

Manolo Miguel Pinto Málaga

Desenvolvimento de uma metodologia para dimensionamento de sistemas híbridos de fornecimento de energia elétrica no horário de ponta para o setor comercial.

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

> Orientador: Alcir de Faro Orlando Co-orientador: Eloi Fernández y Fernández

Manolo Miguel Pinto Málaga

Desenvolvimento de uma metodologia para dimensionamento de sistemas híbridos de fornecimento de energia elétrica no horário de ponta para o setor comercial.

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação de Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alcir de Faro Orlando
Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Prof. Eloi Fernández y Fernández Co-Orientador

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Marcos Sebastião de Paula Gomes Departamento de Engenharia Mecânica – PUC-Rio

Prof. Carlos Valois Maciel BragaDepartamento de Engenharia Mecânica – PUC-Rio

Prof. Geraldo Alfonso Spinelli Martins Ribeiro Petróleos Brasileiros S.A. - Petrobras

> Prof. José Eugenio Leal Coordinador Setorial do Centro Técnico Científico – PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Manolo Miguel Pinto Málaga

Graduou-se em Engenharia Industrial no Depto. de Engenharia Industrial da UCSM (Universidad Católica de Santa Maria), em 2005. Atualmente tem continuado com a linha de pesquisa na área de petróleo e energia, com o estudo de avaliação e melhora de sistemas de ar condicionado, energia elétrica e energia solar.

Ficha catalografica

Málaga, Manolo Miguel Pinto

Desenvolvimento de uma metodologia para dimensionamento de sistemas híbridos de fornecimento de energia elétrica no horário de ponta para o setor comercial / Manolo Miguel Pinto Málaga ; orientador: Alcir de Faro Orlando ; co-orientador: Eloi Fernández y Fernández. – 2010.

85 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2010. Inclui bibliografia

1. Engenharia mecânica — Teses. 2. Energia elétrica. 3. Capacidade de carga. 4. Metodologia. 5. Economia. I. Orlando, Alcir de Faro. II. Fernández y Fernández, Eloi. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Agradecimentos

A Deus por me dar fortaleza. A minha família em Perú, a minha família em Brasil, a minha namorada pelo incondicional apoio.

Aos meus orientadores Alcir de Faro Orlando e Eloi Fernández y Fernández pela amizade e o apoio acadêmico para fazer realidade este trabalho.

Aos meus melhores amigos fora do Brasil pelo apoio e carinho.

Agradecimentos em particular para os órgãos de fomento à pesquisa CNPq, CAPES, ANP e FAPERJ, pelo apoio financeiro fornecido, sem os quais este trabalho simplesmente não teria sido possível.

Resumo

Málaga, Manolo Miguel Pinto; Orlando, Alcir de Faro. Desenvolvimento de uma metodologia para dimensionamento de sistemas híbridos de fornecimento de energia elétrica no horário de ponta para o setor comercial. Rio de Janeiro, 2010. 85p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro.

Qualquer atividade em uma sociedade moderna só é possível com o uso intensivo e eficiente de uma ou mais formas de energia. Das diversas formas de energia interessam, em particular, aquelas que são processadas e colocadas à disposição dos consumidores, tais como a energia elétrica. Neste trabalho é apresentado o desenvolvimento de duas metodologias que permitem gerar curvas de Capacidade de Carga a partir de (i) dados aleatórios de perfil de consumo de energia elétrica da PUC – Rio (ii) as contas (Faturas) da concessionária local. A seguir, faz-se uma analise econômica de investimentos que possa dimensionar o número ótimo de geradores de energia elétrica necessários para diminuir o custo deste investimento, tudo isto no setor comercial e no horário de ponta. As duas metodologias se ajustam a perfis reais de consumo, nos quais não se têm acesso a todos os dados desejados. Para validar as duas metodologias, utilizaram-se dados reais de consumo de energia elétrica cada 15 minutos e durante quatro anos da PUC – Rio.

A primeira metodologia mostra a geração das curvas de Capacidade de Carga fazendo uso da Função Densidade de Probabilidade, com dados de um mês qualquer. A segunda metodologia mostra como gerar a curva de Capacidade de Carga somente com as faturas fornecidas pela concessionária. Utilizou-se um programa computacional para a solução de sistemas de equações polinomiais de terceiro grau.

Palavras chave

Energia elétrica, Capacidade de Carga, Metodologia, Economia.

Abstract

Málaga, Manolo Miguel Pinto; Orlando, Alcir de Faro (Advisor). Development of a methodology for sizing an electric energy supply hibrid system for peak shaving and commercial sector. Rio de Janeiro, 2010. 85p. Msc Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro

Any activity in modern society is only possible with intensive and efficient use of energy. Among the various forms of energy the most important are those that are processed by companies and distributed to consumers, such as electricity. This work presents the development of two methodologies that will allow us to generate load capacity curves from (i) Random data obtained from power consumption of the PUC - Rio (ii) Bills (invoices) from the local utility company. With this data we will do an economic analysis of investment performed. This analysis can help us choose the optimum number of generators of electrical energy required to reduce the cost of the electricity supplied, all within the framework of the commercial sector and at peak hours. Both methods will be validated with the real power consumption, every fifteen minutes during four years from the energy profile of the PUC – Rio. The first method shows how we can generate load capacity curves making use of a statistic function called Probability Density, using data of any month. The second method shows how one can create the load capacity curves with only the invoices obtained from the local utility company. For this second methodology the program EES (Engineering Equation Solver) was used to solve systems of polynomial equations of the third degree.

Keywords

Electricity, Load Capacity, Methodology, Economics

Sumário

1. Introdução	1
1.1. Motivação.	4
1.2. Estado da arte.	5
1.3. Contribuição do presente trabalho	10
1.4. Objetivo	11
1.5. Descrição da dissertação	11
2. Fundamentos Teóricos	12
2.1. Conceitos fundamentais	12
2.1.1 Potência	12
2.1.2 Energia Elétrica	12
2.1.3 Horário de Ponta	13
2.1.4 Períodos seco e úmido	13
2.1.5 Sistema Hibrido	13
2.1.6 Curva de Capacidade de Carga	15
2.2. Perfil Elétrico	16
2.3. Análise da composição das Tarifas de Energia Elétrica	18
2.3.1 Tributos	19
2.3.2 Composição da Tarifa de Energia Elétrica	19
2.3.2.1 Tributos Federais	19
2.3.2.2 Tributos Estaduais	20
2.3.2.3 Tributos Municipais	22
2.4. Função de Distribuição e Densidade de Probabilidade	22
2.4.1 Função Distribuição de Probabilidade	22
2.4.2 Função Densidade de Probabilidade	23
2.5. Análise de investimentos	24
2.5.1 Taxa Interna de Retorno (TIR)	24
2.5.2 Tempo de recuperação do capital (Payback)	25
3. Metodologia de Análise e Desenvolvimento	26
3.1 Introdução	26
3.2 Dados de Entrada	29
3.3 Plataforma Computacional	31

3.4 Dimensionamento dos Geradores	36
3.5 Análise Econômica para Dimensionamento dos Geradores	39
3.5.1 Análise de Custos para Dimensionamento dos Geradores	43
3.5.2 Cálculo de Custos para Dimensionamento dos Geradores	44
3.5.3 Taxa Interna de Retorno	46
3.5.4 Payback do Investimento	47
3.5.5 Taxa Interna de Retorno para uma análise econômica com quatro anos o	Эb
dados de operação	48
3.5.6 Payback para uma análise econômica com quatro anos de dados de	
operação	49
3.6 Descrição da Metodologia.	50
3.7 Desenvolvimento da uma Segunda Metodologia (Metodologia Alternativa).	51
3.7.1 Curva de Capacidade de Carga Constante (Linha Reta)	52
3.7.2 Plataforma Computacional EES para solução de equações Polinomiais d	le
Terceiro grau	53
3.8 Determinação de uma constante para definir o Ponto de Início do Polinômi	o
de Terceiro Grau	56
3.9 Dados de entrada cada 15 minutos para aplicação da Segunda Metodolog	ia
em outras instituições.	57
3.9.1 Curva de Capacidade de Carga usando a Segunda Metodologia para	
Empresa Castelo.	58
3.9.2 Curva de Capacidade de Carga usando a Segunda Metodologia para um	1
escritório (Prefeitura).	58
3.9.3 Curva de Capacidade de Carga usando a Segunda Metodologia para um	า
Posto de Gasolina.	59
3.9.4 Curva de Capacidade de Carga usando a segunda metodologia para	
empresa Engepron.	59
4. Validação da Metodologia Proposta	61
4.1 Dados fornecidos pela PUC – Rio, Dados a cada 15 minutos.	61
4.2 Validação da Curva de Capacidade de Carga	64
4.3 Validação da Análise econômica da Primeira Metodologia	66
4.3 Validação da segunda metodologia	67
5. Conclusões	70
6. Recomendações	71

Lista de Figuras

Figura 1 - Consumo de energia elétrica no horário de ponta da PUC - Rio	
para Tarifa Verde e Azul. (Orlando, 2009)	7
Figura 2 - Consumo de energia elétrica no horário de ponta da PUC - Rio	
para Tarifa Verde e Azul. (Orlando, 2009)	8
Figura 3 - Custo de energia elétrica no horário de ponta da PUC - Rio para	
Tarifa Verde e Azul. (Orlando, 2009)	9
Figura 4 - Horário de ponta e horário fora de ponta.	13
Figura 5 - Gerador de 400 kW FG Wilson S500E1Instalado na PUC - Rio	14
Figura 6 - Grupo de 4 Geradores de 400 kW FG Wilson S500E1	
Instalados na PUC – Rio	15
Figura 7 - Curva de Capacidade de Carga para um determinado	
mês do ano na PUC – Rio.	16
Figura 8 - Perfil Elétrico para um determinado mês do ano na PUC - Rio.	16
Figura 9 - Perfil Elétrico para um ano na PUC – Rio.	17
Figura 10 - Média da Demanda de Energia Elétrica	
para um ano na PUC – Rio.	18
Figura 11 - Histograma da Freqüência de Demanda	
para um determinado mês de Operação (PUC – Rio, 2008)	33
Figura 12 - Curva de Capacidade de Carga para um	
determinado mês de Operação (PUC - Rio, 2008)	35
Figura 13 - Taxa Interna de Retorno ano 2008 PUC – Rio	46
Figura 14 - Tempo mínimo de Retorno do Investimento 2008 PUC - Rio	47
Figura 15 - Taxa Interna de Retorno para com dados de 4 anos, PUC - Rio	49
Figura 16 - Tempo mínimo de Retorno do Investimento	
com dados de 4 anos, PUC – Rio	49
Figura 17 - Curva Constante de Capacidade de Carga (PUC – Rio)	53
Figura 18 - Polinômio de Terceiro Grau Segundo o Programa (EES)	54
Figura 19 - Polinômio de Terceiro Grau para uma Curva de	
Capacidade de Carga	55
Figura 20 - Potência do gerador em plena carga para produzir	
100% da energia requerida	56
Figura 21 - Curva de Capacidade de Carga para a empresa Castelo	58

Figura 22 - Curva de Capacidade de Carga para uma Prefeitura	58
Figura 23 - Curva de Capacidade de Carga para Posto de Gasolina	59
Figura 24 - Curva de Capacidade de Carga para empresa Engepron	59
Figura 25 - Curva de Capacidade de Carga com dados cada 15	
minutos (PUC – Rio)	63
Figura 26 - Comparação da Curva de Capacidade de Carga para dados	
cada 15 minutos com a Função Densidade de Probabilidade (PUC – Rio)	65
Figura 27- Comparação da Taxa Interna de Retorno para dados cada	
15 minutos e a Função Densidade de Probabilidade (PUC – Rio)	66
Figura 28 - Comparação do Payback para dados cada 15 minutos	
e a Função Densidade de Probabilidade (PUC – Rio)	66
Figura 29 - Comparação da Curva de Capacidade de Carga para dados	
cada 15 minutos do medidor CCK e a Segunda Metodologia	68

Lista de Tabelas

Tabela 1 - Consumo de energia elétrica no horário de ponta da PUC – Rio pa	ra
Tarifa Verde. (Orlando, 2009)	7
Tabela 2 - Consumo de energia elétrica no horário fora de ponta da PUC – Ri	0
para Tarifa Verde. (Orlando, 2009)	8
Tabela 3 - Consumo de energia elétrica no horário de ponta da PUC – Rio pa	ra
Tarifa Azul. (Orlando, 2009)	9
Tabela 4 - Tarifa Horo-Sazonal Verde (Anexo I-B, Agência Nacional de Energ	ia
Elétrica – ANEEL)	18
Tabela 5 - Exemplo de cálculo dos Tributos Federais (Light Serviços de	
Eletricidade S.A., 2009).	20
Tabela 6 - Alíquotas de ICMS de Fornecimento de Energia Elétrica para o	
Estado do Rio de Janeiro (Light Serviços de Eletricidade S.A., 2009).	21
Tabela 7- Alíquotas de ICMS de Fornecimento de Energia Elétrica para o Est	tado
do Rio de Janeiro (Light Serviços de Eletricidade S.A., 2009).	21
Tabela 8 - Medição CCK Potencia de Carga a cada 15 minutos (PUC – Rio)	29
Tabela 9 - Dados de Potência de Carga no horário de ponta para um	
determinado mês do ano (PUC – Rio, 2008)	30
Tabela 10 - Intervalos de Demanda para um mês de Operação (PUC – Rio,	
2008)	31
Tabela 11 - Freqüência de Demanda (PUC – Rio, 2008)	32
Tabela 12 - Valores adimensionais de Demanda (PUC – Rio, 2008)	34
Tabela 13 - Potência Máxima Mensal (Faturas da Concessionária	
Fornecidas mês a mês).	40
Tabela 14 - Energia Máxima a ser fornecida pelos Geradores	41
Tabela 15 - Energia Máxima a ser adquirida da concessionária local.	42
Tabela 16 - Custos para análise e dimensionamento.	43
Tabela 17 - Custos para análise e dimensionamento.	44
Tabela 18 - Somatória dos custos e a economia total mensal.	45
Tabela 19 - Cálculo da Economia e a TIR para um número	
determinado de Geradores.	46
Tabela 20 - Cálculo da TIR para quatro anos de operação	48
Tabela 21 - Cálculo do ponto de referência	57

Tabela 22 - Calculo do Ponto Ótimo para formação do Polinômio	60
Tabela 23 - Dados adimensionalizados da Potência e da	
Energia (PUC – Rio)	62
Tabela 24 - Desvio Médio Quadrático para a Função Densidade	de
Probabilidade (PUC – Rio)	64
Tabela 25 - Desvio Médio Quadrático para o cálculo da TIR com a Funç	ão
Densidade de Probabilidade e com o medidor CCK (PUC – Rio)	67
Tabela 26 - Desvio Médio Quadrático para o cálculo da Curva de Capacidade	de
Carga para a segunda metodologia	68

"Hay hombres que luchan um día y son buenos.

Hay otros que luchan un año y son mejores.

Hay otros que luchan muchos años y son muy buenos.

Pero, hay los que luchan toda la vida.

Esos son los imprescindibles."

Bertolt Brecht.