

4
Descrição das Alterações para Aceleração do SIESTA por
GPU

Inicialmente avaliou-se a possibilidade de trabalhar com os principais

algoritmos de código fonte aberto empregados na química quântica. Entre eles

esta o MPQC (Massively Parallel Quantum Chemistry Program), que emprega

métodos tais como o Hartree-Fock e a Teoria do Funcional da Densidade

(Janssen, Nielsen, et al., 2010). Outro pacote considerado foi o Quantum

ESPRESSO (opEn-Source Package for Research in Electronic Structure,

Simulation, and Optimization), que possui cálculos de estrutura eletrônica

realizados com a Teoria do Funcional da Densidade, empregando ondas planas e

pseudopotenciais (DEMOCRITOS, 2009). O YAeHMOP (Yet Another extended

Huckel Molecular Orbital Package), que é um método tight-binding usado para

obter uma rápida descrição qualitativa (Landrum e Glassey, 2001). O escolhido

para utilização no trabalho foi o SIESTA (Spanish Initiative for Electronic

Simulations with Thousands of Atoms), o qual usa DFT, pseudopotenciais, orbitais

atômicos numéricos e funções de base localizada para aumentar a sua eficiência

(Soler, Artacho, et al., 2002). Este programa empregado na química quântica

possui 281 arquivos, totalizando 142023 linhas de código fonte em Fortran.

Devido a sua complexidade, apenas partes com maior custo computacional serão

portadas para execução em GPU.

Conforme o descrito no item 2.7, o SIESTA possui uma maneira particular

de representar os termos da energia total. Uma densidade atômica é definida para

reescrever os termos do pseudopotencial local e do potencial de Hartree. Isto é

feito com o objetivo de eliminar os termos de longo alcance, aumentando assim a

eficiência computacional. As funções de bases atômicas localizadas, usadas no

SIESTA foram escolhidas para viabilizar o desenvolvimento de um método ab

initio DFT autoconsistente de ordem N. Pois, o emprego de ondas planas como

funções de base impossibilitaria a determinação do hamiltoniano autoconsistente

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para Aceleração do SIESTA por GPU 57

em O(N) operações. Por outro lado, funções tais como a Transformada de Fourier

ainda necessitam de ordem N log(N) (Soler, Artacho, et al., 2002).

Neste Capítulo, as partes do código SIESTA com potencial para execução

em GPU são listadas e são apresentadas algumas alterações realizadas para testes

e comprovação de desempenho.

4.1.
Identificação das Partes Adequadas ao Paralelismo de Dados

O termo da eq. (2.42), visto no Capitulo 2, relacionado às contribuições para

a energia total da parte não-local do pseudopotencial e o termo de cálculo da

energia cinética dos elétrons, são operações repetitivas sobre dados diferentes e

poderiam ser estudados para execução acelerada por GPU. Uma matriz de

densidade é usada para as demais integrais da eq. (2.42), como a energia de troca

e correlação, o potencial e a energia de Hartree e a parte local do pseudopotencial

do hamiltoniano do SIESTA.

Inicialmente foi estuda a melhor forma de se reescrever em CUDA, os

termos referentes ao cálculo do potencial de Hartree e da energia de Hartree, com

a resolução da Equação de Poisson na GPU, e a contribuição para as forças de

deslocamento atômicas, devidas ao potencial de Hartree.

A próxima etapa será o estudo do termo da energia de troca e correlação e a

parte local do pseudopotencial do hamiltoniano do SIESTA. Isto permitiria

trabalhar a matriz de densidade na memória da GPU. Somente seriam necessárias

transferências de memória para os parâmetros de inicialização e os resultados das

integrais. É importante reduzir as transferências de memória entre CPU e GPU

devido à latência da interface PCI Express.

4.1.1.
CUFFT

A biblioteca CUFFT (CUDA Fast Fourier Transform) possui funções para a

realização de Transformadas de Fourier, no sentido direto ou no sentido inverso,

sobre matrizes de dados reais ou complexas com uma, duas ou três dimensões

(NVIDIA, 2007b). Para emprego no SIESTA, são adequadas as funções

apresentadas na Tabela 2.

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para Aceleração do SIESTA por GPU 58

Tabela 2 – Funções da Biblioteca CUFFT adequadas para emprego no SIESTA.
1 cufftExecR2C Transformada de Fourier no sentido direto para matrizes tridimensionais.
2 cufftExecC2R Transformada Inversa de Fourier para matrizes tridimensionais.

4.1.2.
CUBLAS

A biblioteca CUBLAS é uma implementação das funções básicas de álgebra

linear BLAS (Basic Linear Algebra Subprograms) para execução paralela, em

GPUs, usando CUDA (NVIDIA, 2007a). A Tabela 3 lista e descreve brevemente

algumas das funções CUBLAS que poderiam substituir funções de álgebra linear

no código SIESTA.

Tabela 3 – Funções da Biblioteca CUBLAS com possibilidade de emprego para o SIESTA.

1 cublasDgemm
calcula o produto de duas matrizes A e B, multiplicando o resultado por um
escalar alpha. A seguir soma com o produto de uma matriz C por um escalar
beta.

2 cublasIsamax
encontra o máximo de um vetor. Se o máximo não for um ponto único, o
ponto retornado é o que possui o menor índice.

3 cublasSasum calcula a soma dos valores absolutos de um vetor.
4 cublasSaxpy multiplica um vetor por um escalar.
5 cublasScopy copia os elementos de um vetor x para um vetor y.
6 cublasSdot calcula o produto escalar de dois vetores.
7 cublasSscal multiplica um vetor x por um escalar alpha.

8 cublasCaxpy
multiplica um vetor de números complexos x por um escalar alpha e em
seguida adiciona um segundo vetor de números complexos y.

9 cublasCscal multiplica um vetor de números complexos x por um escalar alpha.

10 cublasCswap
troca os elementos de um vetor de números complexos x, com os elementos
de outro vetor de números complexos y.

4.1.3.
MAGMA

A biblioteca de álgebra linear MAGMA (Matrix Algebra on GPU and

Multicore Architectures) foi projetada para ser similar ao LAPACK (Linear

Algebra PACKage) em nível de funções suportadas (Tomov, Nath, et al., 2009).

Algumas das suas funções, listadas na Tabela 4, apresentam compatibilidade com

funções empregadas no SIESTA.

Tabela 4 – Funções da Biblioteca MAGMA com possibilidade de emprego para o SIESTA.
1 magma_dpotrf_gpu calcula a fatoração de Cholesky de uma matriz real simétrica positiva.

2 magma_zpotrf_gpu
calcula a fatoração de Cholesky de uma matriz Hermitiana complexa
positiva.

3 magmablas_dtrsm

resolve equações matriciais em GPU, com matrizes X e B, m por n,
triangulares superior ou inferior e sendo possível aplicar o operador de
transposição à matriz A. ����� ∗ � = 	
�ℎ	 ∗ � � ∗ ����� = 	
�ℎ	 ∗ �

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

A biblioteca MAGMA

meio científico, tais como

lineares baseados nas decomposições LU, QR e

2009).

4.1.4.
CULA

Outra biblioteca de álgebra linear, acelerada por GPUs,

meio científico é a CULA (EM Photonics, 2010)

disponibilizadas, para números reais e para números complexos,

Tabela 5.

Tabela 5 – Funções da Biblioteca CULA
1 SGESV e CGESV resolve um sistema geral de equações
2 SGETRF e CGETRF calcula a fatoração LU de uma matriz geral.
3 SGEQRF e CGEQRF calcula a fatoração QR de uma matriz retangular geral.
4 SGELS e CGELS resolve um sistema de equações lineares por mínimos quadrados.
5 SGGLSE e CGGLSE resolve um sistema linear com restrições por mínimos quadrados.

6 SGESVD e CGESVD
calcula a decomposição em valor singular de uma matriz retangular
geral.

As funções de resolução de sistemas lineares das bibliotecas

CULA poderiam ser empregadas para

complexas, usadas no código

4.2.
Alteração de Partes do SIESTA

A última versão estável do código fonte do SIESTA, originalmente

em Fortran, foi utilizado como

código para GPU. O paralelismo de dados da

linguagem CUDA, e a linguagem C é usada como uma interface entre Fortran e

CUDA, conforme o ilustrado na

Linux CentOS 5.5.

Figura 25 – Interface entre

para Aceleração do SIESTA por GPU

A biblioteca MAGMA também possui outras funções de grande utili

 um conjunto de funções CUDA para resolver sistemas

lineares baseados nas decomposições LU, QR e Cholesky (Tomov, Nath,

de álgebra linear, acelerada por GPUs, com aplicação no

(EM Photonics, 2010). Algumas das principais funções

, para números reais e para números complexos, são listadas na

Funções da Biblioteca CULA utilizadas no meio científico.
resolve um sistema geral de equações lineares AX=B.
calcula a fatoração LU de uma matriz geral.
calcula a fatoração QR de uma matriz retangular geral.
resolve um sistema de equações lineares por mínimos quadrados.
resolve um sistema linear com restrições por mínimos quadrados.
calcula a decomposição em valor singular de uma matriz retangular
geral.

As funções de resolução de sistemas lineares das bibliotecas MAGMA

CULA poderiam ser empregadas para calcular a inversa de matrizes reais ou

complexas, usadas no código SIESTA.

Alteração de Partes do SIESTA

A última versão estável do código fonte do SIESTA, originalmente

em Fortran, foi utilizado como ponto de partida para estudar e alterar

O paralelismo de dados das GPUs é acessado através da

, e a linguagem C é usada como uma interface entre Fortran e

, conforme o ilustrado na Figura 25. O sistema operacional utilizado foi o

Interface entre Fortran e CUDA.

 59

também possui outras funções de grande utilidade no

um conjunto de funções CUDA para resolver sistemas

(Tomov, Nath, et al.,

com aplicação no

. Algumas das principais funções

listadas na

resolve um sistema de equações lineares por mínimos quadrados.
resolve um sistema linear com restrições por mínimos quadrados.
calcula a decomposição em valor singular de uma matriz retangular

MAGMA e

a inversa de matrizes reais ou

A última versão estável do código fonte do SIESTA, originalmente escrito

e alterar trechos de

GPUs é acessado através da

, e a linguagem C é usada como uma interface entre Fortran e

O sistema operacional utilizado foi o

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

4.2.1.
Potencial de Hartree, Energia
Atômicas

Inicialmente, o termo referente

reescrito usando a linguagem CUDA, empregando a resolução da Equação de

Poisson na GPU. O quarto termo do lado direito da eq.

Hartree,
�����, é produzido

consistente
����. A solução

implementada no SIESTA permite

com a variação da densidade

A Equação de Poisson

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação

é freqüentemente escrita como:

Considerando o sistema de coordenadas cartesianas por simplicidade, esta

equação pode ser reescrita como:

� ��
��� � ��

Para problemas que envolvem

Transformada de Fourier

equações algébricas, as quais são resolvidas com

Em seguida a transformada inversa é utilizada para trazer a solução novamente

para o espaço real. A Figura

de equações diferencias.

Figura 26 – As equações diferenciais são transformadas em equações algébricas

A energia de Hartree

atômicas, devido ao potencial de Hartree, estão

código da Equação de Poisson

elemento da matriz de densidades

para Aceleração do SIESTA por GPU

Energia de Hartree e Forças de Deslocamento

Inicialmente, o termo referente ao cálculo do potencial de Hartre

usando a linguagem CUDA, empregando a resolução da Equação de

O quarto termo do lado direito da eq. (2.42), potencial de

é produzido pela diferença das densidades atômica

. A solução da equação de Poisson na forma original

implementada no SIESTA permite encontrar o potencial de Hartree

com a variação da densidade.

Equação de Poisson é uma equação diferencial parcial muito utilizada na

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação

como:

��φ = f
Considerando o sistema de coordenadas cartesianas por simplicidade, esta

equação pode ser reescrita como:

��
��� � ��

����φ�x, y, z� = f�x, y, z�
Para problemas que envolvem condições periódicas de contorno

Transformada de Fourier permite transformar as equações diferenciais em

, as quais são resolvidas com operações algébricas normais

Em seguida a transformada inversa é utilizada para trazer a solução novamente

Figura 26 ilustra o emprego deste processo para a resolução

As equações diferenciais são transformadas em equações algébricas

energia de Hartree e a contribuição para as forças de deslocamento

atômicas, devido ao potencial de Hartree, estão combinadas na mesma seção do

Equação de Poisson e também são computadas em GPU.

elemento da matriz de densidades
���� contribui individualmente para a

 60

slocamento

ao cálculo do potencial de Hartree foi

usando a linguagem CUDA, empregando a resolução da Equação de

potencial de

as densidades atômicas e auto-

na forma original

 associado

é uma equação diferencial parcial muito utilizada na

eletrostática, na engenharia e na física teórica. No espaço euclidiano esta equação

(4.1)

Considerando o sistema de coordenadas cartesianas por simplicidade, esta

(4.2)

condições periódicas de contorno, o uso da

equações diferenciais em

operações algébricas normais.

Em seguida a transformada inversa é utilizada para trazer a solução novamente

ilustra o emprego deste processo para a resolução

As equações diferenciais são transformadas em equações algébricas.

e a contribuição para as forças de deslocamento

na mesma seção do

em GPU. Cada

contribui individualmente para a energia

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

de Hartree e para as forças de deslocamento atômicas. Assim, o cálculo da

de Hartree e das forças de deslocamento atômicas em GPU envolve, para cada

variável calculada, somatório

O somatório paralelo realizado na memória compartilhada de uma GPU

consiste na redução do vetor de dados pela metade em cada operação dos

elementos do hardware paralelo. A

paralelo em GPU para um único veto de dados

Figura 27 – Somatório paralelo realizado na memória compartilhada da GPU
um único vetor de dados.

4.2.2.
Implementação Paralela para GPUs

A Equação de Poisson

periódicas de contorno e é resolvida no domínio da freqüência. Inicialmente são

encontrados os componentes da Transformada de Fourier da densidade eletrônica

����. A solução é realizada no

contribuição de cada elemento da matriz de densidades produz a

Hartree e as forças de deslocamento atômicas.

em seguida transformado para

A Transformada de Fourier

o algoritmo GPFA (Generalized Prime Factor FFT

(1992). Este algoritmo era originalmente empregado

densidades
���� do espaço real para o domínio da freqüência e para transformar

para Aceleração do SIESTA por GPU

e para as forças de deslocamento atômicas. Assim, o cálculo da

e das forças de deslocamento atômicas em GPU envolve, para cada

variável calculada, somatórios sobre todos os elementos da matriz de densidades.

paralelo realizado na memória compartilhada de uma GPU

consiste na redução do vetor de dados pela metade em cada operação dos

elementos do hardware paralelo. A Figura 27 ilustra a realização de um somatório

para um único veto de dados.

Somatório paralelo realizado na memória compartilhada da GPU

Implementação Paralela para GPUs

Equação de Poisson usada no SIESTA está baseada em condições

é resolvida no domínio da freqüência. Inicialmente são

encontrados os componentes da Transformada de Fourier da densidade eletrônica

. A solução é realizada no domínio da freqüência e um somatório

contribuição de cada elemento da matriz de densidades produz a energia de

e as forças de deslocamento atômicas. O potencial de Hartree,

em seguida transformado para o espaço real conforme o ilustrado na Figura

Transformada de Fourier originalmente empregada no código SIESTA

Generalized Prime Factor FFT) desenvolvido por Temperton

. Este algoritmo era originalmente empregado para transformar a matriz de

do espaço real para o domínio da freqüência e para transformar

 61

e para as forças de deslocamento atômicas. Assim, o cálculo da energia

e das forças de deslocamento atômicas em GPU envolve, para cada

a matriz de densidades.

paralelo realizado na memória compartilhada de uma GPU

consiste na redução do vetor de dados pela metade em cada operação dos

ilustra a realização de um somatório

Somatório paralelo realizado na memória compartilhada da GPU para

está baseada em condições

é resolvida no domínio da freqüência. Inicialmente são

encontrados os componentes da Transformada de Fourier da densidade eletrônica

e um somatório da

energia de

,
�����, é

Figura 28.

no código SIESTA é

desenvolvido por Temperton

para transformar a matriz de

do espaço real para o domínio da freqüência e para transformar

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

o potencial de Hartree,
�
espaço real.

Na Equação de Poisson

GPFA pelo algoritmo CUFFT

NVIDIA (2007b). Assim, a Transformada de Fourier da matriz de densidades

���� e a Transformada Inversa de Fourier do potencial de

realizadas na placa gráfica.

de Fourier poderiam contribuir p

código SIESTA, tal como o algoritmo proposto por

Para o cálculo do potencial de Hartre

escrito um kernel baseado

etapa consistiu na tradução do algoritmo da linguagem Fortran para a linguagem

C. Em seguida estudou-se a melhor forma de tirar proveito do paralelismo de

dados oferecido pela GPU. As funções de transfer

GPU foram introduzidas e os laços originais foram substituídos pelo par

de hardware da GPU. Foram realizados testes para avaliar os efeitos das

otimizações de acesso à memória global, de acesso à memória compartilhada e d

transferência através do barramento

3, nos itens 3.5.1, 3.5.2 e 3.5.3

Figura 28 – Solução no domínio da freqüência

A CPU tem uma unidade de instruç

a utilização de 240 thread

poderia ser adequada.

Nas GPUs o paradigma é diferente, pois a GPU possui

unidade de instruções para cada 8 elementos de processamento

multiprocessador), o tempo necessário

aplicá-la sobre 4 threads

instrução carregada na unidade de instruções

para Aceleração do SIESTA por GPU

�����, calculado no domínio da freqüência, para o

Equação de Poisson para execução em GPU foi substituído o algoritmo

CUFFT (CUDA Fast Fourier Transform) desenvolvido pela

Assim, a Transformada de Fourier da matriz de densidades

e a Transformada Inversa de Fourier do potencial de Hartree,
�
realizadas na placa gráfica. Algoritmos GPU mais eficientes para a Transformada

de Fourier poderiam contribuir para aumentar o desempenho desta etapa do

, tal como o algoritmo proposto por Nukada, Ogata, et al.

Para o cálculo do potencial de Hartree,
�����, propriamente dito, foi

 na função seqüencial original do SIESTA. A primeira

a tradução do algoritmo da linguagem Fortran para a linguagem

se a melhor forma de tirar proveito do paralelismo de

dados oferecido pela GPU. As funções de transferência de dados entre CPU e

GPU foram introduzidas e os laços originais foram substituídos pelo par

de hardware da GPU. Foram realizados testes para avaliar os efeitos das

otimizações de acesso à memória global, de acesso à memória compartilhada e d

transferência através do barramento PCI Express, conforme o descrito no Capítulo

3.5.3, respectivamente.

lução no domínio da freqüência.

A CPU tem uma unidade de instruções para cada núcleo de processamento e

threads num cluster com 240 núcleos de processamento

Nas GPUs o paradigma é diferente, pois a GPU possui somente

unidade de instruções para cada 8 elementos de processamento

o tempo necessário para mudar de instrução é suficiente para

 de cada elemento de processamento. Ou seja,

instrução carregada na unidade de instruções pode ser aplicada em 32 thread

 62

alculado no domínio da freqüência, para o

o algoritmo

desenvolvido pela

Assim, a Transformada de Fourier da matriz de densidades

�����, são

Algoritmos GPU mais eficientes para a Transformada

ara aumentar o desempenho desta etapa do

et al. (2008).

, propriamente dito, foi

na função seqüencial original do SIESTA. A primeira

a tradução do algoritmo da linguagem Fortran para a linguagem

se a melhor forma de tirar proveito do paralelismo de

ência de dados entre CPU e

GPU foram introduzidas e os laços originais foram substituídos pelo paralelismo

de hardware da GPU. Foram realizados testes para avaliar os efeitos das

otimizações de acesso à memória global, de acesso à memória compartilhada e de

, conforme o descrito no Capítulo

núcleo de processamento e

com 240 núcleos de processamento

somente uma

unidade de instruções para cada 8 elementos de processamento (um

strução é suficiente para

Ou seja, cada

threads, um

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

warp, executando em 8 elementos de processamento.

foram ser projetadas para serem

Além disso, existem os tempos de latência no acesso à memória global

memória compartilhada e aos registradores

a possibilidade de executar instruções em outros

instrução com grande latência. Assim

dado ser lido ou escrito nas memórias

mínimo de 192 threads por bloco para que o multiprocessador possa ter sempre

instruções disponíveis, reduzindo

2009b). Desta forma, um número mínimo de

192 threads / bloco x 30

desempenho será obtido se o problema for pensado de forma

número maior de threads na GPU.

Na primeira versão do

SIESTA na GPU foi atribuída uma

densidades
���� (Figura 29

registradores e 3616 bytes

Multiprocessador é de 75 %, conforme pode ser observado na

Figura 29 – Uma thread para cada elemento da matriz de densidades

para Aceleração do SIESTA por GPU

o em 8 elementos de processamento. Assim, as threads

ser projetadas para serem muito leves.

Além disso, existem os tempos de latência no acesso à memória global

e aos registradores. Com 32 threads por bloco

a possibilidade de executar instruções em outros warps, quando ocorre uma

instrução com grande latência. Assim, o multiprocessador fica ocioso esperando o

ser lido ou escrito nas memórias. Por isso, a NVIDIA recomenda manter um

por bloco para que o multiprocessador possa ter sempre

, reduzindo o tempo ocioso do multiprocessador

. Desta forma, um número mínimo de threads deveria ficar em torno de

 multiprocessadores = 5760 threads. Contudo, melhor

desempenho será obtido se o problema for pensado de forma a dividi-

na GPU.

Na primeira versão do kernel para a resolução da Equação de Poisson

foi atribuída uma thread para cada elemento da matriz de

29). Neste caso, cada bloco com 256 threads

 de memória compartilhada. O Nível de Ocupação do

é de 75 %, conforme pode ser observado na Figura 30

para cada elemento da matriz de densidades.

 63

threads de GPUs

Além disso, existem os tempos de latência no acesso à memória global, à

 não existe

, quando ocorre uma

o multiprocessador fica ocioso esperando o

ecomenda manter um

por bloco para que o multiprocessador possa ter sempre

 (NVIDIA,

deveria ficar em torno de

. Contudo, melhor

-lo por um

Equação de Poisson do

para cada elemento da matriz de

threads utiliza 18

Nível de Ocupação do

30.

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 30 – Nível de Ocupação do Multiprocessador
kernel da Equação de Poisson

Foi desenvolvida uma segunda versão d

de Poisson na GPU, onde cada

densidades
���� (Figura

registradores e 7200 bytes de memória compartilhada. A intensidade aritmética de

cada thread é maior, por outro lado o

reduzido para 50 %, conforme o apresentado na

Figura 31 – Uma thread processa um vetor de dados da matriz de densidades

para Aceleração do SIESTA por GPU

Nível de Ocupação do Multiprocessador para primeira versão do
da Equação de Poisson.

ma segunda versão do kernel para resolução da Equação

na GPU, onde cada thread processa um vetor de dados da matriz de

Figura 31). Cada bloco com 256 threads

de memória compartilhada. A intensidade aritmética de

é maior, por outro lado o Nível de Ocupação do Multiprocessador

, conforme o apresentado na Figura 32.

processa um vetor de dados da matriz de densidades

 64

primeira versão do

para resolução da Equação

da matriz de

 utiliza 28

de memória compartilhada. A intensidade aritmética de

Nível de Ocupação do Multiprocessador é

processa um vetor de dados da matriz de densidades.

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 32 – Nível de Ocupação do Multiprocessador
kernel da Equação de Poisson

O kernel usado para resolução da Equação de Poisson

das contribuições dos elementos da matriz de densidades

da energia de Hartree (um somatório) e das forças de desloc

somatórios). Os pré-somatórios são realizados para cada bloco. Assim, para

obterem-se os valores finais, foi utilizado um segundo

registradores e 3620 bytes

threads. O Nível de Ocupação do Multiprocessador

ilustrado na Figura 33.

para Aceleração do SIESTA por GPU

Nível de Ocupação do Multiprocessador para segunda
da Equação de Poisson.

para resolução da Equação de Poisson realiza pré-somatórios

das contribuições dos elementos da matriz de densidades
���� para os cálculos

(um somatório) e das forças de deslocamento atômicas (seis

somatórios são realizados para cada bloco. Assim, para

se os valores finais, foi utilizado um segundo kernel, o qual utiliza

bytes de memória compartilhada para cada bloco com 256

Nível de Ocupação do Multiprocessador é de 100 %, conforme o

 65

 versão do

somatórios

para os cálculos

amento atômicas (seis

somatórios são realizados para cada bloco. Assim, para

, o qual utiliza 13

de memória compartilhada para cada bloco com 256

é de 100 %, conforme o

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 33 – Nível de Ocupação do
da energia de Hartree e das forças de deslocamento atômicas

A parte paralela dos sete somatórios

kernel da Equação de Poisson

poderia ser constituída de sete replicas do padrão ilustrado na

se isto fosse feito, teríamos um elevado número de operações realizadas

warps incompletos. A Tabela

35 operações de adição realizadas com o

Tabela 6 – Operações de adição
padrão ilustrado na Figura 27.

N Total Adições / Bloco Threads

896
448
224
112
56
28

14

7

para Aceleração do SIESTA por GPU

Nível de Ocupação do Multiprocessador para o kernel dos somatório
energia de Hartree e das forças de deslocamento atômicas.

A parte paralela dos sete somatórios, realizados de forma combinada no

da Equação de Poisson, ou no kernel para obtenção dos valores finais,

poderia ser constituída de sete replicas do padrão ilustrado na Figura 27

se isto fosse feito, teríamos um elevado número de operações realizadas

Tabela 6 mostra que, para cada bloco de threads

35 operações de adição realizadas com o warp incompleto.

de adição com warp incompleto por bloco, replicando se

Operação com

Threads Ativas Adições / Thread Completo Incompleto

128 7 28
64 7 14
32 7 7
16 7
8 7
4 7

2 7

1 7

49

 66

somatórios

realizados de forma combinada no

para obtenção dos valores finais,

27. Contudo,

se isto fosse feito, teríamos um elevado número de operações realizadas com

threads, teríamos

replicando sete vezes o

Operação com Warp

Incompleto

7
7
7

7

7

35

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Assim, com o objetivo de reduzir as operações de adição realizadas com

warps incompletos, os sete somatórios são realizados seguindo o padrão ilustrado

na Figura 34. Neste caso, ao invés de declarar sete espaços na memória

compartilhada, um único espaço de memória é declarado. Os elementos

pertencentes a um mesmo somatório são armazenados mantendo

não usadas na memória.

operações de adição com warp

Figura 34 – Somatório paralelo de sete vetor
GPU.

Tabela 7 – Operações de adição com
Figura 34.

N Total Adições / Bloco Threads

896

448

224
112
56
28
14
7

O somatório paralelo d

34, realiza um padrão de acesso linear

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo,

as threads que calculam os valores a

compartilhada segundo um padrão de seis intervalos entre cada elemento

acessado. Conforme o ilustrado na esquerda da

também está livre de conflitos de bancos.

para Aceleração do SIESTA por GPU

Assim, com o objetivo de reduzir as operações de adição realizadas com

incompletos, os sete somatórios são realizados seguindo o padrão ilustrado

Neste caso, ao invés de declarar sete espaços na memória

compartilhada, um único espaço de memória é declarado. Os elementos

pertencentes a um mesmo somatório são armazenados mantendo-se seis posições

 Conforme o apresentado na Tabela 7, o número de

warps incompletos foi reduzido para 5.

matório paralelo de sete vetores na memória compartilhada da

de adição com warp incompleto por bloco, com o padrão ilustrado na

Operação com

Threads Ativas Adições / Thread Completo Incompleto

256 3 24
128 1 4
256 1 8
192 1 6
224 1 7
112 1 3
56 1 1
28 1
14 1
7 1

 53

omatório paralelo dos sete vetores, da forma como o ilustrado na

padrão de acesso linear na memória compartilhada da GPU

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo,

que calculam os valores a serem somados, acessam a memória

compartilhada segundo um padrão de seis intervalos entre cada elemento

acessado. Conforme o ilustrado na esquerda da Figura 35, este tipo de acesso

também está livre de conflitos de bancos.

 67

Assim, com o objetivo de reduzir as operações de adição realizadas com

incompletos, os sete somatórios são realizados seguindo o padrão ilustrado

Neste caso, ao invés de declarar sete espaços na memória

compartilhada, um único espaço de memória é declarado. Os elementos

se seis posições

, o número de

es na memória compartilhada da

com o padrão ilustrado na

Operação com Warp

Incompleto

1
1
1
1
1

5

, da forma como o ilustrado na Figura

na memória compartilhada da GPU e,

portanto, não existem conflitos de banco. Na etapa anterior ao somatório paralelo,

serem somados, acessam a memória

compartilhada segundo um padrão de seis intervalos entre cada elemento

ipo de acesso

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 35 – Padrões usados de acesso à memória compartilhada, sem conflitos de
banco.

4.2.3.
Cálculo do Dipolo Elétrico

Uma versão CUDA d

do SIESTA, onde os laços foram substituídos pelo paralelismo de dados da GPU.

As contribuições dos elementos da matriz de densidades

Elétrico são calculadas no kernel

realizado. Cada bloco deste

3104 bytes de memória compartilhada. O

Multiprocessador, apresentado na

para Aceleração do SIESTA por GPU

Padrões usados de acesso à memória compartilhada, sem conflitos de

Cálculo do Dipolo Elétrico

desta função foi escrita para substituir a função original

, onde os laços foram substituídos pelo paralelismo de dados da GPU.

As contribuições dos elementos da matriz de densidades
���� para o

kernel e em seguida, um somatório paralelo em GPU

Cada bloco deste kernel, com 256 threads, utiliza 18 registradores e

de memória compartilhada. O Nível de Ocupação do

, apresentado na Figura 36, é de 75 % para este caso.

 68

Padrões usados de acesso à memória compartilhada, sem conflitos de

função original

, onde os laços foram substituídos pelo paralelismo de dados da GPU.

para o Dipolo

paralelo em GPU é

, utiliza 18 registradores e

Nível de Ocupação do

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 36 – Nível de Ocupação do Multiprocessador
Dipolo Elétrico.

Para o cálculo do Dipolo Elétrico

somatórios. O padrão ilustrado na

contudo, teríamos 15 operações de adição realizadas com

(Tabela 8).

Tabela 8 – Operações de adição com
padrão ilustrado na Figura 27.

N Total Adições / Bloco Threads

384
192
96
48
24
12
6
3

A realização dos três somatórios de forma combinada, usando o padrão

ilustrado na Figura 37, reduz o número operações de adição realizadas com

incompletos para 5, conforme os cálculos apresentados na

para Aceleração do SIESTA por GPU

Nível de Ocupação do Multiprocessador para o kernel de Cálculo do

Dipolo Elétrico são necessários a realização de três

somatórios. O padrão ilustrado na Figura 27 poderia ser repetido três vezes,

contudo, teríamos 15 operações de adição realizadas com warps incomp

de adição com warp incompleto por bloco, replicando

Operação com

Threads Ativas Adições / Thread Completo Incompleto

128 3 12
64 3 6
32 3 3
16 3
8 3
4 3
2 3
1 3

21

A realização dos três somatórios de forma combinada, usando o padrão

, reduz o número operações de adição realizadas com

incompletos para 5, conforme os cálculos apresentados na Tabela 9. Neste caso,

 69

Cálculo do

a realização de três

ser repetido três vezes,

incompletos

replicando três vezes o

Operação com Warp

Incompleto

3
3
3
3
3

15

A realização dos três somatórios de forma combinada, usando o padrão

, reduz o número operações de adição realizadas com warps

Neste caso,

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

os elementos pertencentes a um mesmo somatório

duas posições não usadas na memória

Figura 37 – Somatório paralelo de três vetores na memória compartilhada da
GPU.

Tabela 9 – Operações de adição com
Figura 37.

N Total Adições / Bloco Threads

384

192
96
48
24
12
6
3

Durante a etapa do somatório paralelo dos

memória compartilhada é realizado de forma linear, sem conflitos de banco. O

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de

acesso com dois interva

compartilhada. Este padrão está ilustrado na direita da

visto, também está livre de conflitos de

para Aceleração do SIESTA por GPU

elementos pertencentes a um mesmo somatório são armazenados mantendo

posições não usadas na memória.

matório paralelo de três vetores na memória compartilhada da

de adição com warp incompleto por bloco, com o padrão ilustrado na

Operação com

Threads Ativas Adições / Thread Completo Incompleto

256 1 8
128 1 4
192 1 6
96 1 3
48 1 1
24 1
12 1
6 1
3 1

22

Durante a etapa do somatório paralelo dos três vetores, Figura 37, o acesso à

memória compartilhada é realizado de forma linear, sem conflitos de banco. O

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de

acesso com dois intervalos entre cada posição acessada na memória

compartilhada. Este padrão está ilustrado na direita da Figura 35 e, como pode ser

de conflitos de bancos.

 70

armazenados mantendo-se

matório paralelo de três vetores na memória compartilhada da

com o padrão ilustrado na

Operação com Warp

Incompleto

1
1
1
1
1

5

, o acesso à

memória compartilhada é realizado de forma linear, sem conflitos de banco. O

cálculo dos elementos a serem somados, na etapa anterior, emprega um padrão de

los entre cada posição acessada na memória

como pode ser

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para Aceleração do SIESTA por GPU 71

4.2.4.
Reordenação de Dados

O SIESTA emprega duas formas de organizar os elementos da matriz de

densidades,
����, e do potencial de Hartree,
�����. Assim, a função de

reordenação de dados faz o mapeamento entre estas duas organizações diferentes.

Antes da execução da Equação de Poisson é feita a reordenação da matriz de

densidades e após é feita a reordenação do potencial de Hartree. A reordenação é

realizada também antes e depois do Cálculo do Dipolo Elétrico. O principal

motivo de executar a reordenação de dados em GPU é a economia de

transferências de memória através do barramento PCI Express. Pois ela é

executada sobre os mesmos conjuntos de dados empregados para as demais

funções GPU anteriormente descritas.

Nesta função foi utilizada a otimização de transferência de memória,

conforme o descrito no item 3.5.3. Assim, são empregados múltiplos fluxos de

processamento e a transferência assíncrona de dados através do barramento PCI

Express. Isto é feito com a finalidade de redução do tempo total de execução pela

sobreposição dos tempos de transferência de memória com o tempo de

processamento da reordenação.

O kernel da Reordenação de Dados necessita de 18 registradores para cada

bloco com 256 threads. O Nível de Ocupação do Multiprocessador para este caso

é de 75 %, conforme o apresentado na Figura 38.

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

Descrição das Alterações para

Figura 38 – Nível de Ocupação do Multiprocessador
Reordenação de Dados.

Os Níveis de Ocupação do Multiprocessador

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela

NVIDIA. Pois é sugerido um valor mínimo

capacidade de cálculo 1.2 ou superior.

Ocupação do Multiprocess

práticos para o aumento de desempenho

para Aceleração do SIESTA por GPU

Nível de Ocupação do Multiprocessador para o

de Ocupação do Multiprocessador empregados nos

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela

. Pois é sugerido um valor mínimo de 18.75 % para dispositivos com

capacidade de cálculo 1.2 ou superior. Por outro lado, o aumento do

Ocupação do Multiprocessador além do limite de 50 % não traz benefícios

práticos para o aumento de desempenho (NVIDIA, 2009a).

 72

o kernel da

empregados nos kernels

descritos e utilizados neste trabalho estão dentro dos limites recomendados pela

para dispositivos com

Por outro lado, o aumento do Nível de

além do limite de 50 % não traz benefícios

DBD
PUC-Rio - Certificação Digital Nº 0812691/CB

