4 RESULTADOS DE AVALIAÇÃO DOS MATERIAIS ESTUDADOS

Este capítulo apresenta os resultados experimentais e teóricos do presente objeto de pesquisa, definidos pelos ensaios realizados segundo as Normas API vigentes para propantes. Todas as discussões acerca dos resultados das análises e dos testes serão feitos no Capítulo 6.

Os propantes foram ensaiados na seguinte ordem: o piso cerâmico na sua forma moída ou triturada; o porcelanato esferoidizado; as miçangas vazadas; as miçangas maciças (ou esferas sem furo) e; as microesferas de vidro. Todos os materiais passaram pela seqüência de testes definidos pela Norma, para definição de suas propriedades, a saber: densidade bulk, densidade aparente, solubilidade em ácido, distribuição granulométrica, resistência ao esmagamento (Crush) e condutividade.

4.1 Piso Cerâmico Moído

O piso cerâmico foi escolhido para este trabalho pois reúne algumas características que, a princípio, o coloca como material a ser considerado como propante. Este é um material duro, pode ser obtido a baixo custo a partir do aproveitamento de rejeitos de fábricas de pisos cerâmicos (material que não passa no controle de qualidade) e de construção civil (sobras ou restos de demolição).

Os pisos cerâmicos são classificados, segundo seus fabricantes, de acordo com sua resistência mecânica, de sua resistência a abrasão, de sua absorção de água, entre outros fatores.

 Absorção de água – é a quantidade de água (percentual em massa) absorvida pela estrutura cerâmica, determinada segundo norma específica. A absorção de água de um piso cerâmico está diretamente relacionada a sua resistência mecânica. Quanto menor a absorção de água, maior a resistência mecânica. A tabela 4.1 classifica o tipo de piso em função de sua faixa de absorção.

- Resistência mecânica a resistência mecânica dos pisos cerâmicos depende de sua espessura, de sua temperatura de queima e como já foi dito, de sua absorção de água.
- Resistência à abrasão a resistência à abrasão é caracterizada basicamente pela resistência ao atrito. O fabricante caracteriza essa resistência segundo índices de uma classe a qual é chamada de PEI. A tabela 4.2 exibe essa classificação.

Grupo	Faixa de Absorção	Equivalente a
Bla	<0,5 %	Porcelanato
Blb	0,5 <aa<3,0%< td=""><td>Gres</td></aa<3,0%<>	Gres
Blla	3,0 <aa<6,0%< td=""><td>Semi-Gres</td></aa<6,0%<>	Semi-Gres
Bllb	6,0 <aa<10,0%< td=""><td>Semi-poroso</td></aa<10,0%<>	Semi-poroso
Blll	>10,0%	Poroso

Tabela 4.1: Índices de absorção de água em função do tipo de piso.

(Fonte: www.itagres.com.br)

Classe PEI	Resistência ao desgaste por
	abrasão
0	Baixíssima
1	Muito baixa
2	Baixa
3	Média
4	Alta
5	Altíssima

Tabela 4.2: Índices resistência segundo o grau API. (Fonte: www.itagres.com.br)

Neste trabalho foram escolhidos três tipos de pisos cerâmicos que foram triturados para gerar grãos. São eles: o Roccia Beige, de PEI 3, o Capri Beige, de PEI 4 e o Ultragres, de PEI 5. Como o fabricante não informou o índice de absorção de água (AA) destes pisos, ele foi determinado experimentalmente. Para isto, as normas ABNT (NBR NM 30 e NBR 13818) foram adotadas.

As amostras foram pesadas a seco, para medição da massa seca. Em seguida, as amostras são submersas em água fervente por duas horas. As amostras são retiradas e secas com pano úmido apenas para retirar a película de água na superfície da peça. Depois são novamente pesadas, determinando-se a massa úmida. A absorção de água é determinada pela expressão :

$$AA = \frac{m_u - m_s}{m_s} x100 \qquad \qquad 4.1$$

Onde:

 $m_u \rightarrow e a$ massa úmida $m_s \rightarrow e a$ massa seca

Para cada tipo de material, o procedimento foi realizado três vezes, obtendo-se valores médios mostrados em seguida:

Piso de PEI 3 \rightarrow AA= 7,98% Piso de PEI 4 \rightarrow AA= 7,42% Piso de PEI 5 \rightarrow AA= 6,89%

Os pisos selecionados foram quebrados, posteriormente triturados e depois moído em moinho de bolas por cerca de 8 horas. Após estas etapas, o produto foi peneirado para separação da fração de interesse (#20/40), a qual foi submetida aos ensaios previstos pelas Normas API para sua qualificação como propante ou não. A figura 4.1 (a,b) mostra uma amostra do piso cerâmico utilizado em nossos experimentos. As partículas do propante têm a forma típica de material frágil moído, apresentando-se como lascas, partículas alongadas e com superfície com clara aparência de fratura.

Figura 4.1 (a) e (b) – Microscopias óticas de uma das amostras do piso cerâmico # 20x40, utilizadas nos testes, sob aumentos diferentes. O formato das partículas é característico de moagem de materiais frágeis.

A porosidade aparente (PA) é outro parâmetro estrutural relacionado à porosidade da estrutura. Ela mede a fração volumétrica de poros na estrutura. Para determinar a PA, deve-se medir o peso imerso da amostra, o que é feito com um dispositivo apropriado acoplado à balança. A porosidade aparente é determinada através da equação (segundo as normas ABNT):

$$PA = \frac{m_u - m_s}{m_u - m_i} x100$$

Onde: $m_i \rightarrow massa imersa$

Para cada tipo de material o procedimento foi repetido três vezes, obtendose como média:

Piso de PEI 3 \rightarrow PA= 9,25% Piso de PEI 4 \rightarrow PA= 9,75% Piso de PEI 5 \rightarrow PA= 10,15%

4.1.1 Cálculo da Densidade Bulk

A densidade bulk do piso cerâmico foi determinada segundo a expressão:

$$\rho_b = \frac{PA}{AA} \tag{4.3}$$

Para cada um dos materiais foi obtido:

Piso de PEI 3 $\rightarrow \rho_b = 1,15 \text{ g/cm}^3$ Piso de PEI 4 $\rightarrow \rho_b = 1,31 \text{ g/cm}^3$ Piso de PEI 5 $\rightarrow \rho_b = 1,47 \text{ g/cm}^3$

Com o intuito de se fazer uma comparação entre valores, foi calculada a densidade bulk, conforme procedimento descrito no Capítulo 3, seção 3.2, para três diferentes amostras do piso de PEI 3. Os resultados encontrados foram os seguintes:

Amostra 1 $\rightarrow \rho_b = 1,14 \text{ g/cm}^3$ Amostra 2 $\rightarrow \rho_b = 1,15 \text{ g/cm}^3$ Amostra 3 $\rightarrow \rho_b = 1,16 \text{ g/cm}^3$

Densidade Bulk média $\rightarrow \rho_b = 1,15 \text{ g/cm}^3$

A comparação dos valores da fórmula 4.3 com aqueles encontrados segundoa norma API, mostra que os métodos produzem resultados iguais.

4.1.2 Cálculo da Densidade Aparente

A densidade aparente foi determinada para as amostras , conforme procedimento descrito no Capítulo 3, seção 3.3. Três medições distintas foram feitas, tendo sido encontrado:

Densidade Aparente média $\rightarrow \rho_b = 2,34 \text{ g/cm}^3$

4.1.3

Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para o piso cerâmico moído o valor de:

Solubilidade média em ácido \rightarrow 11,16%.

A solubilidade do material em ácido acabou ficando bem acima do valor da norma (API RP 56) que é de 2 % para o tamanho 20/40, o que coloca o material como reprovado neste teste.

4.1.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento para a realização deste tipo de ensaio descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de piso cerâmico. O ensaio foi realizado para três diferentes amostras de piso cerâmico PEI 3, onde, uma amostra de 100g foi peneirada e os dados das distribuições granulométricas dessas amostras foram anotados nas tabelas 4.3, 4.4 e 4.5.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,00	0,00	Máx.
20	20	0,840	0,16	0,1	0,1%
25	24	0,710	42,00	42,16	
30	28	0,590	14,96	57,12	>90%
35	32	0,500	26,97	84,09	_, ,,,
40	35	0,420	12,93	97,02	
50	48	0,297	2,70	99,72	-
Fundo	0	0	0,29	100,01	Máx. 1%

Tabela 4.3: Distribuição granulométrica em 6 peneiras para a amostra 1 do piso cerâmico.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,00	0,00	Máx.
20	20	0,840	0,17	0,17	0,1%
25	24	0,710	42,02	42,19	
30	28	0,590	14,98	57,17	>90%
35	32	0,500	26,97	84,14	
40	35	0,420	12,93	97,07	
50	48	0,297	2,70	99,77	-
Fundo	0	0	0,24	100,01	Máx. 1%

Tabela 4.4: Distribuição granulométrica em 6 peneiras para a amostra 2 do piso cerâmico.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,00	0,00	Máx.
20	20	0,840	0,15	0,15	0,1%
25	24	0,710	41,98	42,13	
30	28	0,590	14,96	57,09	>90%
35	32	0,500	26,97	84,06	
40	35	0,420	12,96	97,02	
50	48	0,297	2,70	99,72	-
Fundo	0	0	0,29	100,01	Máx. 1%

Tabela 4.5: Distribuição granulométrica em 6 peneiras para a amostra 3 do piso cerâmico.

Com a finalidade de classificar o propante em uniforme ou não, utilizamos a curva de granulometria mostrada na figura 4.2. Através dela, podemos calcular o Coeficiente de Uniformidade (c) do propante analisado. Este coeficiente é calculado através da razão entre o diâmetro do grão na porcentagem acumulada de 40% pelo diâmetro do grão na porcentagem acumulada a 90%. Assim:

C = D40/D9 (4.4)

Se C<5, o propante é classificado como uniforme; se 10<C<5, o propante será não uniforme; se C>10 o propante será altamente não uniforme. Neste caso em particular, o valor de C é menor que cinco. Portanto, o propante será uniforme.

Para o propante analisado (piso cerâmico moído) decidiu-se por plotar apenas um gráfico em função das distribuições granulométricas apontadas pelas tabelas serem muito semelhantes, não alterando a conclusão final sobre o material analisado. Para os supostos propantes que virão adotaremos o mesmo critério utilizado.

Figura 4.2: Curva de granulometria do piso cerâmico moído

4.1.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, o piso moído apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade $\rightarrow 0,7$
- Arredondamento $\rightarrow 0,7$

4.1.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras do piso cerâmico PEI 3. Essas amostras de piso cerâmico moído foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 4000 psi, tensão mínima recomendada pela norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 4.000 psi, a quantidade de material foi medida. Para nossa surpresa, o material já começa a gerar uma grande quantidade de finos já neste primeiro ensaio, sob a tensão mínima especificada pela norma API. O ensaio foi repetido com a segunda e a terceira amostras e os resultados reproduzidos foram semelhantes ao primeiro, o que vem a rejeitar o material nesta propriedade.

Deste modo, pelo critério de resistência mecânica o material foi considerado reprovado, pois de acordo com a Norma API RP 60 a maior quantidade de finos que pode ser gerada é de 14% e estas amostras apresentaram, em média, 31,43% de finos gerados.

4.1.7 Teste de Condutividade

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de piso cerâmico moído o seguinte gráfico de condutividade do material.

Figura 4.3 – Valores da condutividade da fratura em função da tensão de fechamento.

Os resultados dos testes foram sintetizados no quadro resumo abaixo, de acordo com a norma API RP 60:

Norma API RP – 60

Critérios	Resultados
Distribuição Granulométrica	Atende a Norma
Esfericidade / Arredondamento	APROVADO
Solubilidade em Ácido	REPROVADO
Resistência Mecânica	REPROVADO

Tabela 4.6: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60.

4.2 Porcelanato Esferoidizado

O porcelanato é um tipo de cerâmica utilizada em pisos. O que difere este piso da cerâmica comum esmaltada é o seu processo de queima e as matérias primas que compõem a sua massa, responsáveis por sua absorção de água abaixo de 0,05%. Este tipo de revestimento, que teve origem na Europa, em países como a Itália e Espanha, começou a ganhar destaque no Brasil no começo da década de 90. Também foi escolhido por apresentar dureza e pela sua obtenção ser relativamente fácil. O porcelanato recebe a chamada monoqueima (feito em uma só queima). Sua resistência permite uma qualidade superior aos demais pisos cerâmicos e superior as rochas ornamentais. Possui resistência mecânica, às variações térmicas e aos reagentes químicos.

Seu processo produtivo, em comparação àquele de rochas ornamentais, é considerado mais ecológico. As jazidas das matérias primas do grés porcelanato são exploradas de modo mais racional. Na exploração convencional das rochas, as jazidas são exploradas enquanto houver possibilidade de retirar grandes placas. No caso das matérias primas de grés porcelanato, todo o material é utilizado, sem desperdício, além de a área ser recomposta após o uso (reflorestamento).

Existem no mercado vários tipos de porcelanato que podem ser aplicados tanto como revestimento de piso como de paredes. Sua tecnologia possibilita a reprodução da beleza das rochas ornamentais, mas com características técnicas superiores.

Estes porcelanatos genericamente conhecidos pelo termo grês porcelanato, de origem espanhola, e que é formado pelo substantivo grês (*stoneware*) qualificado pelo adjetivo porcelânico (Sanchez, 2003), que associa este revestimento às porcelanas, por suas características e propriedades.

O Dicionário de Cerâmicas do reconhecido Instituto de Materiais de Londres (Institute of Materials of London) fornece uma boa definição para ambas as palavras, grês e porcelânico. Assim, o grês é definido com qualquer produto esmaltado, o qual embora denso, impermeável e resistente o suficiente para resistir a arranhões com uma ponta de aço, difere-se da porcelana por ser mais opaco e, geralmente, parcialmente vitrificado. Por outro lado, porcelânico referese às qualidades da porcelana, refere-se a um produto cerâmico totalmente vitrificado, sendo impermeável.

Assim sendo, define-se o grês porcelanato como sendo um produto fundamentalmente composto de argila, feldspato e quartzo, tratado termicamente para formar uma mistura de vidro e fases cristalinas. É um material de baixa porosidade com excelente performance técnica, particularmente com respeito aos elevados valores das propriedades mecânicas e alta resistência química além de elevados valores de dureza. (Zanelli, 2005)

4.2.1

Procedimento Experimental para Preparação das Massas Cerâmicas

Este item diz respeito aos procedimentos utilizados na preparação dos grãos de porcelanato empregado no trabalho. Estes procedimentos dividiram-se nas seguintes etapas: escolha das matérias-primas, preparação das matérias-primas, formulação e preparação das massas cerâmicas, mistura e homogeneização, granulação (processo via seca) e sinterização dos grãos.

4.2.1.1

Escolha das Matérias-Primas

As matérias-primas plásticas utilizadas para a formação dos grãos de porcelanato foram argilas do Estado do Rio de Janeiro, especificamente dos municípios de Campos dos Goytacazes e Silva Jardim. A argila de Campos dos Goytacazes foi fornecida pela Cerâmica São José e, a de Silva Jardim, pela empresa Sardinha. Originalmente essas argilas são utilizadas para a produção de blocos de vedação, tijolos e telhas. No entanto, a argila de Silva Jardim também é utilizada por indústria de placas cerâmicas do Estado do Espírito Santo.

As matérias-primas não plásticas usadas foram: feldspato sódico, fornecido pela PROMINEX (Governador Valadares – MG) e quartzo fornecido pela BRASILMINAS (São Paulo – SP).

4.2.1.2

Preparação das Matérias-Primas

As matérias-primas foram submetidas à secagem a aproximadamente 150° C em estufa durante 72 horas. Em seguida, as argilas foram trituradas em britador de mandíbulas, marca MARCONI, modelo MA-4080, e cominuídas mecanicamente em moinho de bolas de aço marca PAVITEST (UENF – LECIV), capacidade máxima de 14,0 Kg, e freqüência de rotação de 30 rpm. Nesse moinho foram necessárias 2,5 horas para produzir 4,0 Kg de argila, com tamanho de partícula inferior a 74 µm (#<200 mesh). As demais matérias-primas (feldspato e

quartzo) foram fornecidas na granulometria de trabalho, ou seja, com tamanho de partícula também inferior a 74µm (#<200 mesh), conforme são fornecidas às indústrias nacionais de placas cerâmicas.

4.2.1.3

Formulação da Massa Cerâmica

A formulação da massa cerâmica utilizada para a confecção dos grãos de porcelanato foi a seguinte: 50% de caulim (argila), 30% de feldspato e 20% de quartzo. Nesse caso específico, para a preparação de 2 kg de massa para porcelanato, foram utilizados 1 kg de caulim, 600 g de feldspato e 400 g de quartzo.

4.2.1.4 Mistura e Homogeneização da Massa Cerâmica

De posse das quantidades que compunham a massa cerâmica, essas foram encaminhadas para a etapa de mistura e homogeneização por um período de 3,5 horas em moinho convencional (moinho de bolas), giramoinho marca Gardelim, tipo 1A MB5 (~ 65 rpm). Nessa etapa não foram utilizadas as bolas de moagem para que não ocorra mais redução das partículas. O período de 3,5 horas foi considerado ótimo, após a verificação de que não ocorria a formação de pequenos aglomerados, aproximadamente esféricos, quando da agitação horizontal e manual das massas (movimento de vai-e-vem) colocadas em tabuleiros de alumínio. Após a etapa de mistura e homogeneização, a massa cerâmica foi submetida à secagem a 150°C por 72 horas, aproximadamente. Esse período de secagem retira a umidade adquirida durante o manuseio e mistura da massa porcelânica. A massa do porcelanato foi então retirada e levada para a granulação.

4.2.1.5 Granulação

A granulação foi feita em um misturador intensivo marca EIRICH, modelo R.02, com cuba de capacidade de 3 a 5 litros, 42 a 84 rpm; motor bipolar comutável de 900 a 1800 rpm, 0,92 a 1,50 KW, adaptado para microgranulador, devido ao acoplamento de um sistema de umidificação, também adaptado. O processo de mistura ocorreu de forma intensiva do tipo fluxo contra corrente.

O procedimento de mistura intensiva foi realizado da seguinte forma: inicialmente, durante 1 minuto com a massa cerâmica seca e, em seguida procedeu-se a microgranulação. Nessa etapa, o sistema umedeceu a massa cerâmica, aspergindo cerca de 14,0%, em massa (em relação à massa cerâmica), de água em forma de spray, por cerca de 1 minuto, com a massa sendo retirada em seguida. Novas sessões semelhantes foram realizadas objetivando uma quantidade de grãos suficiente para os experimentos.

4.2.1.6

Classificação por Peneiramento

A classificação de tamanho dos grânulos foi realizada por peneiramento. Dessa forma, imediatamente após a retirada da massa cerâmica da cuba do equipamento adaptado para granulação, esta foi peneirada em malha de 10 mesh (2 mm) para a eliminação dos grânulos muito grandes e de outros aglomerados irregulares, formados durante a retirada da massa da cuba. Então, a quantidade de 10 mesh foi que passou na peneira novamente selecionada granulometricamente por peneiramento em següência de peneiras de 20 mesh e 40 mesh, sendo as partículas inferiores a 40 mesh descartadas, selecionando-se para o estudo apenas as de tamanho 20/40 mesh.

4.2.1.7 Sinterização dos Grãos

O procedimento de sinterização dos grãos de porcelanato foi realizado em um forno da marca MAITEC, modelo FSQC – 1300/3.

Após a programação, o forno executou os ciclos térmicos da seguinte forma: (Vale ressaltar que a atmosfera de sinterização foi ar ambiental)

Aquecimento:

Da temperatura ambiente (~25 °C) a 1050 °C, com taxa de aquecimento de 5,0 °C.min⁻¹.

Isoterma – Patamar da Temperatura Máxima:

• Permanência de 60 min na temperatura máxima de sinterização.

Resfriamento:

- Temperatura máxima de sinterização a 600 °C, com taxa de resfriamento de 10 °C.min⁻¹;
- De 600 °C a 500 °C, com taxa de resfriamento de 3 °C.min⁻¹;
- Desligamento do forno e deixando-se chegar naturalmente a temperatura ambiente.

4.2.1.8

Análise

Os resultados das análises realizadas em três amostras de grãos de porcelanato estão mostrados a seguir. Foram realizados os seguintes testes sempre de acordo com a Norma API RP 60: distribuição granulométrica, esfericidade e arredondamento, solubilidade em ácido, resistência mecânica e condutividade. Ao final os resultados foram reunidos numa tabela de onde se poderá prever o aproveitamento ou não do material de teste como propante.

4.2.2 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de porcelanato, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,46 \text{ g/cm}^3$

4.2.3 Cálculo da Densidade Aparente

Conforme procedimento descrito no Capítulo 3, seção 3.3, foram realizados ensaios em três diferentes amostras de porcelanato, apresentando como resultado:

Densidade Aparente média $\rightarrow \rho_b = 2,46 \text{ g/cm}^3$

4.2.4 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para o porcelanato o valor de:

Solubilidade média em ácido → 5,73 %.

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho 20/40, o que coloca o material como reprovado neste teste.

4.2.5 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de porcelanato.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,010	0,010	Máx 0.1%
20	20	0,840	18,400	18,409	
25	24	0,710	0,010	18,419	
30	28	0,590	72,930	91,339	>90%
35	32	0,500	7,653	98,992	
40	35	0,420	0,569	99,561	
50	48	0,297	0,429	99,990	-
Fundo	0	0	0,010	100,000	Máx. 1%

Tabela 4.7: Distribuição granulométrica em 6 peneiras para a amostra 1 de porcelanato.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,050	0,050	Máx.
20	20	0,840	14,907	14,957	0,1%
25	24	0,710	0,010	14,967	
30	28	0,590	425,89	72,291	≥90%
35	32	0,500	286,11	10,607	
40	35	0,420	265,01	1,287	
50	48	0,297	262,26	0,838	-
Fundo	0	0	376,05	0,010	Máx. 1%

Tabela 4.8: Distribuição granulométrica em 6 peneiras para a amostra 2 de porcelanato.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	14	1,190	0,079	0,079	Máx.
20	20	0,840	12,395	12,474	0,1%
25	24	0,710	0,010	18,4219	
30	28	0,590	72,809	85,283	≥90%
35	32	0,500	11,799	97,082	
40	35	0,420	1,995	99,077	
50	48	0,297	0,794	99,871	-
Fundo	0	0	0,109	99,980	Máx. 1%

Tabela 4.9: Distribuição granulométrica em 6 peneiras para a amostra 3 de porcelanato.

Pelo mesmo motivo da semelhança entre as tabelas de distribuição de granulometrias é que optou-se por traçar a curva de granulometria apenas para a amostra 1 do porcelanato. A partir do gráfico determinamos o coeficiente C pela equação 4.4. Assim, C<5. Portanto, os grãos de porcelanato são considerados uniformes.

Figura 4.4: Curva de granulometria do porcelanato.

4.2.6 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, o porcelanato apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento $\rightarrow 0,9$

As micrografías do porcelanato, evidenciando suas características de esfericidade e arredondamento, são mostradas nas figuras 4.5, 4.6 e 4.7 (a,b).

Pelas imagens vistas das figuras (microscopias ótica e eletrônica de varredura) é possível observar a distribuição de tamanho destes grânulos e ver que ela é uniforme e os grãos bem esféricos e arredondados. Esta configuração favorece a estabilidade do pacote granular no interior da fratura.

Figura 4.5 – Imagem da distribuição dos grãos de porcelanato realizada em microscópio eletrônico de varredura com aumento de 20 X, mostrando o grau de esfericidade e arredondamento dos grâos.

Figura 4.6 – Imagem dos grãos de porcelanato realizada em microscópio eletrônico de varredura com aumento de 50 X.

Figura 4.7 (a) e (b) – Microscopias óticas dos grâos de porcelanato sob diferentes aumentos

(b)

4.2.7 Teste de Resistência Crush

(a)

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de porcelanato. Essas amostras de porcelanato foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 4000 psi, tensão mínima recomendada pela norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 4.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 12%, valor abaixo do máximo permitido pela Norma API. Os ensaios foram repetidos agora aplicando-se uma tensão de 5.000 psi, medindo-se uma quantidade média de finos de 20,2%. Repetimos os ensaios, desta vez aplicando-se 7.500 psi e totalizando 30,60% de finos gerados, valor bem acima dos 10% estipulados pela Norma.

Deste modo, pelo critério de resistência mecânica o material foi considerado reprovado para tensões superiores a 4.000 psi.

4.2.8 Teste de Condutividade

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de porcelanato o seguinte gráfico de condutividade do material.

Figura 4.8 – Valores da condutividade da fratura em função da tensão de fechamento.

Os resultados dos testes foram sintetizados no quadro resumo abaixo:

Norma API RP - 60

Critérios	Resultados
Distribuição Granulométrica	Atende a Norma
Esfericidade / Arredondamento	APROVADO
Solubilidade em Ácido	REPROVADO
Resistência Mecânica	REPROVADO

Tabela 4.10: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60.

4.3

Miçangas

Estes materiais foram testados em razão de sua forma e variedades de tipos e tamanhos (conforme figura 4.9) e por, aparentemente, apresentarem resistência mecânica adequada, além de um custo relativamente baixo.

São produzidas em grandes quantidades. Porém só existem fábricas desse produto na China e na República Tcheca. Contudo, a de melhor qualidade é a de origem tcheca.

Essas miçangas são, em geral, feitas a partir de tubos de vidro cuja composição básica é:

- sílica (vitrificante), na forma de areia;

- soda (fundente);

- pigmentos coloridos.

Possuem tamanhos e formas variados (ovais, circulares, bastonetes etc) e não há uma norma internacional que padronize a sua numeração, conforme mostrado nas ilustrações abaixo.

Para este trabalho foram testadas as miçangas do tipo maciça (bolinha sem furo) e do tipo vazada. As do tipo maciças foram escolhidas em razão de sua resistência ser aparentemente mais elevada. As do tipo vazadas, em função desse furo central poder vir a ser um facilitador no escoamento do óleo.

Os materiais citados acima passaram por avaliações e testes, sempre segundo as normas API.

As miçangas utilizadas neste trabalho foram as Jablonex, de fabricação tcheca. São as mais tradicionais, são mais regulares, geralmente com formato arredondado. São muito encontradas em lojas de materiais de montagem de bijuterias.

Metalico 9/0	Perolizado 9/0	Rajada Transparante 8/0	Seda Opaca 9/0	Soigei Transpar 9/0	Transparente	T 6/0 Transpare	nte 5/0	Transparente 9/0	DROPS
2007	1525	356KS 5713	33300 9390	-CO.E.E 97	728 4000 4	962	3490	4564	Metalico Matte 5/0
12162	33300 519	Seda 4/0	4682	. CEDE+ 97	730 000 12	2727	2395	466	- 4868
3464	1597	4117	(1392) 6459	-COLEE- 97	732 Transparente	т 7/0	5519	Transparente 11/0	Perolizado 2/0
61100. 3493		Seda 5/0	Solgel Fosca 6/0	Super Lined 5	5/0 00000 6	515 (100)	495		13771
12564	1598	6462	9698	20	064 000 5	5720	2053	DROPS	6404
12166	530	4103	9699	Transparente D	Dupla Care e	5721 000	6811	Fosca 2/0	13772
Matalico 11/0	1575	4105	9702	(00) 64	431 0000 5	5722 Transpare	ente 6/0	4427	Perolizado 5/0
14179	1576	4107	9704	Transparente D	Dupla (1000) 5	5723 ,000	467	Fosca 5/0	. 13773
Onaina 5/0	531	3280	9706		324 Transparente	T 8/0 -000	440	. 4424	13775
9896	1579	3286	Solgel Fosca 9/0	Transparente D	Oupla 0300 5	5757 .000	3492	4948	6 5 5 4337
Onaline 7/0	30000- 533	6463	.1100> 9607	-333000. 11	325 0000 5	5724 328	4568	Irisado 2/0	. 13774
5501	Perolizado 12/0	3276	12153	.00000- 94	441 Transparente	T 9/0 .000	543	2612	Perolizado 8/0
Onalina 9/0	7673	4109	0000 9581	Transparente 1	T 2/0 - (6745 000	540	Irisado 5/0	13862
0225	7672	3288	Solgel Opaline 6/0	3	775	5332	8418	. 6321	-000 13861
5524	Rajada 5/0	4111	9721	20 5 70	680 20050 5	5158 .000	6528	Irisado 8/0	-0100 4338
Oppling 10/0	570	Seda 6/0	9446	6	844 (0360)	3026	448	• 6476	Seda 8/0
	576	4099	9579	6 11	1927 02000	4298	2394	Lined 2/0	13859
• 14500	Delade OD	2079	9710	12	730 00300	6769 200	2001	6312	0000 13860
Perolizado 2/0	Rajada 9/0	32/8	9710	12		3975	459	Lined 5/0	Transparente 5/0
4275	16/8	3485	9/11	Topperante 12		5222 800	3612	6313	4428
• 5690	Rajada 11/0	348/	9755	Transparente			400	Lined 9/0	Transparente 8/
Perolizado 5/0	14696	3282	9580			4230	409		
512	Rajada 31/0	3298	9610	Transparente	T 5/0 • CSC	4770	10/22	· · · · · · · · · · · · · · · · · · ·	•CBURN 40/2
1584	14574	Seda 7/0	Solgel Opaline 9/0	11	1541 00000	4540 + 1915	8639	Matte 2/0	
10160	Rajada Mate 5/0	13855	GGCOB 9707	CC0 1	125 00000	4541	480	6543	
• • • 503	4348	13857	9709	300 3	816 00000	4755	462	2492	
6783	4346	Seda 9/0	9448	300 3	166	4542	11955	Matte 5/0	
508	4344	33300 3279	9449	2000 2	2724 00000	4294 -300	616	6806	
• 510	Rajada Mate 9/0	G3300 4104	9718	000 4	1526	4756 .000	5741	6426	
Perolizado 6/0	4345	4106	9712	4	439	3876 Transpa	rente 7/0	Matte 8/0	
10256	Rajada Transp Matte 6/0	•33000+ 4108	9713	630 4	4891 (3355)	4759	4020	2601	
330 4821	6165	(03300) 15510	Solgel Perolizado 5/0	000 4	1528 Transparer 11/0	nte T	4021	2600	
4693	Rajada Transparente 5/0	3281	10168	3	2927 033380 *	14562 . 600	6810	-6000 4834	
4823	5704	3486	1016	9 000 9	683 000000	14564 .0000	5520	Mesciado 2/0	
1586	5711	5357	1017	0 000 4	1143 (31309)	14565 Transpa	rente 9/0	4417	
8411	5715	3488	1017	2 000	464 Transparen	te 2/0	437	• 4476	
· · 1566	571	7 3289	1017	3 Transparente	T 6/0	4749 .00000	441	4863	
1 1587	570	6465	1017	4	0723 Transparen	te 5/0 . COCOE	545	4865	
- 1589	Rajada Transparente 6/0	4112	Solgel Perolizado 9/0	COG	899	474 .0000	544	mesciado 5/0	
538	605	7 Seda Opaca 4/0	G190 9450		9577 222	1441 -00008	8419	4339	
- 1081	9 000 606	4118	9453	-030 3	3989 323	9929 .0008	4752	4340	
, 5466	Rajada Transparente 7/	4125	9454	-	4297 3000	541 .02000	449	6819	
- 506	52 233	5 6 4120	9722	2 Transparente	T 6/0	542	8695	Mesciado 8/0	
, 507	Rajada Transparente 94	Seda Opaca 5/0	Solgel Transparen	to come e	6759	9846 Transpa	rente 9/0	• 00 4418	
509	1 1865 571	6 378	9729	. 000 4	4144 200	7658 .00083	4566	-380 4477	
Perolizado 9/0		467	2 973	1 200 1	0721	447 .02033	4563	320 4864	
(1 ma) 513	3 27653 571	8 467	5 973	3 000 4	4527	451 .00000	5437	Metalico Matte 2/0	
524	7 200 571	0	973	5	4961	5517 ·	497	4867	
	7		973	7 .000. 8	8414	458 ****	463		
		-	- Contract			Ser and	476		

Figura 4.9 – Variedade de tipos, tamanhos e formas como as miçangas se apresentam. (extraída de www.laskani.com.br)

4.3.1 Miçangas Vazadas

São contas de vidro, superfície polida, tamanho e formato reprodutíveis, de formato redondo com orifício central, cilíndrico e de dimensões regulares e reprodutíveis, que permite a passagem dos fios para unir as miçangas em colares ou pulseiras. Possuem múltiplas aplicações, sendo utilizadas em bijuterias, bordadas em roupas e calçados, ou ainda em decoração. Apresentam uma variada escala de cores bem vivas e de efeito marcante. Foram escolhidas em razão da idéia de que propantes vazados facilitariam o fluxo. Além disso, foram os únicos corpos pequenos vazados que encontramos. A figura 4.10 apresenta imagens das miçangas vazadas usadas nos experimentos.

Figura 4.10 – Variedade de miçangas do tipo vazado usadas nos testes. (extraída de www.laskani.com.br)

4.3.1.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de miçangas vazadas, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,38 \text{ g/cm}^3$

4.3.1.2 Cálculo da Densidade Aparente

A densidade aparente foi determinada para as amostras, conforme procedimento descrito no Capítulo 3, seção 3.3. Três medições distintas foram feitas, tendo sido encontrado:

Densidade Aparente média $\rightarrow \rho_b = 2,42 \text{ g/cm}^3$

4.3.1.3

Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as miçangas vazadas o valor de:

Solubilidade média em ácido → 7,67 %.

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho 20/40, o que coloca o material como reprovado neste teste.

4.3.1.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de miçangas vazadas.

O tamanho médio das amostras analisadas foi o de # 8x16, visto que não se encontram no mercado outras miçangas com essas mesmas características e de tamanho menor.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
6	6	3,360	0,00	0,00	Máx.
8	8	2,380	1,10	1,10	0,1%
10	9	2,000	23,60	24,70	
12	10	1,680	73,21	97,91	>90%
14	12	1,410	2,08	99,99	
16	14	1,190	0,01	100,00	
20	20	0,840	0,00	100,00	-
Fundo	0	0	0,00	100,00	Máx. 1%

Tabela 4.11: Distribuição granulométrica em 6 peneiras para a amostra de miçangas vazadas

A partir da curva de granulometria abaixo, determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de miçangas vazadas são considerados uniformes.

Figura 4.11: Curva de granulometria das miçangas vazadas.

4.3.1.5

Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as miçangas vazadas apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade $\rightarrow 0,6$
- Arredondamento → 0,9

4.3.1.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de miçangas vazadas. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 2.000 psi, tensão abaixo da tensão mínima recomendada pela norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 2.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 44,3%, valor bem acima dos 14% estipulados pela Norma API 56 para a tensão de 4.000 psi aplicada.

Deste modo, pelo critério de resistência mecânica o material foi considerado reprovado mesmo para poços mais rasos, sob tensões confinantes menores.

4.3.1.7 Teste de Condutividade

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de miçangas vazadas o seguinte gráfico de condutividade do material.

Figura 4.12 – Valores da condutividade da fratura em função da tensão de fechamento.

A seguir é mostrado um quadro resumo dos resultados obtidos.

Critérios	Resultados
Distribuição Granulométrica	Atende a Norma
Esfericidade / Arredondamento	APROVADO
Solubilidade em Ácido	REPROVADO
Resistência Mecânica	REPROVADO

Tabela 4.12: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60 para as miçangas vazadas.

4.3.2

Miçangas Maciças (Bolinhas sem Furo)

Semelhantemente às miçangas vazadas, as miçangas maciças são também contas de vidro, de formato esférico, de constituição sólida e predominantemente a base de sílica, soda e pigmentos coloridos. A figura 4.13 mostra algumas destas esferas encontradas no mercado e usada nos testes.

Figura 4.13 – Variedade de miçangas do tipo maciça (bolinha sem furo) usadas nos testes.

Na seqüência, os resultados dos ensaios realizados com este material, segundo as Normas API em vigência, são apresentados, visando o aproveitamento dessas miçangas como propante.

4.3.2.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de miçangas maciças (bolinhas sem furo), apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,50 \text{ g/cm}^3$

4.3.2.2 Cálculo da Densidade Aparente

A densidade aparente foi determinada para as amostras, conforme procedimento descrito no Capítulo 3, seção 3.3. Três medições distintas foram feitas, tendo sido encontrado:

Densidade Aparente média $\rightarrow \rho_b = 2,45 \text{ g/cm}^3$

4.3.2.3 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as miçangas maciças (bolinhas sem furo) o valor de:

Solubilidade média em ácido → 4,79 %

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho 20/40, o que coloca o material como reprovado neste teste.

4.3.2.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de miçangas maciças (esferas sem furo).

O tamanho médio das amostras analisadas foi o de # 8x16, visto que não se encontram no mercado outras miçangas com essas mesmas características e de tamanho menor.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
6	6	3,360	0,00	0,00	Máx.
8	8	2,380	0,00	0,00	0,1%
10	9	2,000	0,10	0,10	
12	10	1,680	38,97	39,07	>90%
14	12	1,410	60,94	100,01	_, ,,,
16	14	1,190	0,09	100,10	
20	20	0,840	0,00	100,10	-
Fundo	0	0	0,00	100,10	Máx. 1%

Tabela 4. 13: Distribuição granulométrica em 6 peneiras para a amostra de miçangas maciças (bolinhas sem furo).

A partir da curva de granulometria abaixo, determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de porcelanato são considerados unifomes.

Figura 4.14: Curva de granulometria das miçangas maciças.

4.3.2.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as miçangas maciças apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento → 0,9

4.3.2.6

Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de miçangas maciças. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 2.000 psi, tensão abaixo da tensão mínima recomendada pela norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 2.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 0,0625%, valor considerado muito baixo e muito satisfatório.

Um segundo teste foi realizado, desta vez utilizando o valor mínimo de tensão determinado pela Norma API 56, que é de 4.000 psi. Neste segundo teste as amostras também passam bem, ocorrendo em média, 4% de finos gerados. Quando a tensão de 7.500 psi é aplicada, observa-se que a média de finos gerada fica em torno de 10%, limite máximo imposto pela Norma.

Deste modo, pelo critério de resistência mecânica o material foi considerado aprovado até o limite de tensão confinante de 7.500 psi.

4.3.2.7

Teste de Condutividade

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de miçangas maciças (esferas sem furo) o seguinte gráfico de condutividade do material.

Figura 4.15 – Valores da condutividade da fratura em função da tensão de fechamento.

A seguir é mostrado um quadro resumo dos resultados obtidos.

Quadro	Resumo
--------	--------

Critérios	Resultados
Distribuição Granulométrica	Atende a Norma
Esfericidade / Arredondamento	APROVADO
Solubilidade em Ácido	REPROVADO
Resistência Mecânica	APROVADO

Tabela 4.14: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60 para as miçangas maciças.

4.4 Microesferas de Vidro

As microesferas de vidro foram testadas em razão de sua forma esférica, apresentarem uma extensa faixa de granulometria fabricada e relativo baixo custo. Informações dadas pelo fabricante de boa resistência mecânica e dureza também ajudaram no processo de escolha para testes. Além disso, apresenta características químicas de material inerte (que não reage com uma grande maioria de substâncias). Por isso, não pode ser vista como contaminante. E ainda, características de não abrasividade, acabam reservando um lugar de destaque a este material diante de outros testados anteriormente.

Microesferas de vidro são aplicadas pela indústria com diferentes finalidades. Podem ser empregadas para limpeza de superfícies de componentes metálicos, sem contaminá-las com ferro, acabamento acetinado de grande beleza, desrebarbamento de precisão, gravação ou decoração. Limpeza de moldes em geral, martelamento (shot peening) em uma única operação, em ferramentas de corte ou palhetas de turbinas de aviação e muitas outras importantes aplicações passaram também a ser viáveis com as esferas de vidro. Aplicação de esferas de vidro tipo especiais, na descarbonização e limpeza de peças de motores a combustão, na fabricação de placas para luminosos de sinalização, as quais são utilizadas pelas rodovias e em produtos nas áreas cirúrgicas, aeroespacial e eletroeletrônicas também tem se tornado comuns.

As microesferas de vidro apresentam-se incolores e são obtidas a partir de vidro selecionado e pulverizado, a base de soda cal e fundidas em fornos especiais. São produzidas baseado no princípio de leito fluidizado, secadores pneumáticos, spray dryers ou outros processos similares. Os níveis de temperatura concentrada no núcleo do forno atingem o ponto de fusão do vidro em curto espaço de tempo, suficiente para torná-lo líquido em suspensão em menos de um segundo e, pela tensão superficial do mesmo e a falta de gravidade espontânea, adquire a forma esférica desejada, sendo que o tamanho da esfera é proporcional ao tamanho da partícula de vidro que se introduz no forno. No Brasil, existem algumas fábricas de grande porte que fabricam este tipo de material.

Abaixo são citadas características gerais e as características técnicas sobre as microesferas, informadas pela maioria dos fabricantes.

Tipo	Peneira ASTM	Abertura (µ)
AA	30 - 70	600 - 212
AB	50 - 80	300 - 180
AC	60 - 100	250 - 150
AD	70 - 140	212 - 106
AF	100 - 200	150 - 75
AG	140 - 270	106 - 53
AH	170 - 325	90-45
AI	< 230	< 63
AQ	< 270	< 53

Especificações Gerais:

Tabela 4.15: Tabela com as especificações gerais informadas pelos fabricantes sobre os diferentes tipos de microesferas que são fabricadas. (fonte: *www.potters.com.br*)

Propriedades físicas:

Densidade aparente (g/cm ³)	1,5
Densidade de massa (g/cm ³)	2,5
Índice de refração	1,50 – 1,52
Resistência a compressão (psi)	14.000 a 36.000
Dureza MOH	5-6
Dureza Knoop 100g carga	515 kg/mm ²
Coeficiente estático de fricção	0,9 - 1,0

Tabela 4.16: Tabela com as propriedades físicas informadas pelo fabricante sobre as microesferas de vidro. (fonte: *www.potters.com.br*)

Propriedades químicas:

Composição - vidro tipo soda-cal Sílica livre – nenhuma

Granulometria

Tipo	Peneira	Faixa de	Quantidade média de
	ASTM	Diâmetros	esferas/Kg de produto
A-340	5-7	4,0-2,8	19.800
A-285	6-8	3,3-2,4	33.000
A-240	7-10	2,8-2,0	55.100
A-205	8-12	2,3-1,7	92.600
A-170	10-14	2,0-1,4	156.600
A-150	12-14	1,7 – 1,4	209.400
A-135	12-18	1,7 – 1,0	232.000
A-130	12-16	1,7 – 1,2	255.100
A-120	14-18	1,4 - 1,0	443.100
A-110	16-18	1,2-1,0	551.100
A-100	16-20	1,2-0,8	720.900
A-090	18-20	1,0-0,8	1.102.700
A-080	20-25	0,85 - 0,71	1.602.700
A-072	20-30	0,85 - 0,60	2.006.000

As microesferas de vidro são fabricadas sob diversos tamanhos de grão, conforme especificado na tabela 4.16.

Tabela 4.17: Tabela com os tipos e especificações das microesferas de vidro do tipo AA (utilizadas neste trabalho) informada pelo fabricante. (fonte: *www.potters.com.br*)

Com a finalidade de verificar se o material atende aos requisitos impostos pelas normas e confirmar algumas propriedades informadas pelo fabricante, a sequência de testes foi realizada. Como existe uma boa variedade de granulometria fabricada para o material e dado o maior potencial das esferas de vidro para o uso como propante, optou-se, neste trabalho, por se fazer uma gama maior de testes, analisando uma faixa maior de granulometria. Ao final, quadros com o resumo das análises é feito, caracterizando o resultado final dos testes.

4.4.1 Microesferas de Vidro #8/12

4.4.1.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de esferas de vidro #8/12, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,38 \text{ g/cm}^3$

4.4.1.2 Cálculo da Densidade Aparente

A densidade aparente foi determinada para as amostras de microesferas de vidro #8/12, conforme procedimento descrito no Capítulo 3, seção 3.3. Três medições distintas foram feitas, tendo sido encontrado:

Densidade Aparente média $\rightarrow \rho_b = 2,58 \text{ g/cm}^3$

4.4.1.3 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as microesferas de vidro #8/12 o valor de:

Solubilidade média em ácido → 4,41 %

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho #8/12, o que coloca o material como reprovado neste teste.

4.4.1.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de microesferas de vidro #8/12.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
6	6	3,360	0,00	0,00	Máx.
8	8	2,380	0,00	0,00	0,1%
10	9	2,000	0,71	0,71	
12	10	1,680	96,96	97,66	≥90%
14	12	1,410	2,35	100,01	
16	14	1,190	0,00	100,01	
Fundo	0	0	0,00	100,01	Máx. 1%

Tabela 4.18: Distribuição granulométrica em 6 peneiras para a amostra 1 de microesfera de vidro tamanho #8/12.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
6	6	3,360	0,00	0,00	Máx.
8	8	2,380	0,00	0,00	0,1%
10	9	2,000	0,45	0,45	
12	10	1,680	97,47	97,92	>90%
14	12	1,410	2,16	100,08	_, , , ,
16	14	1,190	0,00	100,08	
Fundo	0	0	0,00	100,08	Máx. 1%

Tabela 4.19: Distribuição granulométrica em 6 peneiras para a amostra 2 de microesfera de vidro tamanho #8/12.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
6	6	3,360	0,00	0,00	Máx 0.1%
8	8	2,380	0,00	0,00	
10	9	2,000	0,37	0,37	
12	10	1,680	98,88	99,24	>90%
14	12	1,410	0,77	100,01	
16	14	1,190	0,00	100,01	
Fundo	0	0	0,00	100,01	Máx. 1%

Tabela 4.20: Distribuição granulométrica em 6 peneiras para a amostra 3 de microesfera de vidro tamanho #8/12.

Pelo mesmo motivo da semelhança entre as tabelas de distribuição de granulometrias é que optou-se por traçar a curva de granulometria apenas para a amostra 1 das microesferas #8/12. A partir do gráfico determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de microesferas #8/12 são considerados unifomes.

Figura 4.16: Curva de granulometria das microesferas #8/12.

4.4.1.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as microesferas de vidro #8/12 apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento $\rightarrow 0,9$

As micrografias das microesferas de vidro #8/12 evidenciando suas características de esfericidade e arredondamento são mostradas nas figuras 4.17 e 4.18.

Figura 4.17 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #8/12 sob aumento de 20 vezes.

Figura 4.18 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #8/12 sob aumento de 50 vezes.

4.4.1.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de microesferas de vidro #8/12. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 2.000 psi, tensão abaixo da tensão mínima recomendada pela norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 2.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 21%, valor considerado alto e acima do valor máximo especificado pela Norma que é de 18% para uma tensão de 4.000 psi.

Deste modo, pelo critério de resistência mecânica o material foi considerado reprovado.

A seguir é mostrado um quadro resumo dos resultados obtidos.

Quadro Resumo

Norma API RP – 56 -	(8/12#)
---------------------	---------

Critérios	Resultados
Distribuição Granulométrica	Atende a Norma
Esfericidade / Arredondamento	Aprovado
Solubilidade em Ácido	Reprovado
Resistência Mecânica	Reprovado

Tabela 4.21: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60 para as microesferas de vidro #8/12.

4.4.2 Microesferas de Vidro #16/20

4.4.2.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de microesferas de vidro #16/20, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,43 \text{ g/cm}^3$

4.4.2.2 Cálculo da Densidade Aparente

O valor da densidade aparente é o mesmo para qualquer granulometria do mesmo material, pois esta se refere à real densidade do material, não importando seu tamanho mas sim o material do qual é constituído.Assim, a densidade aparente das microesferas de vidro #16/20 é:

Densidade Aparente média $\rightarrow \rho_b = 2,58 \text{ g/cm}^3$

4.4.2.3 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as microesferas de vidro #16/20 o valor de:

Solubilidade média em ácido → 6,72 %

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho #16/20, o que coloca o material como reprovado neste teste.

4.4.2.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de microesferas de vidro #16/20.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
12	12	1,68	0,00	0,00	Máx. 0.1%
16	16	1,19	0,01	0,01	
18	18	1	9,34	9,35	
20	20	0,84	85,28	94,62	>90%
25	25	0,71	5,34	99,96	
30	30	0,59	0,02	99,98	
Fundo	0	0	0,00	99,98	Máx. 1%

Tabela 4.22: Distribuição granulométrica em 6 peneiras para a amostra 1 de microesfera de vidro tamanho #16/20.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
12	12	1,68	0,00	0,00	Máx. 0.1%
16	16	1,19	0,02	0,02	
18	18	1	8,06	8,08	
20	20	0,84	85,32	93,40	>90%
25	25	0,71	6,56	99,96	
30	30	0,59	0,03	99,99	
Fundo	0	0	0,00	99,99	Máx. 1%

Tabela 4.23: Distribuição granulométrica em 6 peneiras para a amostra 2 de microesfera de vidro tamanho #16/20.

			Retenção	Retenção Acumulada	Critério
ASTM	Mesh	Milímetro			Norma
			(%)	(%)	API 56
12	12	1,68	0,00	0,00	Máx 0.1%
16	16	1,19	0,01	0,01	1,1,1,1,1,0,1,70
18	18	1	10,88	10,89	
20	20	0,84	85,19	96,08	>90%
25	25	0,71	3,87	99,95	
30	30	0,59	0,05	100,00	
Fundo	0	0	0,00	100,00	Máx. 1%

Tabela 4.24: Distribuição granulométrica em 6 peneiras para a amostra 3 de microesfera de vidro tamanho #16/20.

Pelo mesmo motivo da semelhança entre as tabelas de distribuição de granulometrias é que optou-se por traçar a curva de granulometria apenas para a amostra 1 das microesferas #16/20. A partir do gráfico determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de microesferas de vidro #16/20 são considerados unifomes.

Figura 4.19: Curva de granulometria das microesferas de vidro #16/20

4.4.2.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as microesferas de vidro #16/20 apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento $\rightarrow 0,9$

As micrografias das microesferas de vidro #16/20, evidenciando suas características de esfericidade e arredondamento são mostradas nas figuras 4.20 e 4.21.

Figura 4.20 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #16/20 sob aumento de 20 vezes.

Figura 4.21 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #16/20 sob aumento de 50 vezes.

4.4.2.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de microesferas de vidro #16/20. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 3.000 psi, tensão abaixo da tensão mínima recomendada pela Norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 3.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 2,50%, valor considerado muito baixo e bem satisfatório.

Um segundo teste foi realizado, desta vez utilizando o valor mínimo de tensão determinado pela Norma API 56, que é de 4.000 psi. Neste segundo teste as amostras também passam bem, ocorrendo em média, 4,50% de finos gerados. Quando a tensão de 7.500 psi é aplicada, observa-se que a média de finos gerada fica em torno de 9,7%, praticamente o limite máximo imposto pela Norma.

Deste modo, pelo critério de resistência mecânica o material foi considerado aprovado até o limite de tensão confinante de 7.500 psi.

A seguir é mostrado um quadro resumo dos resultados obtidos.

$(\pi 10/20)$						
Critérios	Resultados					
Distribuição Granulométrica	Atende a Norma					
Esfericidade / Arredondamento	Aprovado					
Solubilidade em Ácido	Reprovado					
Resistência Mecânica	Aprovado					

Norma API RP - 56 - (#16/20)

Tabela 4.25: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60 para as microesferas de vidro #16/20.

4.4.3 Microesferas de Vidro #16/30

4.4.3.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de microesferas de vidro #16/30, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,50 \text{ g/cm}^3$

4.4.3.2 Cálculo da Densidade Aparente

O valor da densidade aparente é o mesmo para qualquer granulometria do mesmo material, pois esta se refere à real densidade do material, não importando seu tamanho mas sim o material do qual é constituído.Assim, a densidade aparente das microesferas de vidro #16/30 é:

Densidade Aparente média $\rightarrow \rho_b = 2,58 \text{ g/cm}^3$

4.4.3.3 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as microesferas de vidro #16/30 o valor de:

Solubilidade média em ácido → 7,46 %

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho#16/30, o que coloca o material como reprovado neste teste.

4.4.3.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de microesferas de vidro #16/30.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
12	12	1,68	0,00	0,00	Máx 0.1%
16	16	1,19	0,02	0,02	
18	18	1	0,02	0,04	
20	20	0,84	0,36	0,40	≥90
30	28	0,59	76,69	77,09	
35	32	0,5	22,67	99,76	-
Fundo	0	0	0,24	100,00	Máx. 1%

Tabela 4.26: Distribuição granulométrica em 6 peneiras para a amostra 1 de microesfera de vidro tamanho #16/30.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
12	12	1,68	0,00	0,00	Máx 0.1%
16	16	1,19	0,01	0,01	
18	18	1	0,01	0,02	
20	20	0,84	0,85	0,87	≥90
30	28	0,59	79,08	79,95	
35	32	0,5	20,07	100,02	-
Fundo	0	0	0,00	100,02	Máx. 1%

Tabela 4.27: Distribuição granulométrica em 6 peneiras para a amostra 2 de microesfera de vidro tamanho #16/30.

ASTM Mesh Milímetro Retenção Retenção Acumulada	Critério Norma API
ASTM Mesh Milímetro	Norma API
(0/)	
	56
12 12 1,68 0,00 0,00	Máx 0.1%
16 16 1,19 0,01 0,01	
18 18 1 0,01 0,02	
20 20 0,84 0,15 0,17	≥90
30 28 0,59 71,58 71,75	
35 32 0,5 28,24 99,99	-
Fundo 0 0 0,00 99,99	Máx. 1%

Tabela 4.28: Distribuição granulométrica em 6 peneiras para a amostra 3 de microesfera de vidro tamanho #16/30.

Pelo mesmo motivo da semelhança entre as tabelas de distribuição de granulometrias é que optou-se por traçar a curva de granulometria apenas para a amostra 1 das microesferas #16/30. A partir do gráfico determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de microesferas de vidro #16/30 são considerados uniformes.

Figura 4.22: Curva de granulometria das microesferas de vidro #16/30.

4.4.3.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as microesferas de vidro #16/20 apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento $\rightarrow 0,9$

As micrografias das microesferas de vidro #16/30 evidenciando suas características de esfericidade e arredondamento são mostradas nas figuras 4.23 e 4.24.

Figura 4.23 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #16/30 sob aumento de 20 vezes.

Figura 4.24 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #16/30 sob aumento de 50 vezes.

4.4.3.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de microesferas de vidro #16/30. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 3.000 psi, tensão abaixo da tensão mínima recomendada pela Norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 3.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 8,50%, valor considerado baixo e satisfatório.

Um segundo teste foi realizado, desta vez utilizando o valor mínimo de tensão determinado pela Norma API 56, que é de 4.000 psi. Neste segundo teste as amostras também passam, ocorrendo em média, 10% de finos gerados. Quando a tensão de 7.500 psi é aplicada, observa-se que a média de finos gerada fica em torno de 12,5%, um pouco acima do limite máximo imposto pela Norma.

Deste modo, pelo critério de resistência mecânica o material foi considerado aprovado até o limite de tensão confinante de 4.000 psi.

A seguir é mostrado um quadro resumo dos resultados obtidos.

A01 ma A11 K1 = 30 - (#10/30)						
Critérios	Resultados					
Distribuição Granulométrica	Não atende a Norma					
Esfericidade / Arredondamento	Aprovado					
Solubilidade em Ácido	Reprovado					
Resistência Mecânica	Aprovado					

Norma API RP – 56 - (#16/30)

Tabela 4.29: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a Norma API RP 60 para as microesferas de vidro #16/30.

4.4.4 Microesferas de Vidro #20/40

4.4.4.1 Cálculo da Densidade Bulk

Conforme procedimento descrito no Capítulo 3, seção 3.2, foram realizados ensaios em três diferentes amostras de microesferas de vidro #20/40, apresentando como resultado:

Densidade Bulk média $\rightarrow \rho_b = 1,58 \text{ g/cm}^3$

4.4.4.2 Cálculo da Densidade Aparente

O valor da densidade aparente é o mesmo para qualquer granulometria do mesmo material, pois esta se refere à real densidade do material, não importando seu tamanho mas sim o material do qual é constituído.Assim, a densidade aparente das microesferas de vidro #20/40 é:

Densidade Aparente média $\rightarrow \rho_b = 2,58 \text{ g/cm}^3$

4.4.4.3 Cálculo da Solubilidade em Ácido

Conforme procedimento descrito no Capítulo 3, seção 3.4, três amostras do material foram submetidas ao teste de solubilidade em ácido. Estes testes produziram como solubilidade média em ácido para as microesferas de vidro #20/40 o valor de:

Solubilidade média em ácido → 5,76 %

A solubilidade do material em ácido acabou ficando acima do valor da norma (API RP 56) que é de 2 % para o tamanho #20/40, o que coloca o material como reprovado neste teste.

4.4.4 Ensaio e Análise da Distribuição Granulométrica

Conforme procedimento descrito no Capítulo 2, seção 2.4, os testes produziram os seguintes resultados para a amostra de microesferas de vidro #20/40.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	16	1,19	0,00	0,00	Máx. 0.1%
20	20	0,84	0,00	0,00	
30	30	0,59	0,09	0,09	
35	35	0,5	6,34	6,43	≥90
40	40	0,42	73,20	79,63	
50	50	0,297	20,36	99,99	-
Fundo	0	0	0,00	99,99	Máx. 1%

Tabela 4.30: Distribuição granulométrica em 6 peneiras para a amostra 1 de microesfera de vidro tamanho #20/40.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	16	1,19	0,00	0,00	Máx 0.1%
20	20	0,84	0,00	0,00	111111111111111111
30	30	0,59	0,06	0,06	
35	35	0,5	5,12	5,18	≥90
40	40	0,42	71,18	76,35	
50	50	0,297	23,65	100,00	-
Fundo	0	0	0,00	100,00	Máx. 1%

Tabela 4.31: Distribuição granulométrica em 6 peneiras para a amostra 2 de microesfera de vidro tamanho #20/40.

ASTM	Mesh	Milímetro	Retenção (%)	Retenção Acumulada (%)	Critério Norma API 56
16	16	1,19	0,00	0,00	Máx 0.1%
20	20	0,84	0,00	0,00	1110111 0,170
30	30	0,59	0,02	0,02	
35	35	0,5	5,30	5,32	≥90
40	40	0,42	73,04	78,36	
50	50	0,297	21,67	100,03	-
Fundo	0	0	0,00	100,03	Máx. 1%

Tabela 4.32: Distribuição granulométrica em 6 peneiras para a amostra 3 de microesfera de vidro tamanho #20/40.

Pelo mesmo motivo da semelhança entre as tabelas de distribuição de granulometrias é que optou-se por traçar a curva de granulometria apenas para a amostra 1 das microesferas #20/40. A partir do gráfico determinamos o coeficiente C pela equação 4.1. Assim, C<5. Portanto, os grãos de microesferas #20/40 são considerados uniformes.

Figura 4.25: Curva de granulometria das microesferas de vidro #20/40.

4.4.4.5 Esfericidade e Arredondamento

Conforme procedimento descrito no Capítulo 2, seção 2.6 para a caracterização da esfericidade e arredondamento, as microesferas de vidro #16/20 apresentou como avaliação para esfericidade e arredondamento os seguintes valores:

- Esfericidade → 0,9
- Arredondamento $\rightarrow 0,9$

As micrografias das microesferas de vidro #20/40 evidenciando suas características de esfericidade e arredondamento são mostradas nas figuras 4.26 e 4.27.

Figura 4.26 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #20/40 sob aumento de 20 vezes.

Figura 4.27 – Microscopia eletrônica de varredura (MEV) das microesferas de vidro tamanho #20/40 sob aumento de 50 vezes.

4.4.4.6 Teste de Resistência Crush

Conforme procedimento descrito no Capítulo 3, seção 3.5, foram separadas três amostras de microesferas de vidro #20/40. Essas amostras foram submetidas ao teste de resistência crush para determinar o valor da tensão a partir da qual este material sofre excessiva produção de finos. O início dos testes foi realizado a 4.000 psi, tensão abaixo da tensão mínima recomendada pela Norma.

Durante o ensaio de Crush, após a aplicação do nível de tensão de 4.000 psi, a quantidade de material foi medida. A quantidade média de finos gerada neste primeiro ensaio ficou em 2,72%, valor considerado bem abaixo daquele especificado pela Norma .

Um segundo teste foi realizado, desta vez utilizando o valor de tensão de 7.500 psi, determinado pela Norma API. Neste segundo teste as amostras também passam, ocorrendo em média, 7,5% de finos gerados. Quando a tensão de 10.000 psi é aplicada, observa-se que a média de finos gerada fica em torno de 10, 1%, praticamente no limite máximo imposto pela Norma.

Deste modo, pelo critério de resistência mecânica o material foi considerado aprovado até o limite máximo de tensão confinante de 10.000 psi.

A seguir é mostrado um quadro resumo dos resultados obtidos.

Critérios	Resultados
Distribuição Granulométrica	Não atende a Norma
Esfericidade / Arredondamento	Aprovado
Solubilidade em Ácido	Reprovado
Resistência Mecânica	Aprovado

Norma API RP - 56 - (#20/40)

Tabela 4.33: Quadro resumo com os resultados dos critérios avaliados nos testes segundo a as Normas API para as microesferas de vidro #20/40.

4.4.4.7 Teste de Condutividade

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de microesferas de vidro #20/40 o seguinte gráfico de condutividade do material.

Figura 4.28 – Curva de Condutividade das microesferas #20/40 de vidro sem resina.

```
OBSERVAÇÕES: (Lembrando)
```

(As amostras foram homogeneizadas antes de iniciar as avaliações.)

1) Norma API RP 56 - recomenda que o propante para **Fraturamento** deva ter esfericidade e arredondamento maior ou igual a 0,6.

2) Norma API RP 56 - A solubilidade em ácido da amostra para **Fraturamento** não deve exceder o valor de 2% para as faixas granulométricas de 6/12 até 30/50 mesh.

3) Norma API RP 56 – Não faz menção a amostras 8/12 e 16/20, porém utilizaram-se o critério para uma amostra #6/12 e #16/30. Para uma pressão de 2000 psi, a porcentagem máxima de finos admitidos é de 20% para amostras #6/12. Para uma pressão de 3000 psi a porcentagem máxima de finos admitidos é de 14%. Para pressão de 4000 psi a porcentagem máxima de finos admitidos é de 14% para uma amostra #20/40.

De posse desses resultados, podemos proceder a algumas análises:

- As amostras em que as esferas têm uma granulometria maior (amostra de tamanho #8/12 e #16/20) se mostraram aptas ao uso como propante em praticamente todos os testes. Apenas a amostra de tamanho de grão #16/20 mostrou-se reprovada na avaliação quanto a sua solubilidade em ácido. Este problema poderia ser resolvido resinando as microesferas. A cobertura com resina em sua superfície externa cria uma película protetora que resistiria ao ataque pelo ácido. Este procedimento já é feito normalmente para outros tipos de propantes, tal como a areia.

- As amostras de tamanho de grão (#16/30 e #20/40) mostraram-se reprovadas em dois itens analisados: distribuição granulométrica e solubilidade em ácido. Em relação a distribuição granulométrica este fato indicou que uma mudança na composição granulométrica das microesferas de vidro poderia certamente resolver a questão. E assim foi feito. A fábrica foi contactada e preparou uma amostra dentro dos padrões de distribuição granulométrica exigidos. Quanto à solubilidade em ácido o problema pode ser resolvido utilizando-se a mesma solução levantada anteriormente.

Desta forma, para resolver a questão do ataque ácido, foi feito contato com uma das empresas especializadas em cobertura com resina em propantes, a Mineração Jundu, localizada na cidade de Descalvado/SP. Esta se propôs a resinar as amostras de microesferas tamanho #20/40 e a fazer toda a série de testes exigida e que compõem a qualificação do material segundo as Normas para propantes vigentes. Os resultados destes testes são mostrados na tabela 4. 33.

	Microesferas de Vidro					
Parâmetros	Resina	Resina	Resina	Resina	Especifica-	
	0%	1%	4%	8%	ção 20/40	
					API 56	
#16	0,0	0,1	0,2	4,1	MÁX. 0,1	
#20	2,4	5,6	9,4	11,5		
#30	93,6	91,8	88,5	83	> 000 /	
#35	3,6	2,1	1,6	1,2	≥ 90 %	
#40	0,3	0,2	0,2	0,1		
#50	0,1	0,2	0,1	0,1		
Fundo	0,0	0,0	0,0	0,0	MÁX.	
					1,0%	
Densidade Real	2.51	2 40	2 / 2	2 24		
g/cm ³	2,31	2,49	2,43	2,34	-	
Densidade						
Aparente:	1,51	1,49	1,44	1,36	-	
-Solta	1,56	1,53	1,49	1,42	-	
-Compactada						
Esfericidade	0,9	0,9	0,9	0,8	≥ 0,6	
Arredondament	0,9	0,7	0,6	0,5	≥ 0,6	
0						
Solubilidade					API-56 ≤	
12:3 HCI:HF	6.45	5.04	4.1	3 75	2,0 %	
(%)	0,45	3,74	4,1	5,15	N1919 ≤	
					3,0 %	
Crush 4000 psi	0,2	0,1	0,2	0,3	14 %	

Tabela 4.34: Resultado dos testes de cobertura de micro esferas de vidro com resina fenólica uretânica modificada. (Fonte: Mineração Jundu LTDA)

Comentários:

- Como pode ser observado, o problema da distribuição granulométrica foi resolvido, atendendo ao exigido pela Norma API 56 de que mais de 90% da amostra esteja dentro da faixa granulométrica considerada, no caso, entre #20 e #40.

- Foi varrida uma ampla gama de cobertura para estudar o comportamento da microesfera perante diferentes teores de resina. Comprova-se que a solubilidade ao

ácido reduz-se com a resina. Todavia, o efeito é pequeno, mesmo com grande quantidade de resina, o que torna a relação custo/benefício muito alta. Isto ocorre devido à cobertura feita pela resina não estar apresentando um filme uniforme sobre a esfera de vidro, como se pode observar pelas imagens que seguem (Figuras 4.29 a 4.32)..

- Esta má distribuição da resina sobre a esfera é a causa da baixa resistência ao ataque ácido. A elevação da quantidade de resina tem pouco efeito.

- A razão para o fato de a resina não cobrir totalmente a superfície das microesferas é a sua baixíssima rugosidade. Se a resina cobrir completamente a superfície da microesfera a resposta ao ácido será melhor, atendendo à API.

Figura 4.29 – Microscopia óptica das microesferas de vidro tamanho #20/40 ainda sem a cobertura da resina.

Figura 4.30 – Microscopia óptica das microesferas de vidro tamanho #20/40 com cobertura de 1% de resina.

Figura 4.31 – Microscopia óptica das microesferas de vidro tamanho #20/40 com cobertura de 4% de resina.

Figura 4.32 – Microscopia óptica das microesferas de vidro tamanho #20/40 com cobertura de 8% de resina.

Como forma de aumentar a aderência entre a resina e a superfície das microesferas de vidro, uma tentativa de aumentar a rugosidade da superfície foi feita. A idéia é que a rugosidade atue como âncoras para a camada de resina.

Para criar a referida rugosidade, as esferas foram atacadas com a mesma mistura de ácidos com que é utilizada no reservatório e se faz o teste de solubilidade. A maior variável neste tipo de procedimento é o tempo de exposição ao ataque, visto que a concentração deste ácido já é ditada pela norma API correspondente ao teste de solubilidade em meio ácido.

Diversos tempos de exposição ao ácido foram testados. O tempo inicial de exposição foi de um minuto. Após cada exposição, a superfície das esferas era observada ao microscópio ótico para se verificar a rugosidade resultante. Começou-se em um minuto e foi aumentando para cinco, dez, vinte, meia hora, uma hora até chegar a 1 hora e meia ou noventa minutos. Esse tempo de exposição total de noventa minutos se mostrou satisfatório, criando uma quantidade de defeitos superficiais supostamente ideal para fizar a resina ao substrato. Isto seria comprovado após novo depósito do filme de resina sobre a superfície das microesferas e a nova seqüência de testes realizada, conforme mostra a tabela 4.34.

	Microesferas de Vidro				
Parâmetros	Resina	Resina	Especificação		
	0%	4%	20/40 API 56		
#16	0,0	0,0	MÁX. 0,1		
#20	0,0	2,4			
#30	85,1	95,7	> 000/		
#35	14,9	1,9	≥ 90%		
#40	0,0	0,0			
#50	0,0	0,0			
Fundo	0,0	0,0	MÁX. 1,0%		
Densidade Real	2.50	2 41			
g/cm ³	2,50	2,41	-		
Densidade					
Aparente:	1,38	1,35	-		
-Solta	1,48	1,46	-		
-Compactada					
Esfericidade	0,9	0,9	≥0,6		
Arredondamento	0,9	0,7	≥ 0,6		
Solubilidade 12:3			API-56 ≤ 2,0		
HCl:HF (%)	6 27	3,5	%		
	0,27		N1919 ≤ 3,0		
			%		
Crush 4000 psi	-	1,6	14 %		

Tabela 4.35: Resultado dos testes de cobertura de micro esferas de vidro com resina fenólica uretânica modificada 4%.

A análise da tabela 4.34 permite as seguintes conclusões:

- A cobertura com a resina foi realizada para até 4% do peso da amostra, visto que acima de 4% de resina, a cobertura se torna mais e mais deficiente, em termos de aderência, além de o custo aumentar muito.

- Outro efeito percebido é a questão do crush mais elevado. Em princípio, parece ser devido ao ataque para modificação da superfície. Mas, a rigor, o resultado de crush ainda está muito bom em relação ao limite da Norma API.

- A distribuição granulométrica encontra-se dentro dos parâmetros exigidos pela Norma API correspondente.

- A esfericidade e o arredondamento satisfazem perfeitamente a Norma API.

- Quanto à solubilidade em ácido observa-se que houve uma redução muito acentuada comparando-se com a amostra que não recebeu o tratamento com resina. Quando compara-se em relação a tabela 4.33, resinadas a 4%, nota-se que houve uma queda na solubilidade de aproximadamente 17%, mostrando que agora a resina sofreu uma maior aderência à superfície da esfera, como pode ser visto nas microscopias ópticas das figuras .4.33 e 4.34.

Figura 4.33 – Microscopia óptica das microesferas de vidro tamanho #20/40 em aspecto original, sem cobertura de resina.

Figura 4.34 – Microscopia óptica das microesferas de vidro tamanho #20/40 com cobertura de 4% de resina.

Porém essa redução na solubilidade ainda não é suficiente para atender à Norma API, mas atende a outras normas em vigor, tais como as Normas ISO e ABNT que brevemente entrarão em vigor em substituição as Normas API.

4.4.4.8 Teste de Condutividade Pós-Resinamento

Conforme procedimento descrito no Capítulo 3, seção 3.6, os testes produziram como resultado para a amostra de microesferas de vidro #20/40 resinadas o seguinte gráfico de condutividade do material.

Figura 4.35 – Curva de Condutividade das microesferas de vidro resinadas.

Analisando os dois gráficos das figuras 4.20 e 4.27 observa-se que as microesferas de vidro resinadas representam um ganho de cerca de 30% a mais em relação às não resinadas, evidenciando a importância do processo de resinagem das esferas.

Essas características aliadas à análise de flowback (estudada no capítulo 5) apontam as microesferas de vidro como um bom propante, de características próximas aos propantes cerâmicos de alta performance e propriedades superiores às areias utilizadas como propante.