
  

 

4 
Descrição das Alterações para Aceleração do SIESTA por 
GPU 

Inicialmente avaliou-se a possibilidade de trabalhar com os principais 

algoritmos de código fonte aberto empregados na química quântica. Entre eles 

esta o MPQC (Massively Parallel Quantum Chemistry Program), que emprega 

métodos tais como o Hartree-Fock e a Teoria do Funcional da Densidade 

(Janssen, Nielsen, et al., 2010). Outro pacote considerado foi o Quantum 

ESPRESSO (opEn-Source Package for Research in Electronic Structure, 

Simulation, and Optimization), que possui cálculos de estrutura eletrônica 

realizados com a Teoria do Funcional da Densidade, empregando ondas planas e 

pseudopotenciais (DEMOCRITOS, 2009). O YAeHMOP (Yet Another extended 

Huckel Molecular Orbital Package), que é um método tight-binding usado para 

obter uma rápida descrição qualitativa (Landrum e Glassey, 2001). O escolhido 

para utilização no trabalho foi o SIESTA (Spanish Initiative for Electronic 

Simulations with Thousands of Atoms), o qual usa DFT, pseudopotenciais, orbitais 

atômicos numéricos e funções de base localizada para aumentar a sua eficiência 

(Soler, Artacho, et al., 2002). Este programa empregado na química quântica 

possui 281 arquivos, totalizando 142023 linhas de código fonte em Fortran. 

Devido a sua complexidade, apenas partes com maior custo computacional serão 

portadas para execução em GPU. 

Conforme o descrito no item 2.7, o SIESTA possui uma maneira particular 

de representar os termos da energia total. Uma densidade atômica é definida para 

reescrever os termos do pseudopotencial local e do potencial de Hartree. Isto é 

feito com o objetivo de eliminar os termos de longo alcance, aumentando assim a 

eficiência computacional. As funções de bases atômicas localizadas, usadas no 

SIESTA foram escolhidas para viabilizar o desenvolvimento de um método ab 

initio DFT autoconsistente de ordem N. Pois, o emprego de ondas planas como 

funções de base impossibilitaria a determinação do hamiltoniano autoconsistente 
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em O(N) operações. Por outro lado, funções tais como a Transformada de Fourier 

ainda necessitam de ordem N log(N) (Soler, Artacho, et al., 2002). 

Neste Capítulo, as partes do código SIESTA com potencial para execução 

em GPU são listadas e são apresentadas algumas alterações realizadas para testes 

e comprovação de desempenho. 

 

4.1. 
Identificação das Partes Adequadas ao Paralelismo de Dados 

O termo da eq. (2.42), visto no Capitulo 2, relacionado às contribuições para 

a energia total da parte não-local do pseudopotencial e o termo de cálculo da 

energia cinética dos elétrons, são operações repetitivas sobre dados diferentes e 

poderiam ser estudados para execução acelerada por GPU. Uma matriz de 

densidade é usada para as demais integrais da eq. (2.42), como a energia de troca 

e correlação, o potencial e a energia de Hartree e a parte local do pseudopotencial 

do hamiltoniano do SIESTA. 

Inicialmente foi estuda a melhor forma de se reescrever em CUDA, os 

termos referentes ao cálculo do potencial de Hartree e da energia de Hartree, com 

a resolução da Equação de Poisson na GPU, e a contribuição para as forças de 

deslocamento atômicas, devidas ao potencial de Hartree. 

A próxima etapa será o estudo do termo da energia de troca e correlação e a 

parte local do pseudopotencial do hamiltoniano do SIESTA. Isto permitiria 

trabalhar a matriz de densidade na memória da GPU. Somente seriam necessárias 

transferências de memória para os parâmetros de inicialização e os resultados das 

integrais. É importante reduzir as transferências de memória entre CPU e GPU 

devido à latência da interface PCI Express. 

 

4.1.1. 
CUFFT 

A biblioteca CUFFT (CUDA Fast Fourier Transform) possui funções para a 

realização de Transformadas de Fourier, no sentido direto ou no sentido inverso, 

sobre matrizes de dados reais ou complexas com uma, duas ou três dimensões 

(NVIDIA, 2007b). Para emprego no SIESTA, são adequadas as funções 

apresentadas na Tabela 2. 
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Tabela 2 – Funções da Biblioteca CUFFT adequadas para emprego no SIESTA. 
1 cufftExecR2C Transformada de Fourier no sentido direto para matrizes tridimensionais. 
2 cufftExecC2R Transformada Inversa de Fourier para matrizes tridimensionais. 

 

4.1.2. 
CUBLAS 

A biblioteca CUBLAS é uma implementação das funções básicas de álgebra 

linear BLAS (Basic Linear Algebra Subprograms) para execução paralela, em 

GPUs, usando CUDA (NVIDIA, 2007a). A Tabela 3 lista e descreve brevemente 

algumas das funções CUBLAS que poderiam substituir funções de álgebra linear 

no código SIESTA. 

 

Tabela 3 – Funções da Biblioteca CUBLAS com possibilidade de emprego para o SIESTA. 

1 cublasDgemm 
calcula o produto de duas matrizes A e B, multiplicando o resultado por um 
escalar alpha. A seguir soma com o produto de uma matriz C por um escalar 
beta. 

2 cublasIsamax 
encontra o máximo de um vetor. Se o máximo não for um ponto único, o 
ponto retornado é o que possui o menor índice. 

3 cublasSasum calcula a soma dos valores absolutos de um vetor. 
4 cublasSaxpy multiplica um vetor por um escalar. 
5 cublasScopy copia os elementos de um vetor x  para um vetor y. 
6 cublasSdot calcula o produto escalar de dois vetores. 
7 cublasSscal multiplica um vetor x por um escalar alpha. 

8 cublasCaxpy 
multiplica um vetor de números complexos x por um escalar alpha e em 
seguida adiciona um segundo vetor de números complexos y. 

9 cublasCscal multiplica um vetor de números complexos x por um escalar alpha. 

10 cublasCswap 
troca os elementos de um vetor de números complexos x, com os elementos 
de outro vetor de números complexos y. 

 

4.1.3. 
MAGMA 

A biblioteca de álgebra linear MAGMA (Matrix Algebra on GPU and 

Multicore Architectures) foi projetada para ser similar ao LAPACK (Linear 

Algebra PACKage) em nível de funções suportadas (Tomov, Nath, et al., 2009). 

Algumas das suas funções, listadas na Tabela 4, apresentam compatibilidade com 

funções empregadas no SIESTA. 

Tabela 4 – Funções da Biblioteca MAGMA com possibilidade de emprego para o SIESTA. 
1 magma_dpotrf_gpu calcula a fatoração de Cholesky de uma matriz real simétrica positiva. 

2 magma_zpotrf_gpu 
calcula a fatoração de Cholesky de uma matriz Hermitiana complexa 
positiva. 

3 magmablas_dtrsm 

resolve equações matriciais em GPU, com matrizes X e B, m por n, 
triangulares superior ou inferior e sendo possível aplicar o operador de 
transposição à matriz A. ����� ∗ � = 	
�ℎ	 ∗ � � ∗ ����� = 	
�ℎ	 ∗ � 
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A biblioteca MAGMA

meio científico, tais como 

lineares baseados nas decomposições LU, QR e 

2009). 

 

4.1.4. 
CULA 

Outra biblioteca de álgebra linear, acelerada por GPUs,

meio científico é a CULA (EM Photonics, 2010)

disponibilizadas, para números reais e para números complexos,

Tabela 5. 

 

Tabela 5 – Funções da Biblioteca CULA
1 SGESV e CGESV resolve um sistema geral de equações 
2 SGETRF e CGETRF calcula a fatoração LU de uma matriz geral.
3 SGEQRF e CGEQRF calcula a fatoração QR de uma matriz retangular geral.
4 SGELS e CGELS resolve um sistema de equações lineares por mínimos quadrados.
5 SGGLSE e CGGLSE resolve um sistema linear com restrições por mínimos quadrados.

6 SGESVD e CGESVD 
calcula a decomposição em valor singular de uma matriz retangular 
geral.

 

As funções de resolução de sistemas lineares das bibliotecas 

CULA poderiam ser empregadas para 

complexas, usadas no código 

 

4.2. 
Alteração de Partes do SIESTA

A última versão estável do código fonte do SIESTA, originalmente 

em Fortran, foi utilizado como 

código para GPU. O paralelismo de dados da

linguagem CUDA, e a linguagem C é usada como uma interface entre Fortran e 

CUDA, conforme o ilustrado na 

Linux CentOS 5.5. 

Figura 25 – Interface entre 
 

para Aceleração do SIESTA por GPU                                     

A biblioteca MAGMA também possui outras funções de grande utili

 um conjunto de funções CUDA para resolver sistemas 

lineares baseados nas decomposições LU, QR e Cholesky (Tomov, Nath, 

de álgebra linear, acelerada por GPUs, com aplicação no 

(EM Photonics, 2010). Algumas das principais funções 

, para números reais e para números complexos, são listadas na 

Funções da Biblioteca CULA utilizadas no meio científico. 
resolve um sistema geral de equações lineares AX=B. 
calcula a fatoração LU de uma matriz geral. 
calcula a fatoração QR de uma matriz retangular geral. 
resolve um sistema de equações lineares por mínimos quadrados.
resolve um sistema linear com restrições por mínimos quadrados.
calcula a decomposição em valor singular de uma matriz retangular 
geral. 

As funções de resolução de sistemas lineares das bibliotecas MAGMA 

CULA poderiam ser empregadas para calcular a inversa de matrizes reais ou 

complexas, usadas no código SIESTA. 

Alteração de Partes do SIESTA 

A última versão estável do código fonte do SIESTA, originalmente 

em Fortran, foi utilizado como ponto de partida para estudar e alterar 

O paralelismo de dados das GPUs é acessado através da 

, e a linguagem C é usada como uma interface entre Fortran e 

, conforme o ilustrado na Figura 25. O sistema operacional utilizado foi o 

 
Interface entre Fortran e CUDA. 
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também possui outras funções de grande utilidade no 

um conjunto de funções CUDA para resolver sistemas 

(Tomov, Nath, et al., 

com aplicação no 

. Algumas das principais funções 

listadas na 

resolve um sistema de equações lineares por mínimos quadrados. 
resolve um sistema linear com restrições por mínimos quadrados. 
calcula a decomposição em valor singular de uma matriz retangular 

MAGMA e 

a inversa de matrizes reais ou 

A última versão estável do código fonte do SIESTA, originalmente escrito 

e alterar trechos de 

GPUs é acessado através da 

, e a linguagem C é usada como uma interface entre Fortran e 

O sistema operacional utilizado foi o 
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4.2.1. 
Potencial de Hartree, Energia 
Atômicas 

Inicialmente, o termo referente

reescrito usando a linguagem CUDA, empregando a resolução da Equação de 

Poisson na GPU. O quarto termo do lado direito da eq. 

Hartree, 
�����, é produzido

consistente 
����. A solução 

implementada no SIESTA permite

com a variação da densidade

A Equação de Poisson

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação 

é freqüentemente escrita como:

Considerando o sistema de coordenadas cartesianas por simplicidade, esta 

equação pode ser reescrita como:

� ��
��� � ��

Para problemas que envolvem 

Transformada de Fourier

equações algébricas, as quais são resolvidas com 

Em seguida a transformada inversa é utilizada para trazer a solução novamente 

para o espaço real. A Figura 

de equações diferencias. 

Figura 26 – As equações diferenciais são transformadas em equações algébricas
 

A energia de Hartree

atômicas, devido ao potencial de Hartree, estão

código da Equação de Poisson

elemento da matriz de densidades 

para Aceleração do SIESTA por GPU                                     

Energia de Hartree e Forças de Deslocamento 

Inicialmente, o termo referente ao cálculo do potencial de Hartre

usando a linguagem CUDA, empregando a resolução da Equação de 

O quarto termo do lado direito da eq. (2.42), potencial de 

é produzido pela diferença das densidades atômica

. A solução da equação de Poisson na forma original 

implementada no SIESTA permite encontrar o potencial de Hartree 

com a variação da densidade. 

Equação de Poisson é uma equação diferencial parcial muito utilizada na 

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação 

como: 

��φ = f 
Considerando o sistema de coordenadas cartesianas por simplicidade, esta 

equação pode ser reescrita como: 

��
��� � ��

����φ�x, y, z� = f�x, y, z� 
Para problemas que envolvem condições periódicas de contorno

Transformada de Fourier permite transformar as equações diferenciais em 

, as quais são resolvidas com operações algébricas normais

Em seguida a transformada inversa é utilizada para trazer a solução novamente 

Figura 26 ilustra o emprego deste processo para a resolução 

As equações diferenciais são transformadas em equações algébricas

energia de Hartree e a contribuição para as forças de deslocamento 

atômicas, devido ao potencial de Hartree, estão combinadas na mesma seção do 

Equação de Poisson e também são computadas em GPU.

elemento da matriz de densidades 
���� contribui individualmente para a 
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slocamento 

ao cálculo do potencial de Hartree foi 

usando a linguagem CUDA, empregando a resolução da Equação de 

potencial de 

as densidades atômicas e auto-

na forma original 

 associado 

é uma equação diferencial parcial muito utilizada na 

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação 

(4.1) 

Considerando o sistema de coordenadas cartesianas por simplicidade, esta 

(4.2) 

condições periódicas de contorno, o uso da 

equações diferenciais em 

operações algébricas normais. 

Em seguida a transformada inversa é utilizada para trazer a solução novamente 

ilustra o emprego deste processo para a resolução 

 
As equações diferenciais são transformadas em equações algébricas. 

e a contribuição para as forças de deslocamento 

na mesma seção do 

em GPU. Cada 

contribui individualmente para a energia 
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de Hartree e para as forças de deslocamento atômicas. Assim, o cálculo da 

de Hartree e das forças de deslocamento atômicas em GPU envolve, para cada 

variável calculada, somatório

O somatório paralelo realizado na memória compartilhada de uma GPU 

consiste na redução do vetor de dados pela metade em cada operação dos 

elementos do hardware paralelo. A 

paralelo em GPU para um único veto de dados

Figura 27 – Somatório paralelo realizado na memória compartilhada da GPU
um único vetor de dados. 

 

4.2.2. 
Implementação Paralela para GPUs

A Equação de Poisson

periódicas de contorno e é resolvida no domínio da freqüência. Inicialmente são 

encontrados os componentes da Transformada de Fourier da densidade eletrônica 

 
����. A solução é realizada no 

contribuição de cada elemento da matriz de densidades produz a 

Hartree e as forças de deslocamento atômicas.

em seguida transformado para

A Transformada de Fourier

o algoritmo GPFA (Generalized Prime Factor FFT

(1992). Este algoritmo era originalmente empregado

densidades 
���� do espaço real para o domínio da freqüência e para transformar 

para Aceleração do SIESTA por GPU                                     

e para as forças de deslocamento atômicas. Assim, o cálculo da 

e das forças de deslocamento atômicas em GPU envolve, para cada 

variável calculada, somatórios sobre todos os elementos da matriz de densidades.

paralelo realizado na memória compartilhada de uma GPU 

consiste na redução do vetor de dados pela metade em cada operação dos 

elementos do hardware paralelo. A Figura 27 ilustra a realização de um somatório 

para um único veto de dados. 

 
Somatório paralelo realizado na memória compartilhada da GPU

Implementação Paralela para GPUs 

Equação de Poisson usada no SIESTA está baseada em condições 

é resolvida no domínio da freqüência. Inicialmente são 

encontrados os componentes da Transformada de Fourier da densidade eletrônica 

. A solução é realizada no domínio da freqüência e um somatório 

contribuição de cada elemento da matriz de densidades produz a energia de 

e as forças de deslocamento atômicas. O potencial de Hartree, 

em seguida transformado para o espaço real conforme o ilustrado na Figura 

Transformada de Fourier originalmente empregada no código SIESTA 

Generalized Prime Factor FFT) desenvolvido por Temperton 

. Este algoritmo era originalmente empregado para transformar a matriz de 

do espaço real para o domínio da freqüência e para transformar 
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e para as forças de deslocamento atômicas. Assim, o cálculo da energia 

e das forças de deslocamento atômicas em GPU envolve, para cada 

a matriz de densidades. 

paralelo realizado na memória compartilhada de uma GPU 

consiste na redução do vetor de dados pela metade em cada operação dos 

ilustra a realização de um somatório 

 
Somatório paralelo realizado na memória compartilhada da GPU para 

está baseada em condições 

é resolvida no domínio da freqüência. Inicialmente são 

encontrados os componentes da Transformada de Fourier da densidade eletrônica 

e um somatório da 

energia de 

, 
�����, é 

Figura 28. 

no código SIESTA é 

desenvolvido por Temperton 

para transformar a matriz de 

do espaço real para o domínio da freqüência e para transformar 
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o potencial de Hartree, 
�
espaço real. 

Na Equação de Poisson

GPFA pelo algoritmo CUFFT

NVIDIA (2007b). Assim, a Transformada de Fourier da matriz de densidades 


���� e a Transformada Inversa de Fourier do potencial de 

realizadas na placa gráfica.

de Fourier poderiam contribuir p

código SIESTA, tal como o algoritmo proposto por

Para o cálculo do potencial de Hartre

escrito um kernel baseado 

etapa consistiu na tradução do algoritmo da linguagem Fortran para a linguagem 

C. Em seguida estudou-se a melhor forma de tirar proveito do paralelismo de 

dados oferecido pela GPU. As funções de transfer

GPU foram introduzidas e os laços originais foram substituídos pelo par

de hardware da GPU. Foram realizados testes para avaliar os efeitos das 

otimizações de acesso à memória global, de acesso à memória compartilhada e d

transferência através do barramento 

3, nos itens 3.5.1, 3.5.2 e 3.5.3

Figura 28 – Solução no domínio da freqüência
 

A CPU tem uma unidade de instruç

a utilização de 240 thread

poderia ser adequada. 

Nas GPUs o paradigma é diferente, pois a GPU possui 

unidade de instruções para cada 8 elementos de processamento

multiprocessador), o tempo necessário

aplicá-la sobre 4 threads 

instrução carregada na unidade de instruções 

para Aceleração do SIESTA por GPU                                     


�����, calculado no domínio da freqüência, para o 

Equação de Poisson para execução em GPU foi substituído o algoritmo 

CUFFT (CUDA Fast Fourier Transform) desenvolvido pela 

Assim, a Transformada de Fourier da matriz de densidades 

e a Transformada Inversa de Fourier do potencial de Hartree, 
�
realizadas na placa gráfica. Algoritmos GPU mais eficientes para a Transformada 

de Fourier poderiam contribuir para aumentar o desempenho desta etapa do 

, tal como o algoritmo proposto por Nukada, Ogata, et al.

Para o cálculo do potencial de Hartree, 
�����, propriamente dito, foi 

 na função seqüencial original do SIESTA. A primeira 

a tradução do algoritmo da linguagem Fortran para a linguagem 

se a melhor forma de tirar proveito do paralelismo de 

dados oferecido pela GPU. As funções de transferência de dados entre CPU e 

GPU foram introduzidas e os laços originais foram substituídos pelo par

de hardware da GPU. Foram realizados testes para avaliar os efeitos das 

otimizações de acesso à memória global, de acesso à memória compartilhada e d

transferência através do barramento PCI Express, conforme o descrito no Capítulo

3.5.3, respectivamente. 

lução no domínio da freqüência. 

A CPU tem uma unidade de instruções para cada núcleo de processamento e

threads num cluster com 240 núcleos de processamento 

Nas GPUs o paradigma é diferente, pois a GPU possui somente 

unidade de instruções para cada 8 elementos de processamento

o tempo necessário para mudar de instrução é suficiente para 

 de cada elemento de processamento. Ou seja, 

instrução carregada na unidade de instruções pode ser aplicada em 32 thread
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alculado no domínio da freqüência, para o 

o algoritmo 

desenvolvido pela 

Assim, a Transformada de Fourier da matriz de densidades 


�����, são 

Algoritmos GPU mais eficientes para a Transformada 

ara aumentar o desempenho desta etapa do 

et al. (2008). 

, propriamente dito, foi 

na função seqüencial original do SIESTA. A primeira 

a tradução do algoritmo da linguagem Fortran para a linguagem 

se a melhor forma de tirar proveito do paralelismo de 

ência de dados entre CPU e 

GPU foram introduzidas e os laços originais foram substituídos pelo paralelismo 

de hardware da GPU. Foram realizados testes para avaliar os efeitos das 

otimizações de acesso à memória global, de acesso à memória compartilhada e de 

, conforme o descrito no Capítulo 

 

núcleo de processamento e 

com 240 núcleos de processamento 

somente uma 

unidade de instruções para cada 8 elementos de processamento (um 

strução é suficiente para 

Ou seja, cada 

threads, um 
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warp, executando em 8 elementos de processamento.

foram ser projetadas para serem

Além disso, existem os tempos de latência no acesso à memória global

memória compartilhada e aos registradores

a possibilidade de executar instruções em outros

instrução com grande latência. Assim

dado ser lido ou escrito nas memórias

mínimo de 192 threads por bloco para que o multiprocessador possa ter sempre 

instruções disponíveis, reduzindo

2009b). Desta forma, um número mínimo de

192 threads / bloco x 30 

desempenho será obtido se o problema for pensado de forma 

número maior de threads na GPU.

Na primeira versão do 

SIESTA na GPU foi atribuída uma 

densidades 
���� (Figura 29

registradores e 3616 bytes 

Multiprocessador é de 75 %, conforme pode ser observado na 

 

Figura 29 – Uma thread para cada elemento da matriz de densidades
 

para Aceleração do SIESTA por GPU                                     

o em 8 elementos de processamento. Assim, as threads

ser projetadas para serem muito leves. 

Além disso, existem os tempos de latência no acesso à memória global

e aos registradores. Com 32 threads por bloco 

a possibilidade de executar instruções em outros warps, quando ocorre uma 

instrução com grande latência. Assim, o multiprocessador fica ocioso esperando o 

ser lido ou escrito nas memórias. Por isso, a NVIDIA recomenda manter um 

por bloco para que o multiprocessador possa ter sempre 

, reduzindo o tempo ocioso do multiprocessador 

. Desta forma, um número mínimo de threads deveria ficar em torno de 

 multiprocessadores = 5760 threads. Contudo, melhor 

desempenho será obtido se o problema for pensado de forma a dividi-

na GPU. 

Na primeira versão do kernel para a resolução da Equação de Poisson

foi atribuída uma thread para cada elemento da matriz de 

29). Neste caso, cada bloco com 256 threads

 de memória compartilhada. O Nível de Ocupação do 

é de 75 %, conforme pode ser observado na Figura 30

para cada elemento da matriz de densidades. 
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threads de GPUs 

Além disso, existem os tempos de latência no acesso à memória global, à 

 não existe 

, quando ocorre uma 

o multiprocessador fica ocioso esperando o 

ecomenda manter um 

por bloco para que o multiprocessador possa ter sempre 

 (NVIDIA, 

deveria ficar em torno de 

. Contudo, melhor 

-lo por um 

Equação de Poisson do 

para cada elemento da matriz de 

threads utiliza 18 

Nível de Ocupação do 

30. 
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Figura 30 – Nível de Ocupação do Multiprocessador
kernel da Equação de Poisson

 

Foi desenvolvida uma segunda versão d

de Poisson na GPU, onde cada 

densidades 
���� (Figura 

registradores e 7200 bytes de memória compartilhada. A intensidade aritmética de 

cada thread é maior, por outro lado o 

reduzido para 50 %, conforme o apresentado na 

Figura 31 – Uma thread processa um vetor de dados da matriz de densidades
 

para Aceleração do SIESTA por GPU                                     

Nível de Ocupação do Multiprocessador para primeira versão do 
da Equação de Poisson. 

ma segunda versão do kernel para resolução da Equação 

na GPU, onde cada thread processa um vetor de dados da matriz de 

Figura 31). Cada bloco com 256 threads 

de memória compartilhada. A intensidade aritmética de 

é maior, por outro lado o Nível de Ocupação do Multiprocessador

, conforme o apresentado na Figura 32. 

processa um vetor de dados da matriz de densidades
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primeira versão do 

para resolução da Equação 

da matriz de 

 utiliza 28 

de memória compartilhada. A intensidade aritmética de 

Nível de Ocupação do Multiprocessador é 

 
processa um vetor de dados da matriz de densidades. 
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Figura 32 – Nível de Ocupação do Multiprocessador
kernel da Equação de Poisson

 

O kernel usado para resolução da Equação de Poisson

das contribuições dos elementos da matriz de densidades 

da energia de Hartree (um somatório) e das forças de desloc

somatórios). Os pré-somatórios são realizados para cada bloco. Assim, para 

obterem-se os valores finais, foi utilizado um segundo

registradores e 3620 bytes

threads. O Nível de Ocupação do Multiprocessador

ilustrado na Figura 33. 

para Aceleração do SIESTA por GPU                                     

Nível de Ocupação do Multiprocessador para segunda 
da Equação de Poisson. 

para resolução da Equação de Poisson realiza pré-somatórios 

das contribuições dos elementos da matriz de densidades 
���� para os cálculos 

(um somatório) e das forças de deslocamento atômicas (seis 

somatórios são realizados para cada bloco. Assim, para 

se os valores finais, foi utilizado um segundo kernel, o qual utiliza 

bytes de memória compartilhada para cada bloco com 256 

Nível de Ocupação do Multiprocessador é de 100 %, conforme o 
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 versão do 

somatórios 

para os cálculos 

amento atômicas (seis 

somatórios são realizados para cada bloco. Assim, para 

, o qual utiliza 13 

de memória compartilhada para cada bloco com 256 

é de 100 %, conforme o 
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Figura 33 – Nível de Ocupação do 
da energia de Hartree e das forças de deslocamento atômicas

 

A parte paralela dos sete somatórios

kernel da Equação de Poisson

poderia ser constituída de sete replicas do padrão ilustrado na 

se isto fosse feito, teríamos um elevado número de operações realizadas

warps incompletos. A Tabela 

35 operações de adição realizadas com o 

 

Tabela 6 – Operações de adição
padrão ilustrado na Figura 27. 

N Total Adições / Bloco Threads

896 
448 
224 
112 
56 
28 

14 

7 

 
 

para Aceleração do SIESTA por GPU                                     

Nível de Ocupação do Multiprocessador para o kernel dos somatório
energia de Hartree e das forças de deslocamento atômicas. 

A parte paralela dos sete somatórios, realizados de forma combinada no 

da Equação de Poisson, ou no kernel para obtenção dos valores finais, 

poderia ser constituída de sete replicas do padrão ilustrado na Figura 27

se isto fosse feito, teríamos um elevado número de operações realizadas

Tabela 6 mostra que, para cada bloco de threads

35 operações de adição realizadas com o warp incompleto. 

de adição com warp incompleto por bloco, replicando se

Operação com 

Threads Ativas Adições / Thread Completo Incompleto

128 7 28 
64 7 14 
32 7 7 
16 7   
8 7   
4 7   

2 7   

1 7   

  
49 
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somatórios 

realizados de forma combinada no 

para obtenção dos valores finais, 

27. Contudo, 

se isto fosse feito, teríamos um elevado número de operações realizadas com 

threads, teríamos 

replicando sete vezes o 

Operação com Warp 

Incompleto 

  
  
  
7 
7 
7 

7 

7 

35 
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Assim, com o objetivo de reduzir as operações de adição realizadas com 

warps incompletos, os sete somatórios são realizados seguindo o padrão ilustrado 

na Figura 34. Neste caso, ao invés de declarar sete espaços na memória 

compartilhada, um único espaço de memória é declarado. Os elementos 

pertencentes a um mesmo somatório são armazenados mantendo

não usadas na memória. 

operações de adição com warp

Figura 34 – Somatório paralelo de sete vetor
GPU. 

 

Tabela 7 – Operações de adição com
Figura 34. 

N Total Adições / Bloco Threads

896 

448 

224 
112 
56 
28 
14 
7 

 
 

O somatório paralelo d

34, realiza um padrão de acesso linear

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo, 

as threads que calculam os valores a 

compartilhada segundo um padrão de seis intervalos entre cada elemento 

acessado. Conforme o ilustrado na esquerda da

também está livre de conflitos de bancos.

para Aceleração do SIESTA por GPU                                     

Assim, com o objetivo de reduzir as operações de adição realizadas com 

incompletos, os sete somatórios são realizados seguindo o padrão ilustrado 

Neste caso, ao invés de declarar sete espaços na memória 

compartilhada, um único espaço de memória é declarado. Os elementos 

pertencentes a um mesmo somatório são armazenados mantendo-se seis posições 

 Conforme o apresentado na Tabela 7, o número de 

warps incompletos foi reduzido para 5. 

matório paralelo de sete vetores na memória compartilhada da 

de adição com warp incompleto por bloco, com o padrão ilustrado na 

Operação com 

Threads Ativas Adições / Thread Completo Incompleto

256 3 24 
128 1 4 
256 1 8 
192 1 6 
224 1 7 
112 1 3 
56 1 1 
28 1   
14 1   
7 1   

  53 

omatório paralelo dos sete vetores, da forma como o ilustrado na 

padrão de acesso linear na memória compartilhada da GPU

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo, 

que calculam os valores a serem somados, acessam a memória 

compartilhada segundo um padrão de seis intervalos entre cada elemento 

acessado. Conforme o ilustrado na esquerda da Figura 35, este tipo de acesso 

também está livre de conflitos de bancos. 

                                     67 

Assim, com o objetivo de reduzir as operações de adição realizadas com 

incompletos, os sete somatórios são realizados seguindo o padrão ilustrado 

Neste caso, ao invés de declarar sete espaços na memória 

compartilhada, um único espaço de memória é declarado. Os elementos 

se seis posições 

, o número de 

 
es na memória compartilhada da 

com o padrão ilustrado na 

Operação com Warp 

Incompleto 

  
  
  
  
  
1 
1 
1 
1 
1 

5 

, da forma como o ilustrado na Figura 

na memória compartilhada da GPU e, 

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo, 

serem somados, acessam a memória 

compartilhada segundo um padrão de seis intervalos entre cada elemento 

ipo de acesso 
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Figura 35 – Padrões usados de acesso à memória compartilhada, sem conflitos de 
banco. 

 

4.2.3. 
Cálculo do Dipolo Elétrico

Uma versão CUDA d

do SIESTA, onde os laços foram substituídos pelo paralelismo de dados da GPU. 

As contribuições dos elementos da matriz de densidades 

Elétrico são calculadas no kernel

realizado. Cada bloco deste 

3104 bytes de memória compartilhada. O 

Multiprocessador, apresentado na 

para Aceleração do SIESTA por GPU                                     

Padrões usados de acesso à memória compartilhada, sem conflitos de 

Cálculo do Dipolo Elétrico 

desta função foi escrita para substituir a função original 

, onde os laços foram substituídos pelo paralelismo de dados da GPU. 

As contribuições dos elementos da matriz de densidades 
���� para o

kernel e em seguida, um somatório paralelo em GPU

Cada bloco deste kernel, com 256 threads, utiliza 18 registradores e 

de memória compartilhada. O Nível de Ocupação do 

, apresentado na Figura 36, é de 75 % para este caso. 
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Padrões usados de acesso à memória compartilhada, sem conflitos de 

função original 

, onde os laços foram substituídos pelo paralelismo de dados da GPU. 

para o Dipolo 

paralelo em GPU é 

, utiliza 18 registradores e 

Nível de Ocupação do 
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Figura 36 – Nível de Ocupação do Multiprocessador
Dipolo Elétrico. 

 

Para o cálculo do Dipolo Elétrico

somatórios. O padrão ilustrado na 

contudo, teríamos 15 operações de adição realizadas com 

(Tabela 8). 

 

Tabela 8 – Operações de adição com
padrão ilustrado na Figura 27. 

N Total Adições / Bloco Threads

384 
192 
96 
48 
24 
12 
6 
3 

 
 

A realização dos três somatórios de forma combinada, usando o padrão 

ilustrado na Figura 37, reduz o número operações de adição realizadas com 

incompletos para 5, conforme os cálculos apresentados na 

para Aceleração do SIESTA por GPU                                     

Nível de Ocupação do Multiprocessador para o kernel de Cálculo do 

Dipolo Elétrico são necessários a realização de três 

somatórios. O padrão ilustrado na Figura 27 poderia ser repetido três vezes, 

contudo, teríamos 15 operações de adição realizadas com warps incomp

de adição com warp incompleto por bloco, replicando 

Operação com 

Threads Ativas Adições / Thread Completo Incompleto

128 3 12 
64 3 6 
32 3 3 
16 3   
8 3   
4 3   
2 3   
1 3   

  
21 

A realização dos três somatórios de forma combinada, usando o padrão 

, reduz o número operações de adição realizadas com 

incompletos para 5, conforme os cálculos apresentados na Tabela 9. Neste caso, 
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Cálculo do 

a realização de três 

ser repetido três vezes, 

incompletos 

replicando três vezes o 

Operação com Warp 

Incompleto 

  
  
  
3 
3 
3 
3 
3 

15 

A realização dos três somatórios de forma combinada, usando o padrão 

, reduz o número operações de adição realizadas com warps 

Neste caso, 
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os elementos pertencentes a um mesmo somatório 

duas posições não usadas na memória

Figura 37 – Somatório paralelo de três vetores na memória compartilhada da 
GPU. 

 

Tabela 9 – Operações de adição com
Figura 37. 

N Total Adições / Bloco Threads

384 

192 
96 
48 
24 
12 
6 
3 

 
 

Durante a etapa do somatório paralelo dos 

memória compartilhada é realizado de forma linear, sem conflitos de banco. O 

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de 

acesso com dois interva

compartilhada. Este padrão está ilustrado na direita da 

visto, também está livre de conflitos de

 

para Aceleração do SIESTA por GPU                                     

elementos pertencentes a um mesmo somatório são armazenados mantendo

posições não usadas na memória. 

matório paralelo de três vetores na memória compartilhada da 

de adição com warp incompleto por bloco, com o padrão ilustrado na

Operação com 

Threads Ativas Adições / Thread Completo Incompleto

256 1 8 
128 1 4 
192 1 6 
96 1 3 
48 1 1 
24 1   
12 1   
6 1   
3 1   

  
22 

Durante a etapa do somatório paralelo dos três vetores, Figura 37, o acesso à 

memória compartilhada é realizado de forma linear, sem conflitos de banco. O 

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de 

acesso com dois intervalos entre cada posição acessada na memória 

compartilhada. Este padrão está ilustrado na direita da Figura 35 e, como pode ser 

de conflitos de bancos. 
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armazenados mantendo-se 

 
matório paralelo de três vetores na memória compartilhada da 

com o padrão ilustrado na 

Operação com Warp 

Incompleto 

  
  
  
  
1 
1 
1 
1 
1 

5 

, o acesso à 

memória compartilhada é realizado de forma linear, sem conflitos de banco. O 

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de 

los entre cada posição acessada na memória 

como pode ser 
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4.2.4. 
Reordenação de Dados 

O SIESTA emprega duas formas de organizar os elementos da matriz de 

densidades, 
����, e do potencial de Hartree, 
�����. Assim, a função de 

reordenação de dados faz o mapeamento entre estas duas organizações diferentes. 

Antes da execução da Equação de Poisson é feita a reordenação da matriz de 

densidades e após é feita a reordenação do potencial de Hartree. A reordenação é 

realizada também antes e depois do Cálculo do Dipolo Elétrico. O principal 

motivo de executar a reordenação de dados em GPU é a economia de 

transferências de memória através do barramento PCI Express. Pois ela é 

executada sobre os mesmos conjuntos de dados empregados para as demais 

funções GPU anteriormente descritas. 

Nesta função foi utilizada a otimização de transferência de memória, 

conforme o descrito no item 3.5.3. Assim, são empregados múltiplos fluxos de 

processamento e a transferência assíncrona de dados através do barramento PCI 

Express. Isto é feito com a finalidade de redução do tempo total de execução pela 

sobreposição dos tempos de transferência de memória com o tempo de 

processamento da reordenação. 

O kernel da Reordenação de Dados necessita de 18 registradores para cada 

bloco com 256 threads. O Nível de Ocupação do Multiprocessador para este caso 

é de 75 %, conforme o apresentado na Figura 38. 
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Figura 38 – Nível de Ocupação do Multiprocessador
Reordenação de Dados. 

 

Os Níveis de Ocupação do Multiprocessador

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela 

NVIDIA. Pois é sugerido um valor mínimo

capacidade de cálculo 1.2 ou superior.

Ocupação do Multiprocess

práticos para o aumento de desempenho 

 

para Aceleração do SIESTA por GPU                                     

Nível de Ocupação do Multiprocessador para o 

de Ocupação do Multiprocessador empregados nos 

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela 

. Pois é sugerido um valor mínimo de 18.75 % para dispositivos com 

capacidade de cálculo 1.2 ou superior. Por outro lado, o aumento do 

Ocupação do Multiprocessador além do limite de 50 % não traz benefícios 

práticos para o aumento de desempenho (NVIDIA, 2009a). 
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o kernel da 

empregados nos kernels 

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela 

para dispositivos com 

Por outro lado, o aumento do Nível de 

além do limite de 50 % não traz benefícios 
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