4. Apresentação e análise dos resultados

4.1. Modos de ruptura

Em todos os pilares a ruptura ocorreu bruscamente na região central do pilar (Figuras 4.1 a 4.8). Na face mais comprimida, se verificou visualmente o esmagamento do concreto e o posterior encurvamento das barras longitudinais entre os estribos.

Na Tabela 4.1 são apresentados os valores da força de ruptura F_u (valor máximo atingido no ensaio) e os correspondentes valores das deformações ε_c no concreto na face mais comprimida, as deformações ε_s na armadura na face tracionada e comprimida. São apresentados também os valores da resistência à compressão do concreto no dia da realização dos ensaios dos pilares, da tensão de escoamento das barras da armadura longitudinal e da excentricidade da força aplicada em relação ao eixo do pilar (excentricidade de primeira ordem).

Deve ser esclarecido que nos pilares C80-3.2 e C80-4.3 a excentricidade de primer ordem foi 3,0 cm devido às limitações de carga do atuador hidráulico.

Série	Pilar	f _c	fy	e ₁	Fu	Ec	<i>E</i> _s *(‰)	
		(Mpa)	(Mpa)	(cm)	(kN)	(‰)	tração	compr.
Serie I	C40 - 1.3	53,6	539	2,0	1235	-3,34	1,01	-3,43
	C40 - 2.1	49,1	547	2,0	1168	-2,38	0,81	-3,42
	C40 - 3.2	46,9	547	2,0	1147	-2,22	0,14	-1,84
	C40 - 4.3	48,7	547	2,0	1412	-4,42	1,05	-3,05
Serie II	C80 - 1.3	89,7	539	2,0	1769	-3,04	1,30	-2,57
	C80 - 2.1	83,2	547	2,0	1823	-3,05	1,42	-2,61
	C80 - 3.2	82,5	547	3,0	1783	-2,66	1,67	-2,70
	C80 - 4.3	79,0	547	3,0	1920	-3,53	1,11	-0,64

Tabela 4.1 - Resultados gerais dos pilares ensaiados

* Valores médios das duas barras de aço instrumentadas.

Figura 4.1 – Ensaio do pilar C40-1.3

Figura 4.2 – Ensaio do pilar C40-2.1

Figura 4.3 – Ensaio do pilar C40-3.2

Figura 4.4 – Ensaio do pilar C40-4.3

Figura 4.5 – Ensaio do pilar C80-1.3

Figura 4.6 – Ensaio do pilar C80-2.1

Figura 4.7 – Ensaio do pilar C80-3.2

Figura 4.8 – Ensaio do pilar C80-4.3

Nas figuras 4.9 e 4.10 são apresentadas vistas fotográficas da região central onde ocorre a ruptura dos pilares da série I e da série II, respectivamente.

a) Pilar C40 – 1.3

b) Pilar C40 – 2.1

c) Pilar C40 – 3.2 d) Pilar C40 – 4.3 Figura 4.9 – Vista da ruptura dos pilares da série I

a) Pilar C80 - 1.3

b) Pilar C80 - 2.1

C80 - 4.3

c) Pilar C80 – 3.2 d) Pilar C80 – 4.3 Figura 4.10 – Vista da ruptura dos pilares da série II

4.3. Curvas força-deformação

As curvas força-deformação dos pilares da série I estão mostradas nas Figuras 4.11 a 4.14, e as da série II nas Figuras 4.15 a 4.18. Essas curvas mostram que, em todos os pilares, a seção instrumentada permanece inteiramente comprimida até o valor da carga aplicada atingir aproximadamente 70% da carga de ruptura. A partir daí, devido ao crescimento do momento aplicado à seção causado pelo crescimento mais acentuado da excentricidade de 2ª ordem, um dos lados da seção passa a ser tracionado. Deve-se ressaltar que as deformações no concreto medidas pelo extensômetro E5 nesse lado tracionado só são válidas para valores inferiores àquele correspondente ao surgimento da fissura (0,002 a 0,003), pois, a partir daí, os extensômetros mediram a abertura da fissura.

Figura 4.12 – Curvas força – deformação no pilar C40 – 2.1

a) Deformação na armadura longitudinal
 b) Deformação no concreto
 Figura 4.14 – Curvas força – deformação no pilar C40 – 4.3

Figura 4.16 – Curvas força – deformação no pilar C80 – 2.1

Figura 4.18 – Curvas força – deformação no pilar C80 – 4.3

Nas figuras 4.19 e 4.20 são apresentadas a distribuição das deformações na seção média dos pilares da série I e série II respectivamente. Essas figuras foram traçadas com os valores das deformações no concreto, na face mais comprimida (E7), faces adjacentes (E4 e E6) e as deformações das armaduras na face tracionada (E0 e E1) e comprimida (E2 e E3).

Figura 4.19 – Distribuição de deformações na seção média dos pilares da série I

Figura 4.20 – Distribuição de deformações na seção média dos pilares da série II

4.4. Curvas carga-deslocamento

As curvas carga-deslocamento transversal medidos na seção média dos pilares encontram-se nas figuras 4.22 e 4.23. Essas figuras mostram ainda o deslocamento (e₂) calculado pelo método do pilar padrão com curvatura calculada em função dos valores experimentais da deformação do concreto e da armadura longitudinal, dadas na Tabela 4.1, pela expressão:

$$\delta_{(L/2)} = \frac{L^2}{10} \cdot \frac{\varepsilon_c - \varepsilon_s}{d}$$
(4.1)

d é a altura útil da seção, 13 cm para ϕ 10 e 12.7 cm para ϕ 16;

 ε_c é a deformação do concreto na face mais comprimida;

 ε_s é a deformação média das duas barras tracionadas.

4.4.1. Pilares da série I

Na figura 4.22 são mostradas as curvas força–deslocamento transversal dos pilares da série I. A curva azul representa os valores medidos e a vermelha os deslocamentos calculados pela expressão 4.1. Os valores $\delta_{T(L/2)}$ medidos são dados pela expressão 4.2, onde δ_{topo} é o deslocamento de corpo rígido no topo do pilar (figura 4.21).

Figura 4.21 - Deslocamento transversal no pilar

Em dois pilares a concordância entre valores experimentais e medidos foi excelente enquanto que nos outros dois os valores calculados foram menores do que os experimentais.

4.4.2. Pilares da série II

Os ensaios desta série foram realizados um atrás do outro sem interrupção para uma análise preliminar dos resultados. Ao final dos quatro ensaios, verificou-se que os diagramas carga-deslocamentos eram todos lineares (no topo, no meio do pilar e na base) nos quatro pilares o que não faz sentido. Algum erro foi cometido na conexão dos transdutores ou na identificação do canal (no software) a ser lido. Infelizmente, esses resultados tiveram de ser descartados.

Portanto, as curvas força-deslocamento apresentadas na figura 4.23 são apenas as curvas teóricas obtidas como nos pilares da série I.

4.5. Comparação entre resultados experimentais e teóricos

4.5.1. Excentricidades de 2ª ordem

Na figura 4.24 é feita a comparação entre as excentricidades de 2^a ordem experimentais e as teóricas calculadas:

a) pelo método do pilar padrão com curvatura aproximada da NBR6118:2003 calculadas pelas expressões 2.11 e 2.12 (Barras CA-NBR na fig.4.24).

b) pelo método do pilar padrão com curvatura calculada pela expressão 4.1
com as deformações medidas no concreto e no aço dadas na Tabela 4.1
(Barras CA na fig.4.24).

c) pelo método da rigidez aproximada da NBR6118:2003 (Barras RA-NBR na fig.4.24).

A figura 4.24 mostra que na série I (fc = 40 MPa) os valores das excentricidades de 2^a ordem obtidos pelos métodos *a*) e *b*) acima estão mais próximos dos valores experimentais, enquanto que o método da rigidez aproximada é o que fornece os menores valores de e_2 comparados aos valores experimentais. Portanto, no dimensionamento de um pilar, este método estaria contra a segurança. Quando se consideram as excentridades totais (Figura 4.25), entretanto, a diferença entre os resultados teóricos e experimentais diminui.

Foi feita também a mesma comparação entre as excentricidades de 2^a ordem experimentais obtidas nos ensaios de (LLOYD e RANGAN, 1996) e de (LEE e SON, 2000), (Ver Cap. 2) com as teóricas calculadas pelos métodos da NBR6118:2003 (Figuras 4.26 a 4.28). Nesses casos, os valores teóricos da excentricidade total estão bastante próximos dos valores experimentais (Figuras 4.27 e 4.29), com o método da rigidez aproximada também fornecendo os menores valores.

Figura 4.24 – Comparação entre as excentricidades de 2ª ordem

Figura 4.25 - Comparação entre as excentricidades totais

Figura 4.26 – Comparação entre as excentricidades de 2ª ordem (LLOYD e RANGAN, 1996)

Figura 4.27 - Comparação entre as excentricidades totais (LLOYD e RANGAN, 1996)

Figura 4.28 - Comparação entre as excentricidades de 2ª ordem (LEE e SON, 2000)

Figura 4.29 - Comparação entre as excentricidades totais (LEE e SON, 2000)

4.5.2 Resistência dos pilares

Para a comparação dos resultados foram construídos diagramas de interação $v - \mu$. Foram empregados os dados obtidos da caracterização do concreto e do aço apresentados nas tabelas 3.5 e 3.14, respectivamente. Os diagramas de interação foram calculados usando a relação tensão-deformação do concreto indicada pelo CEB-90 dada na figura 4.30.

Figura 4.30 – Diagrama tensão – deformação do concreto

A deformação última ε_{cu} é dada por:

$$\varepsilon_{cu} = -0.0035 \qquad \text{Para } f_c < 50 \text{ MPa} \qquad (4.3)$$
$$\varepsilon_{cu} = -0.0035 \cdot \left(\frac{50}{f_c}\right) \qquad \text{Para } 50 \text{ MPa} \le f_c \le 80 \text{ MPa} \qquad (4.4)$$

As tensões de compressão no concreto são determinadas pelas expressões:

$$\sigma_c = 0 \qquad \qquad \text{Para } \varepsilon_c > 0 \qquad (4.5)$$

$$\sigma_{c} = f_{c} \cdot \left[2 \cdot \left(\frac{\varepsilon_{c}}{0.002} \right) - \left(\frac{\varepsilon_{c}}{0.002} \right)^{2} \right] \qquad \text{Para -} 0.002 < \varepsilon_{c} \le 0 \tag{4.6}$$

$$\sigma_c = -f_c \qquad \text{Para } \varepsilon_{cu} \le \varepsilon_c \le -0.002 \qquad (4.7)$$

Os parâmetros adimensionais utilizados nos diagramas são:

Taxa mecânica de armadura

$$\omega = \frac{A_s f_y}{b h f_c} \tag{4.8}$$

Força normal

$$v = \frac{F}{bhf_c} \tag{4.9}$$

Momento fletor

$$\mu = \frac{F \cdot e}{bh^2 f_c} \tag{4.10}$$

onde a excentricidade *e* é a soma da excentricidade de 1^a ordem (e₁), mais excentricidade de 2^a ordem (e₂) que é igual a $\delta_{(L/2)}$, dada na expressão 4.1.

 $e = e_1 + e_2 \tag{4.11}$

Na tabela 4.2 observam-se os resultados adimensionais dos pilares para a força de ruptura e a força correspondente ao escoamento da armadura mais comprimida.

Série	Pilar	ω	Ruptura				Escoamento			
			Fu	e	ν_{u}	μ_{u}	Fy	ey	ν _y	μ_{y}
Ι	C40 - 1.3	0,13	1235	5,12	-0,61	0,21	1215	4,53	-0,60	0,18
	C40 - 2.1	0,24	1168	5,50	-0,63	0,23	1151	4,76	-0,63	0,20
	C40 - 3.2	0,37	1147	5,48	-0,65	0,24	-	-	-	-
	C40 - 4.3	0,48	1412	6,18	-0,77	0,32	1405	5,70	-0,77	0,29
II	C80 - 1.3	0,08	1769	5,25	-0,53	0,18	-	-	-	-
	C80 - 2.1	0,14	1823	5,43	-0,58	0,21	-	-	-	-
	C80 - 3.2	0,21	1783	6,32	-0,58	0,24	-	-	-	-
	C80 - 4.3	0.30	1920	6,56	-0,65	0,28	-	-	-	-

Tabela 4.2 – Resultados adimensionais dos pilares ensaiados

Nas figuras 4.31 e 4.32 apresentam-se os diagramas de interação $v - \mu$ dos pilares da série I e da série II, respectivamente. São traçados também os valores experimentais da ruptura e o escomento, apresentados na tabela 4.2.

Como se observa na figura 4.31 da série I, em todos os pilares os valores experimentais correspondentes à ruptura e escoamento da armadura encontram-se fora do diagrama de resistências teóricas, excepto no pilar C40-3.2 que rompeu antes que as barras de aço atingissem a deformação de escoamento.

Figura 4.31 – Diagrama de interação ν – μ e dados experimentais da série I

Na figura 4.32 mostram-se os diagramas de interação $v - \mu$ da série II. Observa-se que todos os pilares tiveram resistências experimentais maiores que as teóricas. A ruptura destes pilares se deu antes que as barras de aço mais comprimidas alcançassem a deformação de escoamento.

Figura 4.32 – Diagrama de interação $v-\mu$ e dados experimentais da série II