Síntese de Transformadores de Quarto de Onda

2.1

Introdução

Transformadores de guia de onda são amplamente empregados no projeto de componentes em onda guiada e são encontrados em praticamente todas as cadeias alimentadoras de antenas e demais estruturas de onda guiada na faixa de microondas.

Neste Capítulo são apresentados os modelos matemáticos clássicos que regem o funcionamento de transformadores de quarto de onda genéricos. Também são apresentados as soluções particulares para implementação de transformadores de resposta plana (Binomial) e para implementação de transformadores com maior banda de freqüência possível (Chebyshev).

2.2

Transformadores de uma Seção de Quarto de Onda

Transformadores de quarto de onda de banda larga (Collin, 1955) são utilizados basicamente como seções intermediárias para prover o casamento de impedância entre guias de ondas que apresentam impedâncias e/ou estruturas físicas diferentes entre si.

O desafio consiste em se obter o casamento esperado, na banda de operação desejada, com o transformador de menor dimensão física, o que usualmente também leva à estrutura de menor custo de implementação.

O princípio fundamental de um transformador pode ser compreendido através da análise do casamento entre uma carga resistiva Z_L e uma linha de transmissão de impedância característica Z_1 (Collin, 1966).

Nesse caso, uma linha de impedância característica Z_2 de um quarto de comprimento de onda é inserida entre a carga Z_L e a linha Z_1 , o que leva a impedância efetiva da carga na porta da linha Z_1 a assumir o valor:

PUC-Rio - Certificação Digital Nº 0821984/CA

$$Z = Z_2 \frac{Z_L + jZ_2 \tan\left(\frac{\beta\lambda}{4}\right)}{Z_2 + jZ_L \tan\left(\frac{\beta\lambda}{4}\right)} = \frac{Z_2^2}{Z_L}$$
(2.1)

Se Z₂ é escolhido de forma a que seja igual a $\sqrt{Z_I Z_L}$, então Z = Z₁, atingindo-se o objetivo de se casar a carga Z_L a linha Z₁, desde que seja respeitada a condição de seu comprimento ser $\lambda/4$ (ou N· $\lambda/2 + \lambda/4$).

Ou seja, se assumirmos que θ é o comprimento elétrico do transformador na freqüência f, a impedância de entrada é:

$$\theta = \beta l \tag{2.2}$$

$$\theta = \frac{2\pi f}{c} l \tag{2.3}$$

$$Z_{in} = Z_2 \frac{Z_L + jZ_2 \tan(\theta)}{Z_2 + jZ_L \tan(\theta)}$$
(2.4)

Conseqüentemente, o coeficiente de reflexão é:

$$\Gamma = \frac{Z_{in} - Z_1}{Z_{in} + Z_1} = \frac{Z_L - Z_1}{Z_L + Z_1 + j \tan(\theta) 2\sqrt{Z_L Z_1}}$$
(2.5)

Ou seja:

$$\left|\Gamma\right| = \rho = \frac{1}{\left[1 + \left(\frac{2\sqrt{Z_L Z_1}}{Z_L - Z_1} \sec \theta\right)^2\right]^{\frac{1}{2}}}$$
(2.6)

A variação de ρ com a freqüência é periódica por causa do comportamento também periódico da impedância e entrada com a freqüência, isto é, o casamento proporcionado pelo transformador se repete cada vez que seu comprimento elétrico variar de π .

Nesse caso, assumindo que o coeficiente de reflexão máximo que se queira tolerar seja ρ m, a faixa de freqüências de operação do transformador será aquela em que a variação de θ ainda consiga manter o valor de $\rho < \rho_m$; ou seja:

$$\theta_{m} = \cos^{-1} \left| \frac{2\rho_{m} \sqrt{Z_{1} Z_{L}}}{(Z_{L} - Z_{1}) \sqrt{1 - \rho_{m}^{2}}} \right|$$
(2.7)

Para o caso de estruturas não dispersivas (como em estruturas coaxiais TEM, e diferentemente de estruturas em onda guiada TE/TM), a largura de faixa de um transformador de uma seção de quarto de onda, calculado para a freqüência central f_0 , é dada por:

$$\frac{\Delta f}{f_0} = 2 - \frac{4}{\pi} \cos^{-1} \left| \frac{2\rho_m \sqrt{Z_1 Z_L}}{(Z_L - Z_1) \sqrt{1 - {\rho_m}^2}} \right|$$
(2.8)

É importante reforçar nesse ponto que este cálculo de largura de faixa pressupõe, além do já comentado efeito de dispersão de comprimento de onda da estrutura, que as impedâncias de entrada e saída não variam, e que as descontinuidades que decorrem da implementação física desses transformadores não apresentam reatâncias parasitas.

Na realidade, tais pressuposições impõem forte limite ao emprego desses modelos, o que fez por estimular os estudos que se seguirão nos tópicos subseqüentes.

De qualquer forma, mesmo supondo-se condições favoráveis como estruturas não dispersivas, pode-se notar que a aplicação de transformadores de uma seção fica limitada a operação em bandas estreitas. Para operação em estruturas de banda larga, ou de valores muito diferenciados de impedâncias de entrada e saída, os transformadores de múltiplas seções de quarto de onda se apresentam como a solução mais viável.

2.3

Modelo para Pequenas Reflexões

Para procedermos à síntese dos transformadores de múltiplas seções, se faz necessário desenvolvermos alguns resultados preliminares, os quais são pertinentes ao caso de combinação de pequenas múltiplas reflexões. Considerando o caso abaixo (Figura 1), de uma impedância Z_L ligada a uma impedância Z_1 através de uma linha de impedância Z_2 .

Figura 1- Descontinuidade genérica.

Onde:

$$\Gamma_{1} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}} \quad \Gamma_{2} = -\Gamma_{1}$$
(2.9)

$$T_{21} = 1 + \Gamma_1 = \frac{2Z_2}{Z_1 + Z_2} \qquad T_{12} = 1 + \Gamma_2 = \frac{2Z_1}{Z_1 + Z_2}$$
(2.10)

$$\Gamma_{3} = \frac{Z_{L} - Z_{2}}{Z_{L} + Z_{2}}$$
(2.11)

O que representa que a onda refletida total de amplitude Γ é a soma de todas as ondas parciais transmitidas para a esquerda, resultante das múltiplas reflexões que ocorrem na seqüência de descontinuidades que compõe a estrutura.

Esta soma é dada por:

$$\Gamma = \Gamma_{1} + T_{12}T_{21}\Gamma_{3}e^{-2j\theta} + T_{12}T_{21}\Gamma_{3}^{2}\Gamma_{2}e^{-4j\theta} + \dots$$

$$= \Gamma_{1} + T_{12}T_{21}\Gamma_{3}e^{-2j\theta}\sum_{n=0}^{\infty}\Gamma_{2}^{n}\Gamma_{3}^{n}e^{-2nj\theta}$$
(2.12)

Esta série geométrica resulta em:

Se
$$\Gamma = \Gamma_1 + \frac{T_{12}T_{21}\Gamma_3 e^{-2j\theta}}{1 - \Gamma_2 \Gamma_3 e^{-2j\theta}}$$
 (2.13)

$$\left(\sum_{n=0}^{\infty} r^{n} = (1-r)^{-1}\right): \qquad \Gamma = \frac{\Gamma_{1} + \Gamma_{3} e^{-2j\theta}}{1 + \Gamma_{1} \Gamma_{3} e^{-2j\theta}}$$
(2.14)

Se $|\Gamma_1| \in |\Gamma_3|$ são pequenos, aproximamos $\Gamma = \Gamma_1 + \Gamma_3 e^{-2j\theta}$.

Isto quer dizer que para pequenas reflexões, o coeficiente de reflexão total resultante é igual àquele obtido levando-se em conta somente as reflexões de primeira ordem.

Esse resultado é que sustenta todo o modelo de primeira ordem que se desenvolveu para transformadores de quarto de onda e diversas seções.

2.4

Modelo para Transformadores de Quarto de Onda de Múltiplas Seções

O coeficiente de reflexão total de um transformador de quarto de onda devido às ondas refletidas de primeira ordem é:

$$\Gamma = \rho_0 + \rho_1 e^{-2j\theta} + \rho_1 e^{-4j\theta} + \dots + \rho_N e^{-2jN\theta}$$
(2.15)

Onde $e^{-2jN\theta}$ introduz o retardo de fase nas diversas ondas refletidas na estrutura.

No caso de implementação de transformadores simétricos ($\rho_0 = \rho_N$; $\rho_1 = \rho_{N-1}$; $\rho_2 = \rho_{N-2}$; etc.), o coeficiente de reflexão pode ser reescrito como:

$$\Gamma = e^{-jN\theta} \left[\rho_0 \left(e^{jN\theta} + e^{-jN\theta} \right) + \rho_1 \left(e^{j(N-2)\theta} + e^{-j(N-2)\theta} \right) + \dots \right]$$
(2.16)

Onde o último termo é $\rho_{(N-1/2)}(e^{j\theta} + e^{-j\theta})$ para N ímpar e $\rho_{(N/2)}$ para N par.

Das equações anteriores, pode-se afirmar que para um transformador simétrico, o coeficiente de reflexão Γ é dado por uma série de Fourier de co-senos:

$$\Gamma = 2e^{-jN\theta} \left[\rho_0 \cos N\theta + \rho_1 \cos(N-2)\theta + \dots + \rho_N \cos(N-2n)\theta + \dots \right]$$
(2.17)

Onde o último termo é $\rho_{(N-1/2)} \cos \theta$ para N ímpar e $\rho_{(N/2)}$ para N par.

Ou seja, a partir de uma escolha adequada do coeficiente de reflexão ρ_n e do correspondente Z_n , uma variedade de características de banda-passante pode ser obtida. Uma vez que a série é uma série de co-senos, a função deve ser periódica sobre o intervalo π , correspondente à faixa de freqüências sobre a qual o comprimento de cada seção do transformador varia de meio comprimento de onda.

2.4.1

Transformador Binomial

A característica de banda passante mais plana possível é obtida se $\rho = |\Gamma|$ e as primeiras (N-1) derivadas em relação à freqüência (ou θ) se anularem na freqüência de casamento f₀.

Essa característica é obtida se escolhermos:

$$\Gamma = A \left(1 + e^{-2j\theta} \right)^{N} \tag{2.18}$$

Para a qual:

$$\rho = \left|\Gamma\right| = \left|A2^{N}(\cos\theta)^{N}\right| \tag{2.19}$$

Para $\theta = 0$ ou π : $\Gamma = A2^{N}$; então:

$$A = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0}$$
(2.20)

Escrevendo a Eq. (2.18) na forma de uma expansão binomial, obtemos:

$$\Gamma = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} \sum_{n=0}^{N} C_n^N e^{-j2n\theta}$$
(2.21)

Onde os coeficientes são:

$$C_n^N = \frac{N(N-1)(N-2)...(N-n+1)}{n!} = \frac{N!}{(N-n)!n!}$$
(2.22)

Onde:

$$C_n^N = C_{N-n}^N; C_0^N = 1; C_1^N = N = C_{N-1}^N \dots etc$$
 (2.23)

Assim sendo, devemos escolher:

$$\rho_n = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} C_n^N = \rho_{N-n}$$
(2.24)

Se assumirmos que estamos implementando um transformador com pequenas reflexões, então ρ_n é pequeno, o que permite uma aproximação do tipo (para valores $0.5 Z_0 < Z_L < 2 Z_0$):

$$\ln \frac{Z_{n+1}}{Z_n} \approx 2 \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n} \approx 2 \rho_n = 2^{-N} C_n^N \ln \frac{Z_L}{Z_0}$$
(2.25)

$$\ln \frac{Z_{L}}{Z_{0}} \approx 2 \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$
(2.26)

A característica de banda passante mais plana possível é apresentada na Figura 2 a seguir.

Figura 2 – Curva típica de ρ para o caso binomial.

O ângulo θ_m relativo à condição $\rho = \rho_m$, onde ρ_m é o valor máximo desejado para ρ , é dado por:

$$\boldsymbol{\theta}_{m} = \cos^{-1} \left| \frac{2\boldsymbol{\rho}_{m}}{\ln \left(\frac{\boldsymbol{Z}_{L}}{\boldsymbol{Z}_{0}} \right)} \right|^{1/N}$$
(2.27)

E a largura de faixa normalizada é dada por:

$$\frac{\Delta f}{f_0} = \frac{2(f_0 - f_m)}{f_0} = 2 - \frac{4}{\pi} \cos^{-1} \left| \frac{2\rho_m}{\ln \left(\frac{Z_L}{Z_0} \right)} \right|^{1/N}$$
(2.28)

Figura 3 - Dependência de p em função do número de seções.

2.4.2

Transformador Chebyshev

Uma alternativa à implementação de transformadores com resposta mais plana possível do tipo Binomial, seria permitir que o coeficiente de reflexão variasse de maneira oscilatória, ao longo de uma banda passante, com o objetivo de otimizá-la para o maior valor possível. Esta característica é obtida fazendo-se ρ se comportar de acordo com um polinômio de Chebyshev. É possível anular ρ em tantas freqüências contidas na banda passante quantas forem as seções do transformador.

O polinômio de Chebyshev de grau n, $T_n(x)$, é um polinômio de grau n em x. Os quatro primeiros polinômios são:

$$T_1(x) = x \tag{2.29}$$

$$T_{2}(x) = 2x^{2} - 1$$
(2.30)
$$T_{2}(x) = 4x^{3} - 2$$
(2.31)

$$T_{3}(x) = 4x^{3} - 3x$$
(2.31)

$$T_{4}(x) = 4x^{3} - 3x$$
(2.32)

$$T_4(x) = 8x^4 - 8x^2 + 1$$
(2.32)

$$T_{n}(x) = 2 x T_{n-1}(x) - T_{n-2}(x)$$
(2.33)

Os polinômios T_n oscilam entre ±1 para x compreendido no intervalo $|x| \le 1$; e aumentam de amplitude para fora desse intervalo.

Se x é substituído por $\cos \theta$, temos:

$$T_n(\cos\theta) = \cos n\theta \tag{2.34}$$

Se considerarmos:

$$T_n\left(\frac{\cos\theta}{\cos\theta_m}\right) = \cos n\left(\cos^{-1}\frac{\cos\theta}{\cos\theta_m}\right)$$
(2.35)

O argumento será igual à unidade quando $\theta = \theta_m$ e inferior à mesma para $\theta_m < \theta < \pi - \theta_m$, confinando as flutuações de igual amplitude à banda-passante desejada.

Se considerarmos que $(\cos \theta)^n$ pode ser expandido em uma série de termos em $\cos \theta$, $\cos 2\theta$, ..., $\cos n\theta$, segue que :

$$\Gamma = 2e^{-jN\theta} \left[\rho_0 \cos(N)\theta + \rho_1 \cos(N-2)\theta + \dots + \rho_n \cos(N-2n)\theta + \dots \right]$$
(2.36)
= $Ae^{-jN\theta} T_N \left(\sec \theta_m \cos \theta \right)$

Onde A é uma constante a ser determinada.

Para $\theta = 0$, temos:

$$\Gamma = \frac{Z_1 - Z_0}{Z_1 + Z_0} = AT_N(\sec \theta_m) \implies A = \frac{Z_1 - Z_0}{(Z_1 + Z_0) T_N(\sec \theta_m)}$$
(2.37)

Conseqüentemente:

$$\Gamma = e^{-jN\theta} \frac{(Z_1 - Z_0)}{(Z_1 + Z_0)} \frac{T_N(\sec\theta_m \cos\theta)}{T_N(\sec\theta_m)}$$
(2.38)

Na banda passante, o valor máximo de T_n (sec $\theta_m \cos \theta$) = 1 ; assim:

$$\rho_{m} = \frac{Z_{1} - Z_{0}}{(Z_{1} + Z_{0}) T_{N}(\sec \theta_{m})}$$
(2.39)

Se a banda passante e θ_m são especificados, o valor de ρ_m na banda fica automaticamente delimitado a partir da Eq.(2.39).

$$T_{N}(\sec\theta_{m}) = \frac{Z_{l} - Z_{0}}{Z_{l} + Z_{0}} \rho_{m}^{-1}$$
(2.40)

Ou, para $\cos \theta = 1$:

$$\sec \theta_{m} = \cos \left(\frac{1}{N} \cos^{-1} \left(\frac{Z_{l} - Z_{0}}{Z_{l} + Z_{0}} \rho_{m}^{-1} \right) \right)$$
(2.41)

Resumindo:

Impedância das Seções do Transformador Chebyshev (Tchebyscheff)

$$\ln \frac{Z_{n+1}}{Z_n} = e^{-jN\theta} \frac{Z_L - Z_0}{Z_L + Z_0} \frac{T_n(\sec \theta_m \cos \theta)}{T_n(\sec \theta_m)}$$
(2.42)

Onde $T_n(x)$ é o Polinômio de Chebyshev de ordem n.

$$\ln \frac{Z_{n+1}}{Z_n} = e^{-jN\theta} \frac{Z_L - Z_0}{Z_L + Z_0} \frac{T_n(\sec \theta_m \cos \theta)}{T_n(\sec \theta_m)}$$
(2.43)

$$f_{\rm T} = \frac{(f_{\rm max} - f_{\rm min})}{(f_{\rm max} + f_{\rm min})}$$
(2.44)

Figura 4 – Dependência de ρ em função do número de seções para Chebyshev

Resultados para transformadores de até 6 seções (Alison, 1968):

1 Seção (N = 1)

$$Z_1 = \sqrt{Z_0 \times Z_L} \tag{2.45}$$

 $2 \; Seções \; (N=2)$

$$C_1 = \left(\frac{Z_L}{Z_O}\right)^{\frac{1}{(4-2\cos^2\theta)}}$$
(2.46)

$$Z_{1} = Z_{o} C_{1}$$
(2.47)
$$Z_{2} = \frac{Z_{L}}{C_{1}}$$
(2.48)

3 Seções (N = 3)

$$C_1 = \left(\frac{Z_L}{Z_O}\right)^{\frac{1}{\left(8 - 6\cos^2\theta\right)}}$$
(2.49)

$$Z_1 = Z_0 C_1$$
 (2.50)

$$Z_2 = \sqrt{Z_0 Z_L} \tag{2.51}$$

$$Z_3 = \frac{Z_L}{C_1}$$
(2.52)

$$C_{1} = \left(\frac{Z_{L}}{Z_{O}}\right)^{\left(16 - 16\cos^{2}\theta + 2\cos^{4}\theta\right)}$$
(2.53)

$$C_2 = C_1^{(5-4\cos^2\theta)}$$
(2.54)

$$Z_1 = Z_0 C_1$$
 (2.55)

$$Z_2 = Z_0 C_2$$
 (2.56)

$$Z_3 = \frac{Z_L}{C_2}$$
(2.57)

$$Z_4 = \frac{Z_L}{C_1}$$
(2.58)

5 Seções (N = 5)

$$C_{1} = \left(\frac{Z_{L}}{Z_{O}}\right)^{\frac{1}{(32 - 40\cos^{2}\theta + 10\cos^{4}\theta)}}$$
(2.59)

$$C_2 = C_1^{(6-5\cos^2\theta)}$$
(2.60)

$$Z_1 = Z_0 C_1 \tag{2.61}$$

$$Z_2 = Z_0 C_2 \tag{2.62}$$

$$Z_3 = \sqrt{Z_0 Z_L} \tag{2.63}$$

$$Z_4 = \frac{Z_L}{C_2}$$
(2.64)

$$Z_5 = \frac{Z_L}{C_1}$$
(2.65)

6 Seções (N = 6)

$$C_{1} = \left(\frac{Z_{L}}{Z_{O}}\right)^{\overline{(64-96\cos^{2}\theta+36\cos^{4}\theta-2\cos^{6}\theta)}}$$
(2.66)

$$C_2 = C_1^{(7-6\cos^2\theta)}$$
(2.67)

$$C_{3} = C_{2}^{(1+21\sin^{2}\theta - 9\sin^{2}\theta\cos^{2}\theta)}$$
(2.68)

$$Z_1 = Z_0 C_1 \tag{2.69}$$

$$Z_2 = Z_0 C_2$$
 (2.70)

$$Z_3 = Z_0 C_3$$
 (2.71)

$$Z_4 = \frac{Z_L}{C_3}$$
(2.72)

$$Z_5 = \frac{Z_L}{C_2}$$
(2.73)

$$Z_6 = \frac{Z_L}{C_1}$$
(2.74)