
4
Option Pricing

This Chapter explains basically how should we price an option.

In a first Finance Mathematics course we are thaught the concept of

present value, which consists in discounting by a constant risk free interest

rate some value in the future so that we can find the price of it in the present.

It is correct if we think of loans and bank accounts with fixed interest

rates because we know the evolution of these values, so we can track it and

use it in a reverse way to find the present value, but not in general. For risky

assets we don’t know the evolution of the price so we cannot discount by a

proper rate.

On the other hand Probability Theory have some answers to solve that

problem. Under some assumptions, if we change properly the measure in which

we take expectations we can think of any discounted portfolio as a risk neutral

one in that measure. That’s why such measures are more usually called Risk

Neutral Measures than Equivalent Martingale Measures. The latter name is

because under that new equivalent measure, the discounted portfolio becomes

a martingale.

4.1
Pricing Formula in the Risk-Neutral Measure

For this section, we follow the chapter 5 in Shreve (41) for the background

and to show the Black-Scholes example.

LetDt = e−
∫ t

0 r(u)du be a discount factor process andXt be a self-financing

portfolio made of fixed interest investment and risky assets where the amount

invested into risky assets in time t is ∆t. It means that changes in the value

of the portfolio are due to changes in the price of the risk asset and changes

in the safe investment and not for putting more money into this portfolio.

Mathematically we ask that

dXt = ∆tdSt + rt(Xt − ∆tSt)dt

Note that according to the Itô product rule, asking for being self-financing

is very restrictive because we lose some terms in the equation above. Suppose
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also that the asset follows

dSt = αtStdt+ σtStdWt (4-1)

or as in example 25 of the use of Itô’s Lemma:

St = S0e
∫ t

0 σdW̃s+
∫ t

0(r− 1
2
σ2)ds (4-2)

By the Itô Lemma, we get first that

dDt = e−
∫ t

0 r(u)dur(t)dt = −Dtrtdt

Then

dXt = ∆tdSt + rt(Xt − ∆tSt)dt (4-3)

= ∆tαtStdt+ ∆tσtStdWt + rt(Xt − ∆tSt)dt (4-4)

= (∆tαtStdt+ rtXt − rt∆tSt)dt+ ∆tσtStdWt (4-5)

= (rtXt + (αt − rt)∆tSt)dt+ ∆tσtStdWt (4-6)

= rtXtdt+ σt∆tSt(θtdt+ dWt) (4-7)

= rtXtdt+ σt∆tStdW̃t. (4-8)

where W̃t is a Brownian Motion by Girsanov’s Theorem and θt = (αt−rt)
σt

.

Proposition 30 DtXt is a martingale under Q

Proof : We will proceed as Shreve (41). By the product rule (example 23 of

the use of Itô’s Lemma) we have

d(DtXt) = XtdDt +DtdXt + dDtdXt (4-9)

= Xt(−Dtrt)dt+DtdXt + 0 (4-10)

= −XtDtrtdt+Dt(rtXtdt+ σt∆tStdW̃t) (4-11)

= Dtσt∆tStdW̃t. (4-12)

The Girsanov’s Theorem garantee us that W̃t is a Brownian Motion and

so, as a stochastic integral with respect to a Brownian Motion is a martingale,

DtXt is a martingale. �

Let the value of some derivative VT be FT -measurable. We want to know

what is the initial money X0 and which process ∆t are required to be in a

portfolio so that an investor can hedge a position in this derivative, i.e., such

that

XT = VT
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If we can do that, given that DtXt is a martingale under Q we have

DtXt = EQ[DTXT |Ft] = EQ[DTVT |Ft]

Then, DtXt is the amount required in t to make the hedge of this

derivative with payoff VT . We can then say that the price of the derivative

in t is Vt where

DtVt = EQ[DTVT |Ft] 0 ≤ t ≤ T (4-13)

or

Vt = EQ[e−
∫ T

t
r(u)duVT |Ft] 0 ≤ t ≤ T (4-14)

�

4.2
Black-Scholes-Merton Formula

The most famous finance formula is the Black-Scholes formula. It is easy

to find in many books the proof that consists in deriving the Black-Scholes

PDE and then turning it in a heat equation problem. Here we present it under

the risk-neutral framework as in Shreve (41).

The Black-Scholes-Merton Model supposes that the interest rate and the

volatility are fixed. For an European Call option, we have the payoff

VT = (ST −K)+ (4-15)

Using the pricing formula just discussed we need to calculate

Vt = EQ[e−r(T−t)(ST −K)+|Ft] (4-16)

Let’s think of the formula above as a function of t and St:

C(t, St) = EQ[e−r(T−t)(ST −K)+|Ft] (4-17)

The equation

St = S0e
∫ t

0 σdW̃s+
∫ t

0(r− 1
2
σ2)ds (4-18)
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can be written as

ST = Ste
∫ T

t
σdW̃s+

∫ T

t (r− 1
2
σ2)ds (4-19)

= Ste
σ(W̃T−W̃t)+(r− 1

2
σ2)τ (4-20)

where τ = T − t. If we further define Y = −W̃T−W̃t√
T−t

we can write

ST = Ste
−σ

√
τY +(r− 1

2
σ2)τ (4-21)

Then, as St is Ft-measurable and e−σ
√

τY +(r− 1
2
σ2)τ is independent of Ft :

C(t, x) = EQ[e−rτ (ST −K)+] (4-22)

=
1√
2π

∫ ∞

−∞
e−rτ (xe−σ

√
τY +(r− 1

2
σ2)τ −K)+e−

1
2
y2

dy (4-23)

Now, note that (xe−σ
√

τY +(r− 1
2
σ2)τ −K)+ is positive if and only if

y < d− ≡ 1

σ
√
τ

[
ln
( x
K

)
+

(
r − 1

2
σ2

)
τ

]
(4-24)

Indeed,

e−σ
√

τy+(r− 1
2
σ2)τ > K/x ⇐⇒ e−σ

√
τy > (K/x)e−(r− 1

2
σ2)τ

⇐⇒ −σ
√
τy > ln(K/x) −

(
r − 1

2
σ2

)
τ

∗(−1)⇐⇒ y <
1

σ
√
τ

[
ln
( x
K

)
+

(
r − 1

2
σ2

)
τ

]

We don’t have to consider the integral when it is zero. This leads us to:

C(t, x) =
1√
2π

∫ d−

−∞
e−rτ (xe−σ

√
τy+(r− 1

2
σ2)τ −K)e−

1
2
y2

dy

=
1√
2π

∫ d−

−∞
xe−

1
2
y2−σ

√
τy+(− 1

2
σ2)τdy −

∫ d−

−∞
e−rτKe−

1
2
y2

dy

=
1√
2π

∫ d−

−∞
xe−

(y+σ
√

τ)2

2 dy − Φ(d−)e−rτK

z=y+σ
√

τ
= x

1√
2π

∫ d−+σ
√

τ

−∞
e−

(z)2

2 dz − Φ(d−)e−rτK

= xΦ(d+) − Φ(d−)e−rτK
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where

d+ = d− + σ
√
τ

=
1

σ
√
τ

[
ln
( x
K

)
+

(
r − 1

2
σ2

)
τ

]
+ σ

√
τ

=
ln
(

x
K

)
+
(
r − 1

2
σ2
)
τ + σ2τ

σ
√
τ

=
ln
(

x
K

)
+
(
r + 1

2
σ2
)
τ

σ
√
τ

�

4.3
Put-Call Parity

Now, we will see that who can solve the problem of pricing the European

Call option, can also find the price of an Europena Put Option.

Build a portfolio made of:

• Buy a stock.

• Buy a put option with this stock bought as the underlying.

• Sell a call option also based in the stock bought.

Then, if we call this portfolio Π, we can write:

Πt = St + Pt − Ct.

But then at time T we will have:

payoffT (Π) = ST + (K − ST )+ − (ST −K)+

=

{
ST +K − ST , if ST ≤ K

ST − (ST −K) , if ST > K

= K.

This portfolio always gives a return K, the exercise price. Then, because

it is a deterministic portfolio, we can think of its present value being that of

K discounted:

Πt = Ke−r(T−t)
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Then we have:

Ke−r(T−t) = St + Pt − Ct ⇒ Pt = Ke−r(T−t) + Ct − St.

�

4.4
Incomplete Markets

Here we are going to show two well known techniques for pricing in

incomplete markets, viz. the Davis method and the Esscher method.

When we can not find a hedge for some asset in the economy we say

that the market is incomplete and then it is known that there are infinite

equivalent martingale measures. The risk neutral way of pricing do not involve

requirements concerning the risk preferences of the investors, but in order to

justify the choice of one particular risk neutral measure among many, we will

have to think about a reasonable way to select it.

Besides the two methodologies that we are going to discuss briefly here,

there are other approaches to hedging and pricing in incomplete markets, such

as the quadratic hedging approach. They are mainly interested in minimizing

risk, Maximizing expected utility or minimize loss. For a comprehensible

reading see Bingham and Kiesel (2004)(5).

4.4.1
Davis Method

We start by the method of Davis. Let Φa be the set of all self-financing

strategies (i.e. in which you can not inject money in the portfolio. For details

see (21)and (26)) and write

Ũ(x) = sup
ϕ∈Φa

E[U(Vϕ,x(T ))]

for the maximum expected utility of an investor and suppose p is the price of

the asset X.

Let

W (δ, x, p) = sup
ϕ∈Φa

E[U(Vϕ,x−δ(T ) +
δ

p
X)]

be a disturb created for being able to sense the effect of changing the strategy.

If the maximum utility does not get affected by this “tilt”, p̂ is the fair price

for the option.

Under some conditions, p̂ is the unique solution of
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∂W

∂δ
W (0, p, x) = 0

which is the fair price of the option in t = 0. Furthermore, this value is

given by:

p̂ =
E[U ′(Vϕ∗,x(T ))X]

Ũ ′(x)

For more details see Davis(1994)(13) and Bingham and Kiesel(2004) (5).

4.4.2
Esscher Method

Now let’s see the Esscher method. Let St = S0e
Xt be the model for the

asset prices where Xt has independent and stationary increments. Assume that

M(h, t) = M(h, 1)t = E[ehXt ] (4-25)

Then, having that in mind, let’s define

Λt =
ehXt

E[ehXt ]
= ehXtM(h, 1)−t =

Sh
t

E[Sh
t ]

; t ≥ 0 (4-26)

that is a positive martingale and will be used for the change of measure.

Now, by the Baye’s rule,

Eh[Ψ(Y )] = E[Ψ(Y );h] =
E[Ψ(Y )ehY ]

E[ehY ]
(4-27)

= E[ΛtΨ(Y )] (4-28)

where Y is a random variable and Ψ is a measurable function. For

example Ψ(Y ) could be the logreturn eXt .

We will call Q the Esscher measure of parameter h = h∗ if {e−rtSt}t≥0 is

a martingale.

By the condition on the asset prices we have the following equivalences:
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E[e−rtSt, h
∗] = S0 ⇐⇒ E

[
St

S0

, h∗
]

= ert (4-29)

⇐⇒ E[eXt , h∗] = ert (4-30)

⇐⇒ E

[
eXt

eh∗Xt

M(h∗, 1)t

]
= ert (4-31)

⇐⇒ E[eXt(h∗+1)]

M(h∗, 1)t
= ert (4-32)

⇐⇒ M(h∗ + 1, 1)t

M(h∗, 1)t
= ert (4-33)

⇐⇒
[
M(h∗ + 1, 1)

M(h∗, 1)

]t

= ert (4-34)

⇐⇒ M(h∗ + 1, 1)

M(h∗, 1)
= er (4-35)

(4-36)

The equation

M(h∗ + 1, 1)

M(h∗, 1)
= er (4-37)

determines the parameter h∗ uniquely. We will be interested in this

parameter for finding the risk neutral measure to be used in the option pricing.

There is a useful result that we should show here. It is known as the

factorization formula:

Theorem 31 Let g be a measurable function and h, k and t be real values

with t ≥ 0, then

E[Sk
t g(St);h] = E[Sk

t ;h]E[g(St); k + h]. (4-38)

Proof :

E[Sk
t g(St);h] = E[Sk

t g(St)e
hXtM(h, 1)−t] (4-39)

= E

[
Sk

t g(St)
Sh

t

E[Sh
t ]

]
(4-40)

=
E[Sk+h

t ]E[Sk+h
t g(St)]

E[Sh
t ]E[Sk+h

t ]
(4-41)

= E[Sk
t ;h]E[g(St); k + h] (4-42)
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�

For more details see Gerber and Shiu (1994)(31) and Bingham and

Kiesel(2004)(5). Some of the points discussed above will be revisited in the

conditional Esscher Transform section.

4.5
Duan’s breakthrough

In 1995, Duan developped a method for pricing options under GARCH

processes. Although there are economic restrictions and is valid only for

normal noises, it was a milestone in Finance. He also developped some papers

concerning the relationship between the diffusions and the econometric models

and their risk neutral versions. This discussion doesn’t help us in this thesis

and it can be found in Duan(1997)(18). Here we show the main results from

the paper published in 1995 (17).

Consider the model:

ln
Xt

Xt−1

= r + λ
√
ht −

1

2
ht + ξt

where

ξt|φt−1 ∼ N(0, ht) under mesure P

ht = α0 +

q∑

i=1

αiξ
2
t−i +

p∑

j=1

βjht−j

Basically the paper raises the question: What would the risk-neutral

GARCH be?

For answering this question, he defines the concept of Local Risk Neutral

Valuation Relationship hereafter LRNVR, as below:

A measure Q satisfies the LRNVR if:

1 Q is mutually absolutely continuous with respect to measure

P.(Equivalents)

2 Xt

Xt−1
is lognormally distributed (under Q)

3 EQ[ Xt

Xt−1
|φt−1] = er

4 V arQ(ln Xt

Xt−1
|φt−1) = V arP(ln Xt

Xt−1
|φt−1) a.s.

Having in mind this concept we can state the main Theorem of the paper:

Theorem 32 Supposing the LRNVR, under Q we have:

ln
Xt

Xt−1

= r − 1

2
ht + ǫt
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where:

ǫt|φt−1 ∼ N(0, ht)

ht = α0 +

q∑

i=1

αi(ǫt−i − λ
√
ht−i)

2 +

p∑

j=1

βjht−j

Proof : It follows exactly as in Duan (17). Since Xt

Xt−1
|φt−1 lognormally dis-

tributed under measure Q, it can be written as:

ln
Xt

Xt−1

= vt + ǫt,

where vt is the conditional mean and ǫt is a Q-normal random variable. The

conditional mean of ǫt is zero and its conditional variance is to be determined.

The proof is in two parts.

First we prove that vt = r − ht

2
. Indeed,

EQ

[
Xt

Xt−1

|φt−1

]
= EQ[evt+ǫt|φt−1] = evt+

ht
2

where ht = V arP[ Xt

Xt−1
|φt−1] = V arQ[ Xt

Xt−1
|φt−1] by the LRNVR.

Since EQ[ Xt

Xt−1
|φt−1] = er also by the LRNVR, it follows that vt = r− ht

2
.

Now we prove the second part. It remains to prove that ht can indeed

be expressed as stated in the Theorem. By the preceding result and the model

under P:

ln
Xt

Xt−1

= r + λ
√
ht −

ht

2
+ ξt, (4-43)

we have, comparing the logs:

r + λ
√
ht −

ht

2
+ ξt = r − ht

2
+ ǫt. (4-44)

so that ξt = ǫt − λ
√
ht. Substituting ǫt into the conditional variance

equation yields the desired result:

ht = α0 +

q∑

i=1

αi(ǫt−i − λ
√
ht−i)

2 +

p∑

j=1

βjht−j

�

The result just proved can be found as a particular case of the method

described in the next section. This verification can be found in section 3.1
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in the paper by Siu et al. (2004)(43). The method below doesn’t require the

noises to be normal, they just have to have a moment generation function.
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