companheiro Robson e minha filha Diana.

Agradecimentos

Ao meu orientador Professor Alcir de Faro Orlando pelo incentivo e apoio.

A PETROBRAS TRANSPORTE S.A., pela confiança e contribuição.

Ao meu companheiro Robson e minha filha Diana, pelo apoio e paciência.

Aos meus colegas da Petrobras e Transpetro.

Aos professores que participaram da Comissão examinadora.

A todos os professores e funcionários do Departamento de Engenharia Mecânica pelos ensinamentos e pela ajuda.

A todos os amigos e familiares que me ajudaram e estimularam.

Resumo

Ferreira, Ana Luísa Auler da Silva; Orlando, Alcir de Faro. **Tecnologia ultrassônica na medição de vazão de escoamentos incompressíveis**. Rio de Janeiro, 2010. 272p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho avalia a influência da instalação em medidores de vazão ultrassônicos, utilizando simulação numérica. Foram apresentadas características dos medidores ultrassônicos e questões sobre a configuração da modelagem do escoamento que podem influenciar nos resultados numéricos. Foram descritos os procedimentos utilizados para traçar as linhas e para calcular a velocidade média no medidor e o erro de medição. Foi mostrado o efeito de uma curva, duas curvas no mesmo plano e duas curvas em planos perpendiculares, em medidores ultrassônicos de 1, 2, 3, 4, 5 e 8 canais, com diferentes arranjos. Também foi analisado o efeito de um degrau no resultado do medidor ultrassônico por meio de simulação de medidores 1 a 5 canais e por calibração de medidores de 3 canais. Foram utilizados fatores, calculados pela razão entre a velocidade indicada pelo medidor em um dado local e a velocidade que seria indicada pelo mesmo medidor em escoamento completamente desenvolvido. Logo após uma curva, os fatores para medidores de 1 canal variaram de 0,40 a 1,28; para medidores de 3 canais, de 0,5 a 1,42; e para medidores de 4 e 5 canais, as diferenças chegaram a ultrapassar 10%. A 20D após uma curva, medidores de 2 e 3 canais indicaram fatores de 0,9 a 1,08 e medidores de 4 e 5 canais, fatores de 0,99 a 1,04. Os parâmetros de diagnóstico analisados não se mostraram eficazes e sua utilização não é recomendada. Pela simulação, um degrau convergente de -4% gera diferenças na ordem de 0,3% para medidores de 3 canais e, para degrau divergente de 4%, as diferenças ultrapassam 0,5%. A diferença entre os resultados das calibrações com e sem degrau ficou entre 0,18% a 0,3%. A simulação numérica é uma ferramenta útil na análise dos medidores ultrassônicos e mostrou a sensibilidade desses medidores a variações no perfil de velocidades.

Palavras-Chave

Medidor ultrassônico; medição de vazão; simulação numérica; calibração.

Abstract

Ferreira, Ana Luísa Auler da Silva; Orlando, Alcir de Faro (Advisor). Ultrasonic technology in flow measurement of incompressible flow. Rio de Janeiro, 2010. 272p. Doctorate Thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work evaluates the influence of the installation in ultrasonic flow meters, using numerical simulation. Ultrasonic meter characteristics and issues about the flow modeling configuration that may influence the numerical results were presented. Procedures used to draw the lines and to calculate the meter mean velocity and the measurement error were described. The effect of one curve, two curves at the same plane and two curves at perpendicular planes at 1, 2, 3, 4, 5 and 8-path meters with different arrangements were shown. Also, the effect of one step at the results of ultrasonic meters was analyzed by the simulation of 1 to 5-paths meters and by the calibration of a 3 path meters. Factors calculated by the ratio between the velocity indicated by the meter in a certain position and the velocity that would be indicated by the meter in a fully developed flow. Just after one curve, the factors for 1-path meters varied from 0.40 to 1.28; for 3-path meters, from 0.5 to 1.42; and for 4 and 5-path meters, the differences were higher than 10%. At 20D downstream of one curve, 2 and 3-path meters indicated factors equal to 0.9 and 1.08; and 4 and 5-path meters, factors equal to 0.99 to 1.04. The diagnostic parameters analyzed were not efficient and their use is not recommended. By the simulation, a convergent step of -4% generates differences about 0.3% for 3-path meters and for a divergent step of 4%, the differences are higher than 0.5%. The differences between the calibration results with and without steps were from 0.18% to 0.3%. The numerical simulation is a useful tool in the ultrasonic meter analyses and showed the sensitivity of these meters to velocity profile variations.

Keywords

Ultrasonic meters; flow measurement; numeric simulation; calibration.

Sumário

1. Introdução	33
1.1. Medição de Vazão na Indústria do Petróleo	33
1.2. Estado da Arte	35
1.3. Objetivo	42
1.4. Estruturação	43
2. Fundamentos leoricos	45
2.1. Medidor Ultrassônico de Tempo de Trânsito	45
2.1.1. Princípio de Medição	45
2.1.2. Construção do Medidor de Tempo de Trânsito	47
2.1.3. Propagação da Onda Ultrassônica	50
2.1.4. Desvio do Pulso Ultrassônico	52
2.1.5. Cavidade do Transdutor	56
2.1.6. Medição de Tempo de Trânsito	56
2.1.7. Medidor Multicanal	59
2.1.8. Instalação e Calibração	63
2.1.9. Diagnóstico	67
2.2. Equações para Análise dos Medidores Ultrassônicos	72
2.2.1. Determinação do Perfil de Velocidade	72
2.2.2. Velocidade pelas Equações Médias de Navier-Stokes	77
2.2.3. Equação para o Fator do Medidor	81
2.2.4. Avaliação Numérica dos Medidores Ultrassônicos	85
2.3. Base Metrológica na Medição de Vazão e Volume	89
2.3.1. Metrologia Legal e Científica na Medição de Vazão	89
2.3.2. Erro e Erro Máximo Admissível	91
2.3.3. Repetitividade	93
2.3.4. Incerteza de Medição	96
3. Metodologia e Confiabilidade da Simulação Numérica	98
3.1. Simulação com base no Perfil de Velocidade	98
3.1.1. Simulação da Velocidade em uma Trajetória	98
3.1.2 Erro devido à Amostragem e ao Método de Integração	102
3.1.3. Simulação do Medidor Multicanal Paralelo	105
	105

3.1.4. Cálculo da Velocidade Média ao invés do Intervalo de Tempo	112
3.1.5. Diferenças devido ao Tempo de Propagação na Cavidade	114
3.2. Malha, Modelagem e Simulação utilizando CFD	116
3.2.1. Malha, Timescale e Modelos de Turbulência	116
3.2.2. Ruídos em Malha de Trecho Teto	125
3.2.3. Influência dos Perfis de Entrada	127
3.2.4. Geometrias com Acidentes	140
3.2.5. Criação das Trajetórias	144
3.2.6. Cálculo da Velocidade Média em uma Linha	148
3.2.7. Resolução Numérica em Linhas e Planos no CFX	149
3.3. Desenvolvimento do Trabalho	153
3.3.1. Modelagens com Malha em Curva	153
3.3.2. Construção dos Medidores	158
3.3.3. Fatores de Diagnóstico	161
3.3.4. Incerteza de Medição aplicada aos Resultados	162
4. Métodos Experimentais	166
4.1. Circuito e Procedimento de Calibração	166
4.2. Resultados da Calibração	168
4.3. Incertezas relacionadas à Calibração	171
4.3.1. Incerteza de Medição da Calibração	171
4.3.2. Incerteza devido a Erros Sistemáticos Conhecidos	173
4.3.3. Incerteza Calculada com base no EMA	176
4.3.4. Incerteza devido a Diferenças entre Calibração e Operação	176
5. Resultados e Discussão	178
5.1. Resultados Preliminares	178
5.1.1. Curva a Montante de Medidor Monocanal	178
5.1.2. Fator de Diagnóstico	183
5.2. Resultados com Curva	186
5.2.1. Modelagens e Simulações	186
5.2.2. Velocidade a Jusante da Curva de 0D a 100D	191
5.2.3. Fator a Jusante da Curva de 0D a 100D	193
5.2.4. Velocidade na Seção Transversal (360º)	196
5.2.5. Fator na Seção Transversal (360º)	198
5.2.6. Parâmetros de Diagnóstico	199
5.3. Resultados com Degrau	200
	 3.1.4. Cálculo da Velocidade Média ao invés do Intervalo de Tempo 3.1.5. Diferenças devido ao Tempo de Propagação na Cavidade 3.2. Malha, Modelagem e Simulação utilizando CFD 3.2.1. Malha, <i>Timescale</i> e Modelos de Turbulência 3.2.2. Ruídos em Malha de Trecho Teto 3.2.3. Influência dos Perfis de Entrada 3.2.4. Geometrias com Acidentes 3.2.5. Criação das Trajetórias 3.2.6. Cálculo da Velocidade Média em uma Linha 3.2.7. Resolução Numérica em Linhas e Planos no CFX 3.3. Desenvolvimento do Trabalho 3.1. Modelagens com Malha em Curva 3.2.2. Construção dos Medidores 3.3.3. Fatores de Diagnóstico 3.3.4. Incerteza de Medição aplicada aos Resultados 4 Métodos Experimentais 1. circuito e Procedimento de Calibração 4.2. Resultados da Calibração 4.3.1. Incerteza de Medição da Calibração 4.3.2. Incerteza devido a Erros Sistemáticos Conhecidos 4.3.3. Incerteza devido a Diferenças entre Calibração e Operação 5 Resultados Preliminares 1. Curva a Montante de Medidor Monocanal 5.1.2. Fator de Diagnóstico 2.2. Resultados com Curva 2.2. Nedelagens e Simulações 2.2. Incerteza e Jusante da Curva de 0D a 100D 5.2.4. Velocidade na Seção Transversal (360°) 5.2.6. Parâmetros de Diagnóstico

5.3.1. Um Degrau a Montante	200
5.3.2. Degrau-Duplo	206
5.3.3. Um Degrau, Degrau-Duplo e Experimento	210
5.4. Resultados, Normas e Recomendações	211
5.4.1. Situação Atual	211
5.4.2. Utilização de Fatores e Cálculo da Incerteza de Me	edição 213
6. Conclusão	214
6.1. Desenvolvimento e Validação do Método	214
6.2. Erros devido à Presença de Curvas (Simulação)	219
6.3. Erros devido à Presença de Degraus (Simulação e B	Experimento) 221
6.4. Sugestões para Trabalhos Futuros	222
Referências Bibliográficas	225
Apêndice A. Curvas: Velocidade de 0D a 100D	231
Apêndice B. Curvas: Fator de 0D a 100D	239
Apêndice C. Curvas: Velocidade na Seção Transversal	244
Apêndice D. Curvas: Fator na Seção Transversal	252
Apêndice E. Curvas: Parâmetros de Influência	258
Apêndice F. Degrau-Duplo: Velocidade e Fator	264

Lista de Figuras

Figura 2-1: Esquema de um medidor ultrassônico de tempo de trânsito.	46
Figura 2-2: Posicionamento externo ao duto de transdutor de medidor	
ultrassônico do tipo <i>clamp-on</i> (ISO 12765).	48
Figura 2-3: Posicionamento dos transdutores (T1 e T2), com	
abraçadeiras e trajetória com refração e reflexão (medidor <i>clamp-on</i>).	48
Figura 2-4: Posicionamento de transdutores em medidor de carretel (ISO	
12765).	49
Figura 2-5: Trajetória direta (acima) e com reflexão (abaixo) de medidor	
ultrassônico de carretel.	49
Figura 2-6: Medidor ultrassônico de 3 canais: (esquerda) posição dos	
transdutores; e (direita) transdutor (Krohne, 2005).	50
Figura 2-7: Diagrama de irradiação de transdutor ultrassônico com	
diâmetro externo de 2 cm e frequência de 162kHz (ISO 12765).	51
Figura 2-8: Esquema de um pulso ultrassônico. A posição "1" indica	
opções de pontos de marcação.	51
Figura 2-9: Esquema de um medidor ultrassônico de tempo de trânsito.	53
Figura 2-10: Esquema indicando o cálculo da velocidade de propagação	
do pulso ultrassônico no sentido do escoamento.	54
Figura 2-11: Representação do desvio do pulso ultrassônico devido ao	
próprio escoamento.	54
Figura 2-12: Ângulo de compensação (ϕ) e ângulos de abertura de T1	
(θ ₁) e T2 (θ ₂).	55
Figura 2-13: Diferença no comprimento da trajetória devido às cavidades	
dos transdutores.	56
Figura 2-14: Rebatimento, na seção transversal, das trajetórias de	
medidor ultrassônico com diferentes arranjos.	60
Figura 2-15: Medidor de 4 canais em plano único: (esquerda)	
posicionamento dos transdutores; (direita) vista externa (Caldon, 2007).	60
Figura 2-16: Posição relativa dos transdutores de medidor ultrassônico	
de 3 canais em arranjo com planos cruzados (Krohne, 2005).	61
Figura 2-17: Medidor de 8 canais em planos cruzados: (esquerda)	
posição dos transdutores; (direita) canais em corte (Estrada et al., 2004)	61

Figura 2-18: Esquema de medidor ultrassônico com indicação da linha de	
centro.	62
Figura 2-19: Numeração de medidor de 4 canais paralelos.	69
Figura 2-20: Relação entre <i>n</i> e Re pela lei de potência.	73
Figura 2-21: Esquema para a determinação da velocidade média no	
canal acústico.	82
Figura 2-22: Gráfico de k_{med} para escoamento laminar e turbulento em	
tubo rugoso.	85
Figura 3-1: Detalhe dos perfis para Re = 50.000	99
Figura 3-2: Detalhe dos perfis para Re = 3.000.000	99
Figura 3-3: Velocidade normalizada para Nikuradse (Nik), Bogue-Metzner	
(BM), Kays (Ks), lei de potência (PL) e Jung-Seong (JS).	100
Figura 3-4: Velocidade máxima normalizada para Nikuradse (Nik),	
Bogue-Metzner (BM), Kays (Ks) e lei de potência (PL).	101
Figura 3-5: Erro para Nikuradse (Nik), Bogue-Matzner (BM), Kays (Ks) e	
lei de potência (PL), Re = 5×10^4 e 3×10^6 , integração pelo trapézio.	104
Figura 3-6: Erro para Nikuradse (Nik), Bogue-Matzner (BM), Kays (Ks) e	
lei de potência (PL), Re = 5×10^4 e 3×10^6 , integração pelo Simpson.	104
Figura 3-7: Erro: Nikuradse (Nik), Bogue-Matzner (BM), Kays (Ks) e lei de	
potência (PL), pelo trapézio (Trap) e Simpson (Simp), <i>n</i> = 201.	105
Figura 3-8: Parâmetros utilizados na criação das linhas que simulam as	
trajetórias do medidor ultrassônico.	106
Figura 3-9: Velocidade média em medidores multicanais para $n = 2001$.	110
Figura 3-10: Efeito do Re em multicanais ($n = 2001$).	111
Figura 3-11: Efeito do tempo de propagação do pulso ultrassônico nas	
cavidades do transdutor na medição de velocidade.	115
Figura 3-12: Velocidade na linha de centro: k-epsilon (vermelho), SST	
(azul), k-omega (verde) e RNG-k-epsilon (rosa). <i>Timescale</i> = D/\overline{w}_A	118
Figura 3-13: Velocidade na linha de centro com o SST. Timescale: D/ \overline{w}_A	
(vermelho), (D/ \overline{w}_A)/4 (azul), (D/ \overline{w}_A)/8 (verde), e (D/ \overline{w}_A)/20 (rosa).	119
Figura 3-14: Velocidade na linha de centro: k-epsilon (vermelho), SST	
(azul), k-omega (rosa) e RNG-k-epsilon (verde). Timescale= $(D/\overline{w}_A)/20$.	120
Figura 3-15: Malha de entrada para 2D2.cmdb (acima) e 2DMG.cmdb	
(abaixo).	120

Figura 3-16: Velocidade na linha de centro (SST): Malhas: fina de 100D	
(verde), grossa de 100D (vermelho) e grossa de 50D (azul).	121
Figura 3-17: Velocidade na linha de centro (k-omega): malha de 50D	
(azul) e 100D (vermelho).	122
Figura 3-18: Velocidade na linha de centro: k-epsilon (vermelho), SST	
(azul), k-omega (rosa) e RNG-k-epsilon (verde). Malha xy grossa.	123
Figura 3-19: Velocidade na linha de centro: k-epsilon (vermelho), SST	
(azul), k-omega (rosa) e RNG-k-epsilon (verde). Malha xy grossa.	123
Figura 3-20: Velocidade na linha de centro (k-omega): malha xy fina, com	
malha <i>z</i> fina (vermelho) e malha <i>z</i> grossa (azul).	124
Figura 3-21: Velocidade na linha de centro (SST): malha xy fina, variando	
a malha <i>z</i> fina (vermelha) e malha <i>z</i> grossa (azul).	124
Figura 3-22: Velocidade no eixo do duto ao longo dos 100D para a malha	
AMM.cfx5.	125
Figura 3-23: Malha de entrada do AMM.cfx5.	126
Figura 3-24: Contorno da energia cinética turbulenta (k).	126
Figura 3-25: Contorno de <i>w</i> [m/s] na seção transversal a 80D.	127
Figura 3-26: Perfis de velocidade ao longo dos 100D para PL.	129
Figura 3-27: Perfis de velocidade ao longo dos 100D para UVWKE.	130
Figura 3-28: Velocidade adimensional na linha de centro ao longo dos	
100D para diferentes modelagens.	130
Figura 3-29: Pressão total (azul) e pressão estática (vermelha) para	
UVWKE (esquerda) e PL (direita).	135
Figura 3-30: Energia cinética turbulenta (k) para UVWKE (esquerda) e PL	
(direita).	135
Figura 3-31: Dissipação turbulenta (ϵ) para UVWKE (esquerda) e PL	
(direita).	136
Figura 3-32: Perfis de velocidade (esquerda) e perfis de pressão total	
(direita) para FLAT.	137
Figura 3-33: Velocidade média nas linhas inclinadas (WT= \overline{w}_T) ao longo	
dos 100D.	138
Figura 3-34: Velocidades nas linhas ao longo dos 100D para um modelo	
de escoamento com perfil uniforme na entrada.	138
Figura 3-35: Convenção nas modelagens: uma curva (linha contínua),	
duas curvas (linha tracejada e linha contínua).	141
Figura 3-36: Esquema de um degrau convergente.	142
Figura 3-37: Esquema de um degrau divergente.	142

Figura 3-38: Esquema de um degrau-duplo convergente.	143
Figura 3-39: Esquema de um degrau-duplo divergente.	144
Figura 3-40: Linhas simulam trajetórias com inclinação <i>θ</i> : trajetória 1 com	
$\beta = 0^{\circ}$; e trajetória 2 com $\beta = 180^{\circ}$.	144
Figura 3-41: Indicação da numeração dos canais paralelos.	145
Figura 3-42: Inclinação dos canais com relação ao plano xy: (a) $\beta = 90^{\circ}$	
ou 270°; (b) β = 45° ou 135°; e (c) β = 0° ou 180°.	146
Figura 3-43: Criação das linhas na simulação de medidor com canais	
paralelos com CFX.	147
Figura 3-44: Erro numérico do cálculo do CFX da área da seção	
transversal, em plano <i>sample</i> , em função de <i>n</i> .	151
Figura 3-45: Erro numérico na área da seção transversal, em função de z	
(de 0D a 100D) e de <i>n</i> (de 41 a 201).	151
Figura 3-46: Erro na velocidade média na linha inclinada em função de z	
(de 0D a 100D), de <i>n</i> (51 ou 201) e de β (0°, 90° ou 270°).	152
Figura 3-47: Contorno da Velocity no plano yz, com entrada uniforme e	
Re = 150.000.	154
Figura 3-48: Contorno da Velocity no plano yz com lei de potência na	
entrada e Re = 150.000.	154
Figura 3-49: Perfil de <i>Velocity</i> , no plano da curva, com y de -0.5 a 0.5,	
com perfil da lei de potência na entrada.	155
Figura 3-50: Perfil de <i>Velocity</i> no plano perpendicular à curva, com <i>x</i> de	
-0,5 a 0,5 e lei de potência na entrada.	155
Figura 3-51: Perfil de Velocity, no plano da curva, para perfil laminar na	
entrada e Re = 500.	156
Figura 3-52: Perfil de Velocity, no plano perpendicular à curva, para perfil	
laminar na entrada e Re = 500.	157
Figura 3-53: Linhas de corrente na seção transversal.	157
Figura 3-54: Cinco trajetórias com $\beta = 0^{\circ}$ (amarelas), linha que corta as	
trajetórias pelo centro (roxa), eixo do duto a jusante da curva (rosa).	159
Figura 3-55: Cinco trajetórias com β = 90 ^o (amarelas), linha que corta as	
trajetórias pelo centro (roxa), eixo do duto a jusante da curva (rosa).	159
Figura 4-1: Esquema das instalações de calibração.	166
Figura 4-2: Desvios encontrados na calibração do FT-01 em instalação	
com e sem degrau.	169

Figura 4-3: Desvios encontrados na calibração do FT-02 em instalação	
com e sem degrau.	169
Figura 4-4: Desvios encontrados na calibração do FT-03 em instalação	
com e sem degrau.	169
Figura 4-5: Desvios encontrados com os resultados de FT-01, FT-02 e	
FT-03 em conjunto, em instalação com e sem degrau.	170
Figura 4-6: Diferença nos resultados da calibração dos medidores em	
instalação com degrau com relação aos resultados sem degrau.	171
Figura 4-7: Exemplo de curva de calibração (de Q_{min} a Q_{max}) sem	
correção de erros sistemáticos.	173
Figura 4.8: Exemplo de curva de calibração (de Q_{min} a Q_{max}) com uso de	
um MF para toda a faixa calibrada.	174
Figura 4.8: Exemplo de curva de calibração (de Q_{min} a Q_{max}) com a	
indicação da incerteza da correção.	175
Figura 5-1: \overline{w}_T (no gráfico, VT), \overline{w} (no gráfico, w) e <i>swirl</i> para $\beta = 0^{\circ}$	179
Figura 5-2: \overline{w}_T (no gráfico, VT), \overline{w} (no gráfico, w) e <i>swirl</i> para $\beta = 90^{\circ}$.	179
Figura 5-3: \overline{w}_T (no gráfico, VT), \overline{w} (no gráfico, w) e <i>swirl</i> para β = 270°.	179
Figura 5-4: Erro na medição de \overline{w}_T para Re = 150.000 para β igual a 0º,	
90º, 180º e 270º.	180
Figura 5-5: Erro em \overline{w}_T com perfil importado (1 e 4) e perfil de 1/7 (n7)	
na entrada, para β igual a 0º, 90º e 270º (Re = 150.000)	181
Figura 5-6: Erro \overline{w}_T de velocidade nas linhas: para eta igual a 0º, 90º, 180º	
e 270º (Re=500).	182
Figura 5-7: Erro para medidor com 5 canais paralelos em plano único	
para diferentes β igual a 0º, 90º, 180º e 270º (Re = 150.000).	182
Figura 5-8: Erro para medidor com 5 canais paralelos em planos	
cruzados para β igual a 0º, 90º, 180º e 270º a jusante da curva.	183
Figura 5-9: F_{Ass5} , F_{EC5} e F_{RE5} para β = 0° para medidor de 5 canais, com	
canais paralelos em plano único.	184
Figura 5-10: F_{Ass5} , F_{EC5} e F_{RE5} para β = 90 ^o para medidor de 5 canais,	
com canais paralelos em plano único.	184
Figura 5-11: F_{Ass5} , F_{EC5} e F_{RE5} para β = 270° para medidor de 5 canais,	
com canais paralelos em plano único.	184

Figura 5-12: F_{Ass5} , F_{EC5} e F_{RE5} para β = 90° para medidor de 5 canais,	
com canais paralelos em plano cruzado.	186
Figura 5-13: Contorno no plano <i>yz</i> da modelagem 1C.	188
Figura 5-14: Linhas de corrente e contorno do Velocity a 0D da curva	
(1C).	188
Figura 5-15: Contorno do <i>Velocity</i> no plano <i>xy</i> no 2C1P.	189
Figura 5-16: Linhas de corrente e contorno do Velocity a 0D (2C1P).	190
Figura 5-17: Linhas de corrente e contorno do Velocity a 0D (2C2P).	190
Figura 5-18: Indicação das linhas de medidores de 3 canais, na posição	
5D, para diferentes β , na modelagem 2C1P	191
Figura 5-19: Contorno da Velocity em yz para malha com degrau de	
-3,6%.	202
Figura 5-20: Contorno da Velocity e as linhas para os medidores de 1	
canal no plano <i>yz</i> .	203
Figura 5-21: Contorno da Velocity e as linhas para os medidores de 3	
canais no plano <i>yz</i> .	203
Figura 5-22: Estrutura da geometria e as linhas para medidor de 3 canais	
no plano <i>xy</i>	204
Figura 5-23: Erro na velocidade média devido a degrau a montante, para	
degrau de –3,6% e –8,6%, e medidores de 2 canais.	205
Figura 5-24: Erro na velocidade média devido a degrau a montante, para	
degrau de -3,6% e medidores de 1, 2 e 3 canais.	205
Figura 5-25: Contorno do Velocity para a modelagem com degrau-duplo	
de -7%.	207
Figura 5-26: Contorno do Velocity para a modelagem com degrau-duplo	
de 7%.	208
Figura A-1: Velocidade para $\beta = 0^{\circ}$ (1C).	231
Figura A-2: Velocidade para $\beta = 180^{\circ}$ (1C).	231
Figura A-3: Velocidade para $\beta = 90^{\circ}$ (1C).	232
Figura A-4: Velocidade para $\beta = 270^{\circ}$ (1C).	232
Figura A-5: Velocidade para $\beta = 0^{\circ}$ (2C1P).	233
Figura A-6: Velocidade para β = 180 ^o (2C1P).	233
Figura A-7: Velocidade para $\beta = 90^{\circ}$ (2C1P).	234
Figura A-8: Velocidade para β = 270° (2C1P).	234
Figura A-9: Velocidade para $\beta = 0^{\circ}$ (2C2P).	235

Figura A-10: Velocidade para β = 180° (2C2P).	235
Figura A-11: Velocidade para β = 90 ^o (2C2P).	236
Figura A-12: Velocidade para β = 270 ^o (2C2P).	236
Figura A-13: Velocidade para $\beta = 0^{\circ}$ (1C).	237
Figura A-14: Velocidade para β = 90 ^o (1C).	237
Figura A-15: Velocidade para $\beta = 0^{\circ}$ (2C1P).	238
Figura A-16: Velocidade para β = 90° (2C1P).	238

Figura B-1: Fator de velocidade para $\beta = 0^{\circ}$ (1C).	239
Figura B-2: Fator de velocidade para $\beta = 90^{\circ}$ (1C).	239
Figura B-3: Fator de velocidade para β = 270° (1C).	240
Figura B-4: Fator de velocidade para $\beta = 0^{\circ}$ (2C1P).	240
Figura B-5: Fator de velocidade para β = 90° (2C1P).	241
Figura B-6: Fator de velocidade para β = 270º (2C1P).	241
Figura B-7: Fator de velocidade para $\beta = 0^{\circ}$ (2C2P).	242
Figura B-8: Fator de velocidade para β = 180º (2C2P).	242
Figura B-9: Fator de velocidade para β = 90° (2C2P).	243
Figura B-10: Fator de velocidade para $\beta = 270^{\circ}$ (2C2P).	243

Figura C-1: Velocidade na seção transversal a 0D (1C).	244
Figura C-2: Velocidade na seção transversal a 5D (1C).	244
Figura C-3: Velocidade na seção transversal a 20D (1C).	245
Figura C-4: Velocidade na seção transversal a 80D (1C).	245
Figura C-5: Velocidade na seção transversal a 0D (2C1P).	246
Figura C-6: Velocidade na seção transversal a 5D (2C1P).	246
Figura C-7: Velocidade na seção transversal a 20D (2C1P).	247
Figura C-8: Velocidade na seção transversal a 80D (2C1P).	247
Figura C-9: Velocidade na seção transversal a 0D (2C2P).	248
Figura C-10: Velocidade na seção transversal a 5D (2C2P).	248
Figura C-11: Velocidade na seção transversal a 20D (2C2P).	249
Figura C-12: Velocidade na seção transversal a 80D (2C2P).	249
Figura C-13: <i>Swirl</i> na seção transversal a 0D (1C).	250
Figura C-14: <i>Swirl</i> na seção transversal a 0D (2C2P).	250
Figura C-15: Velocidade <i>w</i> na seção transversal a 0D (1C).	251
Figura C-16: Velocidade <i>w</i> na seção transversal a 0D (2C2P).	251

Figura D-1: Fator do medidor a 0D (1C).	252
Figura D-2: Fator do medidor a 5D (1C).	252
Figura D-3: Fator do medidor a 20D (1C).	253
Figura D-4: Fator do medidor a 80D (1C).	253
Figura D-5: Fator do medidor a 0D (2C1P).	254
Figura D-6: Fator do medidor a 5D (2C1P).	254
Figura D-7: Fator do medidor a 20D (2C1P).	255
Figura D-8: Fator do medidor a 80D (2C1P).	255
Figura D-9: Fator do medidor a 0D (2C2P).	256
Figura D-10: Fator do medidor a 5D (2C2P).	256
Figura D-11: Fator do medidor a 20D (2C2P).	257
Figura D-12: Fator do medidor a 80D (2C2P).	257

Figura E-1: Parâmetros de diagnóstico para $\beta = 0^{\circ}$ (1C).	258
Figura E-2: Parâmetros de diagnóstico para β = 90 ^o (1C).	258
Figura E-3: Parâmetros de diagnóstico para β = 180 ^o (1C).	259
Figura E-4: Parâmetros de diagnóstico para β = 270º (1C).	259
Figura E-5: Parâmetros de diagnóstico para $\beta = 0^{\circ}$ (2C1P).	260
Figura E-6: Parâmetros de diagnóstico para β = 90º (2C1P).	260
Figura E-7: Parâmetros de diagnóstico para β = 180º (2C1P).	261
Figura E-8: Parâmetros de diagnóstico para β = 270º (2C1P).	261
Figura E-9: Parâmetros de diagnóstico para $\beta = 0^{\circ}$ (2C2P).	262
Figura E-10: Parâmetros de diagnóstico para β = 90º (2C2P).	262
Figura E-11: Parâmetros de diagnóstico para β = 180º (2C2P).	263
Figura E-12: Parâmetros de diagnóstico para β = 270º (2C2P).	263

Figura F-1: Velocidade para o degrau-duplo convergente de –7%.	264
Figura F-2: Fator para degrau-duplo convergente de -7% .	264
Figura F-3: Velocidade para o degrau-duplo convergente de -4%.	265
Figura F-4: Fator para o degrau-duplo convergente de -4%.	265
Figura F-5: Velocidade para o degrau-duplo convergente de -1 %.	266
Figura F-6: Fator para o degrau-duplo convergente de -1% .	266
Figura F-7: Velocidade para o degrau-duplo divergente de 7%.	267
Figura F-8: Fator para o degrau-duplo divergente de 7%.	267
Figura F-9: Velocidade para o degrau-duplo divergente de 4%.	268
Figura F-10: Fator para o degrau-duplo divergente de 4%.	268

Figura F-11: Velocidade para o degrau-duplo divergente de 1%.	269
Figura F-12: Fator para o degrau-duplo divergente de 1%.	269
Figura F-13: Fator para o degrau-duplo convergente com Re = 50.000.	270
Figura F-14: Fator para o degrau-duplo divergente com Re = 50.000.	270
Figura F-15: Fator para o degrau-duplo convergente com Re = 150.000.	271
Figura F-16: Fator para o degrau-duplo divergente com Re = 150.000.	271
Figura F-17: Fator para o degrau-duplo convergente com Re = 400.000.	272
Figura F-18: Fator para o degrau-duplo divergente com Re = 400.000.	272

Lista de Tabelas

Tabela 2-1: Zeros e pesos dos polinômios de Legendre (Abramowitz,	
1965).	63
Tabela 2-2: Resumo das recomendações de instalação das normas API	
e AGA para sistemas de medição com medidores ultrassônicos.	64
Tabela 2-3: Relação entre n e Re, para a lei de potência 1/n.	73
Tabela 2-4: Erro máximo admissível, repetitividade e incerteza de	
medidores de vazão de líquidos em função da classe de exatidão.	92
Tabela 2-5: Erro máximo admissível de medidores de vazão de gás em	
função da classe de exatidão pela OIML R-137.	93
Tabela 2-7: Calibração de medidor de vazão e repetitividade em função	
do algoritmo utilizado (Volume do padrão: 14.036 m ³).	96
Tabela 3-1: Velocidade máxima e média para diferentes modelos	
turbulentos.	100
Tabela 3-2: Diferença (percentual) na velocidade média em uma	
trajetória com referência aos valores para Re = 3.0×10^6	102
Tabela 3-3: Erro de amostragem em perfil parabólico.	103
Tabela 3-4: Velocidade média nas trajetórias com relação à velocidade	
média na seção transversal ($\overline{u}_{_{TJ}}/\overline{u}_{_A}$), em escoamento laminar.	107
Tabela 3-5: Velocidade máxima nas trajetórias com relação à velocidade	
média na seção transversal (u_{\max}/\overline{u}_A), em escoamento laminar.	107
Tabela 3-6: Velocidade por Gauss-Legendre com relação à velocidade	
média na seção transversal ($\overline{u}_{GL}/\overline{u}_A$), em escoamento laminar.	108
Tabela 3-7: Velocidade por Gauss-Legendre usando as velocidades	
máximas para escoamento laminar.	108
Tabela 3-8: Velocidade em cada trajetória ($_{\overline{u}_{TJ}}/\overline{u}_{_A}$) para escoamento	
turbulento.	110
Tabela 3-9: Velocidade obtida por Gauss-Legendre $(\overline{u}_{GL}/\overline{u}_{A})$ para	
escoamento turbulento.	110
Tabela 3-10: Erro na determinação da velocidade média pela média das	
velocidades para escoamento laminar.	113

Tabela 3-11: Erro na velocidade pela média das velocidades ao invés da	
média no tempo em escoamento turbulento com $n = 2001$.	113
Tabela 3-12: Velocidade na linha de centro e sua distorção no ponto 0D,	
80D, máximo e mínimo, para diferentes modelagens.	131
Tabela 3-13: Distorções nas velocidades das linhas ao longo dos 100D	
para modelagens de escoamento completamente desenvolvido.	138
Tabela 3-14: Distorções nas velocidades das linhas ao longo dos 100D	
para modelagens de escoamento com perfil uniforme na entrada.	139
Tabela 5-1: Desvio nos 10 primeiros diâmetros para simulação de	
medidores de 1, 2 e 3 canais.	205
Tabela 5-2: Distância do degrau para obter desvios menores que 0,2% e	
0,1%.	205

Siglas

- ABNT = Associação Brasileira de Normas Técnicas
- AGA = American Gas Association
- ANP = Agência Nacional do Petróleo
- ANSI = American National Standards Institute
- ANSYS = Provedor de software de simulação em engenharia
- API = American Petroleum Institute
- ASME = American Society of Mechanical Engineers
- BIPM = Bureau Internacional de Pesos e Medidas
- CFD = Computational Fluid Dynamics (Dinâmica dos Fluidos Computacional)
- CFX = Software da ANSYS para CFD
- EMA = Erro Máximo Admissível
- ICEM = Software da ANSYS para criação de malhas
- INMETRO = Instituto Nacional de Metrologia, Normalização e Qualidade Industrial
- IEC = International Electrotechnical Commission
- ISO = International Organization for Standardization
- LDV = Velocímetro a laser por efeito Doppler (Laser Doppler Velocimeter)
- MPMS = Manual of Petroleum Measurement Standards
- NEL = National Engineering Laboratory (UK)
- NIST = National Institute of Standards and Technology (US)
- OIML = Organisation Internationale de Métrologie Légale
- PETROBRAS = Petróleo Brasileiro S.A.
- RANS = Reynolds Averaged Navier-Stokes
- RBC = Rede Brasileira de Calibrações
- SST = Shear Stress Transport
- T1 = Transdutor a montante do centro de gravidade do medidor ultrassônico de tempo de trânsito
- T2 = Transdutor a jusante do centro de gravidade do medidor ultrassônico de tempo de trânsito
- TR = Technical Report

TRANSPETRO = Petrobrás Transporte S.A.VIM = Vocabulário Internacional de MetrologiaVOS = Velocity of Sound (Velocidade do Som)

Nomenclatura

a Distância da trajetória ao centro do duto normalizada pelo raio do

duto: $a = \frac{r_0}{R}$.

- a_+ Limite superior da estimativa x_i .
- a_{-} Limite superior da estimativa x_i .
- A Área da seção transversal.
- b Correção conhecida e não-corrigida (para uma dada vazão).

 b_{max} Correção conhecida e não-corrigida (para a faixa de vazão calibrada).

- c Correção conhecida e corrigida.
- c Velocidade de propagação de uma onda mecânica.
- c_i Coeficiente de sensibilidade de *Y* com relação a x_i .
- C Velocidade do som medida pelo medidor ultrassônico.
- C_i Velocidade do som medida pelo *i*-ésimo canal do medidor ultrassônico.
- c_0 Velocidade do som no fluido em referência (meio em repouso e com propriedades constantes).
- \vec{c} Vetor velocidade de propagação do pulso no fluido em movimento.
- \vec{c}_0 Vetor velocidade de propagação do pulso no fluido em repouso.
- c_{12} Velocidade de propagação do pulso ultrassônico no sentido do escoamento (de T1 a T2).
- c_{21} Velocidade de propagação do pulso ultrassônico no sentido contrário ao escoamento (de T2 a T1).
- c_{μ} Constante (escoamento turbulento).
- $C_{\varepsilon l}$, $C_{\varepsilon 2}$ Constantes (escoamento turbulento, modelo de duas equações).
- $C_{\epsilon IRNG}$ Coeficiente (escoamento turbulento, modelo de duas equações).
- $C_{\mu RNG}$ Constante (escoamento turbulento, modelo de duas equações).
 - *D* Diâmetro do trecho de medição ou do medidor.
 - D_{med} Diâmetro interno do medidor.
 - *D*_{duto} Diâmetro interno do trecho reto.
- deg% Tamanho (em percentual) do degrau.

E Erro

 E_{ν} Módulo de elasticidade.

- E_{max} Desvio da maior velocidade na linha de centro máxima com relação à velocidade na linha de centro a 80D.
- E_{min} Desvio da menor velocidade na linha de centro com relação à velocidade na linha de centro a 80D.
- E_{total} Diferença entre a maior e a menor velocidade na linha de centro.
- E_{Tmax} Desvio da velocidade máxima na linha inclinada.

 E_{Tmin} Desvio da velocidade mínima na linha inclinada.

- f Frequência de propagação de uma onda mecânica.
- f Fator de atrito.

$$f_f$$
 Fator de fricção: $f_f = \frac{J}{A}$

- F_{ass} Fator de assimetria.
- F_{fc} Fator de escoamento cruzado.
- F_{ce} Fator da condição do escoamento.
- f_{deg} Fator do degrau.

fator-k Relação entre número de pulsos de saída e o volume correspondente.

- f_{osc} Frequência de oscilação na medição de tempo.
- H_j Altura total da *j*-ésima trajetória.
- h_{ij} *i*-ésimo ponto da *j*-ésima trajetória.
- k Energia cinética turbulenta.
- *k* Fator de abrangência.

 k_{LCD} Razão de comprimentos de trajetórias: $k_{LCD} = \frac{L_C}{L_D}$.

 k_{med} Relação entre velocidade média na seção transversal e velocidade

média na trajetória: $k_{med} = \frac{\overline{u}_A}{\overline{u}_T}$.

- k_s Rugosidade absoluta da superfície do tubo.
- *l* Comprimento característico.
- ℓ Distância de um ponto da trajetória ao centro desta trajetória.
- ℓ' Distância adimensional de um ponto da trajetória ao centro da

trajetória: $\ell' = \frac{\ell}{R}$.

- *L* Comprimento da reta que une os pontos centrais das faces dos transdutores ou comprimento da trajetória.
- L Comprimento da trajetória.
- L_c Comprimento característico.
- L_i Comprimento da reta que une os pontos centrais das faces dos transdutores do *i*-ésimo canal.
- $\Delta \ell$ Intervalo de comprimento da trajetória.
- L_C Comprimento da trajetória considerando o comprimento interno da cavidade dos 2 transdutores.
- L_D Comprimento da trajetória com início e fim na parede interna do duto ou sem considerar o comprimento interno da cavidade dos 2 transdutores.
- *m* Número de canais de um medidor ultrassônico.

Ma Número de Mach: Ma = $\frac{v}{c_0}$.

- Max Na determinação da repetitividade, maior quantidade medida.
- MF Fator do medidor ou *meter factor* (relação entre volume do padrão e volume do medidor, ou vazão média do padrão e vazão média do medidor).
- *Min* Na determinação da repetitividade, menor quantidade medida.
 - M_r Massa molar.
 - *n* Expoente do modelo de turbulência baseado na lei de potência.
 - *n* Número de pontos de amostragem.
 - N_1 Número de oscilações contadas com o pulso ultrassônico se propagando no sentido do escoamento em uma medição de tempo.
 - N₂ Número de oscilações contadas com o pulso ultrassônico se propagando no sentido contrário ao escoamento em uma medição de tempo.
 - N_3 Número de pulsos ultrassônicos transmitidos e recebidos em uma medição de tempo.
 - p Pressão.
- p_{est} Pressão estática.
- *p*total Pressão total.
 - *p* Probabilidade da abrangência ou nível da confiança do intervalo.

P Pressão modificada.

Pad Na determinação da repetitividade, quantidade indicada pelo padrão.

- P_k Produção de turbulências devido a forças viscosas.
- \overline{p} Pressão média no tempo no escoamento turbulento.
- q Vazão volumétrica.
- q_{min} Vazão volumétrica mínima da faixa especificada.
- q_{max} Vazão volumétrica máxima da faixa especificada.
 - q_t Vazão volumétrica de transição da faixa especificada.
 - r Distância ao centro do duto.
 - r_0 Distância entre a trajetória e o eixo do duto.
 - R Raio.
- R^+ Raio adimensional: $R^+ = \frac{R u_\tau}{v}$.
- Re Número de Reynolds.
- Re_k Número de Reynolds de rugosidade.
- Remed Número de Reynolds no medidor (degrau).
- Re_{duto} Número de Reynolds no duto (degrau).
- Repe Resolução.
- Repe% Resolução em percentual.
 - Res Resolução.
 - Res% Resolução em percentual.
 - r_{ij} Distância ao eixo do *i*-ésimo ponto da *j*-ésima trajetória.
 - s Desvio padrão.
 - $s(x_i)$ Desvio padrão da entrada x_i .
 - t Tempo.
 - $t_{95,n-1}$ Coeficiente t de Student para probabilidade de 95% e amostra de tamanho n.
 - T Temperatura.
 - *T* Período de uma onda mecânica.
 - *t*₁₂ Tempo de propagação do pulso ultrassônico no sentido do escoamento.
 - t_{21} Tempo de propagação do pulso ultrassônico no sentido contrário ao escoamento.
- t_{12i} , t_{21i} Tempo de propagação do pulso ultrassônico no *i*-ésimo ponto da trajetória, no sentido e no sentido contrário ao escoamento.

- t_{12j} , t_{21j} Tempo de propagação do pulso ultrassônico na *j*-ésima trajetória, no sentido e no sentido contrário ao escoamento.
- t_{12C} , t_{21C} Tempo de propagação do pulso ultrassônico na trajetória, no sentido e no sentido contrário ao escoamento.
- t_{12D} , t_{21D} Tempo de propagação do pulso ultrassônico no interior do duto, no sentido e no sentido contrário ao escoamento.
 - Δt Diferença entre os tempos de propagação: $\Delta t = t_{21} t_{12}$.
 - *u* Componente de velocidade na direção *x*.
 - \overline{u} Média das velocidades na direção x ao longo da linha (trajetória).
 - \vec{u} Componente do vetor velocidade na direção x.
 - *u'* Valor instantâneo da componente de flutuação da velocidade, na direção *x*.
 - u'_i No escoamento turbulento, componente da velocidade correspondente à flutuação turbulenta (*i* indica a componente cartesiana).
 - u_i Componente da velocidade (*i* indica a componente cartesiana).
 - u_{ii} Velocidade no *i*-ésimo ponto da *j*-ésima trajetória.
 - u^+ Velocidade normalizada pela velocidade de atrito: $u^+ = \frac{u}{u_{\tau}}$.
 - u_i^* Velocidade de tempo em cada intervalo de comprimento $\Delta \ell$.
 - \overline{u}_A Velocidade média do escoamento na seção transversal.
 - \overline{u}_{GL} Velocidade média calculada pelo método de integração de Gauss-Legendre.
 - u_{max} Velocidade máxima no perfil de velocidades.
 - \overline{u}_T Velocidade média em uma trajetória.
 - \overline{u}_{Ti} Velocidade média na *j*-ésima trajetória.
 - \overline{u}_{TV} Velocidade média na trajetória, calculada pelo somatório das velocidades.
 - \overline{u}_{TT} Velocidade média na trajetória, calculada pelo somatório dos tempos.
 - \overline{u}_D Velocidade média na trajetória, considerando apenas o período em que o pulso estava no interior do duto limitado pelo diâmetro.

- \overline{u}_{D+2C} Velocidade média na trajetória, considerando o período em que o pulso estava no interior do duto e nas cavidades dos transdutores.
 - \overline{u}_T^+ Velocidade média adimensional em uma trajetória: $\overline{u}_T^+ = \frac{\overline{u}_T}{u_\tau}$.
 - u_{τ} Velocidade de atrito.
- $\overline{u}_{Trapezio}$ Velocidade média em uma trajetória, calculada pelo método do trapézio.
- $\overline{u}_{Simpson}$ Velocidade média em uma trajetória, calculada pelo método Simpson.
 - u(y) Incerteza padrão da estimativa y.
 - $u(x_i)$ Incerteza padrão da entrada x_i .
 - $u(\overline{x}_i)$ Incerteza padrão da média da entrada x_i (grandeza X_i medida repetidamente).
 - $u_i(y)$ Parcela da incerteza de y devido à entrada x_i .
 - $u_c(y)$ Incerteza padrão combinada da estimativa y, sendo $y = f(x_i)$.
 - $u(V_M)$ Incerteza padrão do medidor: $u(V_M) = s(V_M)$.
- $u(\overline{V}_M)$ Incerteza padrão da média do volume do medidor.
- $u_{cal}(V_M)$ Incerteza padrão da calibração do medidor.
- $u_{cal}(V_P)$ Incerteza padrão de calibração do padrão.
 - $u(V_P)$ Capacidade de medição do laboratório, ou seja, incerteza padrão do resultado do padrão, quando o medidor está sendo calibrado.
- *u*(*MF*) Incerteza padrão do fator do medidor (MF).
 - u_{EMA} Incerteza padrão do medidor calculada com base no EMA
 - U Incerteza expandida.
 - U_{max} Incerteza expandida para toda a faixa calibrada.
 - v Componente de velocidade na direção y.
 - \overline{v} Média das velocidades na direção y ao longo da linha (trajetória).
 - \vec{v} Componente do vetor velocidade na direção y.
 - v' Valor instantâneo da componente de flutuação da velocidade, na direção y.
 - *V_c* Velocidade característica.
 - V_M Volume indicado pelo medidor.
 - \overline{V}_M Média dos volumes indicados pelo medidor em uma dada vazão.

- V_P Volume do provador.
- \overrightarrow{Vel} Vetor velocidade $\overrightarrow{Vel} = \vec{u} + \vec{v} + \vec{w}$.
- \overline{Vel}_T Velocidade média na linha (trajetória).
 - w Componente de velocidade na direção z.
 - \overline{w} Média das velocidades na direção z ao longo da linha (trajetória).
 - \vec{w} Componente do vetor velocidade na direção z.
 - w' Valor instantâneo da componente de flutuação da velocidade, na direção z.
- w_{LC} Velocidade na linha de centro (escoamento tridimensional).
- \overline{w}_A Velocidade média na seção transversal do duto (escoamento tridimensional e para u, v = 0).
- \overline{w}_{GL} Velocidade média em medidores multicanais, calculada pela integração de Gauss-Legendre (escoamento tridimensional).
- \overline{w}_T Velocidade média na direção z, da linha inclinada (escoamento tridimensional).
- \overline{w}_{Tj} Velocidade média na direção z da *j*-ésima linha inclinada (escoamento tridimensional).
- \overline{w}_{med} Velocidade média no medidor (degrau).
- \overline{w}_{duto} Velocidade média no trecho reto (degrau).
 - W Velocidade adimensional: $W = \frac{W}{\overline{W}_A}$.
- W_{LC} Velocidade adimensional na linha de centro: $W_{LC} = \frac{W_{LC}}{\overline{w}_A}$.
- W_0 Velocidade adimensional na linha de centro a 0D.
- W_{80} Velocidade adimensional na linha de centro a 80D.
- W_{max} Maior velocidade adimensional na linha de centro de 0D a 100D.
- W_{min} Menor velocidade adimensional na linha de centro de 0D a 100D.
 - *W_j* Função peso da *j*-ésima raiz do polinômio de Legendre.
 - x Componente cartesiana.
 - x_i Componente cartesiana do *i*-ésimo ponto amostrado.
 - X_i Grandezas de entrada: $Y = f(X_i)$.
 - x_i Estimativas de entrada: $y = f(x_i)$.

- x_i Posição da *j*-ésima trajetória.
- x_{j1}, x_{j2} Componente x da posição de início e fim da *j*-ésima trajetória.
 - Y Mensurando.
 - y Estimativa do mensurando Y.
 - y Componente cartesiana.
 - y_i Componente cartesiana do *i*-ésimo ponto amostrado.
- y_{i1} , y_{i2} Componente y da posição de início e fim da *j*-ésima trajetória.
 - y_p Distância radial com referência à parede (y de parede): $y_p = R r$.
 - y^+ y de parede adimensional: $y^+ = \frac{y u_{\tau}}{v}$.
 - y_{ij} Distância ao eixo do *i*-ésimo ponto da *j*-ésima trajetória.
 - z Componente cartesiana.
 - z_i Componente cartesiana do *i*-ésimo ponto amostrado.
- z_{j1} , z_{j2} Componente z da posição de início e fim da *j*-ésima trajetória.
 - Z Fator de compressibilidade do gás.
 - z_0 Distância do ponto médio do medidor à origem.
 - *z*_{0*j*} Distância do ponto médio do medidor à origem.
- α_{j} , α_{j1} , α_{j2} Ângulos utilizados na construção das linhas dos medidores (simulação).
 - $\beta_{\rm RNG}$ Constante.
 - β Ângulo que define a posição da linha (trajetória) no plano xy (em modelagem tridimensional).
 - ε Dissipação das turbulências.
 - σ Frequência das turbulências.
 - η Distância adimensional ao centro do duto: $\eta = \frac{r}{R}$.
 - η_j Posição da *j*-ésima trajetória, calculada pelos zeros dos polinômios de Gauss-Legendre.
 - κ Expoente isentrópico.
 - λ Comprimento de onda.
 - μ Viscosidade dinâmica.
 - μ_{ef} Viscosidade efetiva.
 - μ_t Viscosidade turbulenta.

- θ Ângulo entre a reta que une os pontos centrais das faces dos transdutores e o eixo do duto (medição).
- θ Ângulo entre a reta inclinada que simula as trajetórias e o eixo do duto (simulação).
- θ_1 Ângulo de abertura do transdutor T1.
- θ_2 Ângulo de abertura do transdutor T2.
- ρ Massa específica.
- τ Tempo de cálculo de cada Δt (pelo medidor ultrassônico).
- τ_0 Tensão de cisalhamento na parede do tubo.
- v Viscosidade cinemática.
- ϕ Ângulo de compensação.
- σ_k , σ_{ε} Constantes (escoamento turbulento, modelo de duas equações).
 - σ Frequência das turbulências.
 - ∇ Operador vetorial (gradiente de um escalar): $\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$.
 - $\nabla \bullet$ Operador vetorial (divergente de um vetor): $\nabla \bullet A = \frac{\partial A_i}{\partial x_i}$.
 - δ_{ij} Delta de Kroneker.