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2 

A questão da restrição na aleatorização e a utilização de 

Modelos mistos 

 

 

 

 

Neste capítulo é apresentada inicialmente a questão da restrição na 

aleatorização em planejamento de experimentos, e em seguida é descrito o 

procedimento experimental split-plot. Além disso, é abordada a utilização de 

modelos mistos como uma solução para a estimação dos parâmetros quando 

ocorre restrição na aleatorização durante as rodadas do experimento. Para isso, é 

detalhada a modelagem mista, incluindo a estimação dos parâmetros de efeitos 

fixos, efeitos aleatórios e a estimação dos componentes da variância. 

 

 

 

2.1   

Restrição na aleatorização  

Em um experimento planejado, normalmente assume-se que as rodadas 

são realizadas de forma completamente aleatorizadas. Isso significa que as 

corridas são executadas de forma aleatória, e os níveis dos fatores são 

reinicializados em cada uma das rodadas do experimento. Quando pelo menos 

uma dessas características não ocorre, dizemos que há restrição na aleatorização. 

A questão da restrição na aleatorização é natural nos experimentos que 

envolvem blocos. Nessas situações, os blocos surgem como componentes 

necessários do planejamento experimental. Porém, o uso de blocagem padrão não 

é a única fonte de restrição na aleatorização. Em algumas vezes, um experimento 

que é definido, pela sua eficiência, como completamente aleatorizado, deveria 

utilizar um formato de ‘restrição à aleatorização’, devido a considerações práticas. 

Tais considerações dizem respeito a fatores que possuem níveis difíceis de mudar, 
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ou difíceis de controlar, e com isso não são reinicializados nas sucessivas rodadas 

do experimento (Myers & Montgomery, 2002). 

Segundo Webb et al. (2004), é muito comum, na indústria, os níveis dos 

fatores não serem reinicializados de uma rodada para a outra, em um experimento. 

As principais causas de não reinicializar os níveis dos fatores são tempo e custo. 

Segundo registros dos autores, pelo menos um fator não é reinicializado na 

maioria dos experimentos. E dessa forma, algumas vezes são utilizadas técnicas 

como blocagem ou split-plot para tratar dos fatores que não foram reinicializados. 

Quanto à estimação dos parâmetros, o fato dos níveis de um ou mais 

fatores serem os mesmos em sucessivas rodadas pode acarretar a quebra da 

premissa de independência, o que faz com que o método dos mínimos quadrados 

ordinários produza estimadores viesados, gerando testes e inferências incorretos 

(Webb et al., 2004). Além disso, a não reinicialização dos níveis dos fatores – em 

sucessivas rodadas – gera perda de precisão na estimativa dos parâmetros e 

variância maior do que a esperada. 

Ju e Lucas (2002) estudaram experimentos com estrutura fatorial onde 

nem todos os fatores são reinicializados nas sucessivas rodadas do experimento. 

Como mencionado anteriormente, a não reinicialização acarreta uma restrição na 

aleatorização. Com isso, um experimento completamente aleatorizado não é 

atingido mesmo quando o experimento é conduzido usando-se uma ordem 

aleatória nas rodadas. Segundo Ju e Lucas (2002), a restrição na aleatorização 

mais comum ocorre quando o experimento é executado em ordem aleatória, mas 

nem todos os fatores são reinicializados em cada rodada. Isso acontece 

principalmente devido à presença de fatores cujos níveis são difíceis de mudar. 

Em linhas gerais, podemos considerar dois tipos de fatores em relação à facilidade 

de mudar os níveis. São eles: fatores fáceis de mudar e fatores difíceis de mudar. 

O fator fácil de mudar é definido como sendo o fator cujos níveis são 

estabelecidos de forma independente em cada rodada do experimento, ou como o 

fator que não necessita ser reinicializado. Já o fator difícil de mudar é definido 

como o fator cujos níveis não são reinicializados em sucessivas rodadas que 

possuem o mesmo nível para o fator. Normalmente, o fator difícil de mudar leva 

mais tempo e consome mais recursos, sendo mais caro para ser reinicializado do 

que o fator fácil de mudar. 
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Segundo Myers & Montgomery (2002), um experimento completamente 

aleatorizado é, geralmente, muito difícil de ser conduzido. Torna-se praticamente 

inviável quando existem fatores cujos níveis são difíceis de mudar ou difíceis de 

controlar. Um exemplo é o fator temperatura. Em experimentos fatoriais de dois 

níveis, é conveniente e mais barato executar o experimento em que sejam 

realizadas, primeiramente, as rodadas em baixa temperatura, e posteriormente em 

alta temperatura. Isso eliminaria ter que por a temperatura de volta e esquentar o 

forno de acordo com a ordem do esquema atribuído na aleatorização. Em muitas 

aplicações existem fatores que são difíceis de mudar. 

 

 

2.1.1  

Estruturas Split-Plot 

Existem ocasiões em que a dificuldade em mudar um ou mais fatores 

requer o uso da estrutura split-plot (Myers & Montgomery, 2002). Tal estrutura 

envolve fatores cujos níveis são atribuídos aleatoriamente aos whole plots (ou 

main plots), e outros fatores com seus níveis atribuídos aleatoriamente aos 

subplots. Os subplots ficam aninhados no interior dos whole plots, tal que um 

whole plot consiste em um cluster de subplots, e um nível de um desses fatores do 

whole plot é aplicado ao cluster inteiro. Os fatores difíceis de mudar têm seus 

níveis atribuídos aleatoriamente aos whole plots. Os fatores que não são difíceis 

de mudar têm seus níveis atribuídos aleatoriamente às unidades experimentais do 

subplot. Como resultado, cada whole plot recebe somente um nível do fator difícil 

de mudar, mas todos os níveis dos fatores que não são difíceis de controlar. Como 

tal estrutura fatorial envolve restrição na aleatorização, não se trata de um 

experimento completamente aleatorizado.  

Em uma estrutura split-plot com replicação é necessário, inicialmente, 

testar os efeitos do whole plot e do subplot. Para isso, as duas médias quadráticas 

dos erros são usadas separadamente. Se a replicação for uma opção prática, então 

os testes de significância das variáveis podem ser realizados pelo uso de dois 

termos de erro (erro do whole plot e do subplot). E com isso, a estimação dos 

coeficientes da regressão é afetada pela existência de dois componentes da 
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variância ( 2  e 2

 ), onde 2  é a variância do erro do sub-plot e 2

  é variância 

do erro do whole plot. Para ilustrar os problemas associados com a estimação do 

modelo sob a estrutura split-plot, considere o modelo da equação na forma 

matricial, a seguir: 

                                             V)β),x,(μ~y (N                                          (2.1) 

onde V = var(y) é a matriz de variância-covariância da resposta y. Vale ressaltar 

que quaisquer duas observações no mesmo whole plot não são independentes. 

Elas têm covariância 2

  porque compartilham o mesmo componente de erro. E 

quaisquer duas observações em diferentes whole plots são independentes. A forma 

da matriz V é dada por: 
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                                           (2.2) 

onde bbδbb σσ²   11

2
1'1ITi , onde a é o número de whole plots, b 

representa os níveis do sub-plot, e: 

2  = variância do erro sub-plot 

2

  = variância do erro whole plot. 

Então, a estimativa dos parâmetros é dada por: 

yVXX)V(Xb 1'11'                                       (2.3) 

onde X é a matriz das variáveis regressoras e V é matriz de variância-covariância 

na Equação 2.1. Os estimadores na Equação 2.3 são estimadores de mínimos 

quadrados generalizados que são apropriados quando V  
2 . Infelizmente, a 

Equação 2.3 não pode ser usada diretamente, pois o analista não tem 

conhecimento de 
2  e 2

  e por isso não pode calcular V. Ou seja, enquanto que 

a estrutura split-plot resulta em um conveniente meio de experimentação, os 

aspectos da análise da regressão se tornam complicados devido à presença de 

observações correlacionadas. Sendo assim, o princípio da estimação por mínimos 

quadrados generalizados, descrito na Equação 2.3, sugere o uso da abordagem de 

modelos mistos para estimar 
2  e 2

 . 
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2.2   

Modelos lineares mistos (LMM) 

Os modelos mistos são utilizados para descrever dados de experimentos 

cuja estrutura de tratamentos envolve fatores fixos e aleatórios. Ou seja, são 

modelos que permitem que se trabalhe com ambos os efeitos fixos e aleatórios em 

um modelo linear que possui uma variável resposta contínua. 

Um modelo linear padrão é construído para tratar de efeitos fixos, no qual 

os níveis do fator representam todos os níveis possíveis para aquele fator, ou todos 

os níveis em que inferências serão feitas. Por outro lado, os efeitos são 

considerados aleatórios se os níveis dos fatores em um estudo são aleatoriamente 

selecionados de uma população de possíveis níveis daquele fator. Nesse caso, a 

população de possíveis níveis de um efeito aleatório tem uma distribuição de 

probabilidade, com determinada média e variância. Ao modelar ambos os fatores, 

fixos e aleatórios, os modelos mistos fornecem a flexibilidade de não modelar 

somente a média, como em um modelo linear padrão, mas também as variâncias e 

covariâncias.  

Além disso, os modelos lineares mistos trabalham com dados onde as 

observações não são independentes, como ocorre quando há medidas repetidas. 

Ou seja, o LMM corrige modelos com erros correlacionados.  

Existem duas vertentes distintas no desenvolvimento de modelos mistos. A 

primeira ocorreu em planejamento de experimentos, onde a introdução da 

estrutura split-plot conduziu a modelos com alguns componentes de erro. Nesse 

caso, o maior interesse está na inferência sobre médias, ou seja, nos efeitos dos 

tratamentos (Lee et al., 2006). A segunda vertente surgiu em modelos de 

componentes da variância, onde os dados são desbalanceados, e o interesse não 

está centrado nas variâncias dos efeitos aleatórios, porém na estimação dos 

próprios efeitos aleatórios.  

 

 

DBD
PUC-Rio - Certificação Digital Nº 0812717/CA



 

 

23 

2.2.1   

Representação matricial dos modelos mistos  

Seja y um vetor de observações referente à variável resposta, de dimensão 

N x 1, e seja X matriz dos regressores de efeitos fixos, conhecida, de dimensão N 

x p, e Z matriz de regressores de efeitos aleatórios, conhecida, de dimensão N x q. 

Seja ainda β  o vetor de efeitos fixos, desconhecido, de dimensão p x 1 e υ  vetor 

de efeitos aleatórios, desconhecido, de dimensão q x 1.  

O modelo linear misto padrão pode ser representado por: 

eZυXβy        (2.4) 

onde ),0(~ Re N , ),0(~ Dυ N , e υ  e e são independentes. Sendo que e é vetor 

de erros aleatórios não observáveis, de dimensão N x 1.  

 Podemos escrever também: 

ZυXβυ]|E[y  , 

significando que para o υ  realizado, a equação acima representa a média 

condicional (McCulloch & Searle, 2001).  

 Para especificar var(y), usamos var( υ )=D e definimos 

Rυ)|(y var  

 Com isso, temos:   

),(~ RZZDXβy  , 

mostrando que os efeitos fixos entram apenas na média enquanto que a matriz de 

regressores de efeitos aleatórios e matriz de covariância dos efeitos aleatórios 

entram na variância de y. Ou seja, em modelos lineares mistos, os efeitos fixos são 

usados para modelar a média de y, enquanto que os efeitos aleatórios governam a 

estrutura de variância-covariância de y. De fato, a principal razão de se usar 

efeitos aleatórios é simplificar a dificuldade de especificação de N(N+1)/2 

elementos distintos da var(yNX1). Sem usar efeitos aleatórios, teríamos que lidar 

com os elementos de var(y) com uma variedade de formas. Porém, com o uso de 

efeitos aleatórios podemos lidar com variâncias e covariâncias atribuíveis a 

fatores reconhecidos em estarem afetando os dados. Uma vez que os dois tipos de 

efeitos (fixos e aleatórios) são diferentes e são tratados de forma diferente quando 

os dados são analisados, devemos decidir, para cada fator, quando ele deve ser 

considerado fixo ou aleatório. 
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Nos modelos mistos, três aspectos são fundamentais: estimação e testes de 

hipóteses dos efeitos fixos, predição dos efeitos aleatórios e estimação dos 

componentes de variância. 

 

 

2.2.2  

Estimação dos efeitos fixos  

Considerando, V)(Xβ~y ,N ,  

o logaritmo da verossimilhança é 

π2log
2

N
log   V

2

1
μ)(yV)μ(y

2

1 1 .                           (2.5) 

Tomando a derivada do log da verossimilhança em relação a θ , temos: 

μ)(yV 1 







 
, 

com Xβμ  e βθ  . Substituindo na derivada e igualando a zero, com β  

representado por 0β tem-se 

yVXXβVX 101    

 tal que 

yVX'X)V(X'β 110                                              (2.6). 

 Como 0β  varia com 
X)V(X'

1 , limitamos a atenção em 0
Xβ que é 

invariante, uma vez que 11 VX'X)V(X'   o é. Dessa forma, 

yVX'X)VX(X'(Xβ 11 )ML                                    (2.7) 

é o estimador de máxima verossimilhança de Xβ , e assim, 0
Xβλ é o estimador 

de máxima verossimilhança de Xβλ para  qualquer  . 

 Com var(y) = V pode-se ver que 

XX)VX(X'VX'X)VX(X')(Xβ '1110  var . 

Uma vez que '1X)V(X'  é uma inversa generalizada de X)V(X' 1 , e 

também por causa da propriedade da invariância mencionada anteriormente,  

X'X)VX(X')(Xβ 10 var . 
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 Para testar a hipótese nula m:H0 XβS , onde Spossui rank completo 

( Xs rr  ), a estatística de qui-quadrado pode ser obtida usando-se 

m)XβS(S]XX)VX(X'S[)mXβS( 0110  2X . 

Sob H0, X² tem distribuição 2 com rS = rank(S) graus de liberdade. 

Mais tipicamente, V é conhecida por um múltiplo escalar. Para simplificar 

a notação, escrevemos V em termos de uma matriz de pesos W, que é a inversa de 

V de acordo com o múltiplo escalar, ou seja, 1
WV

 2σ , onde W é conhecido. 

Nesse caso, a estatística a seguir pode ser obtida como um teste de razão de 

verossimilhança: 

2̂sr
F

m)XβS(S]XWX)X(X'S[)mXβS(
010 




 

onde 

XrN 





W]yXWX)WX(X'[Wy2̂  

Sob a hipótese nula, F tem uma distribuição F com rS e N – rX  graus de 

liberdade. 

 Quando V  for desconhecido, a função log de verossimilhança   de 2.5 

tem que ser maximizada em relação aos elementos de μ  e V. Para Xβμ  e 

βθ  , fixando 


  igual a zero, chegaremos ao mesmo resultado encontrado 

para 0β em (2.6), somente quando V for estimado por V̂  a partir da maximização 

  em relação aos parâmetros em V. Dessa forma, o estimador de Xβ será 

yˆˆˆ)(ML 11
VX'X)VX(X'βXXβ

 . 

 Uma dificuldade é que (2.7) requer V = var(y), ou seja, envolvem os 

componentes de variâncias. Em muitas situações práticas os componentes de 

variância não são conhecidos. Nesses casos, uma estratégia interessante e 

conveniente consiste em obter estimativas dos componentes de variância, que 

serão utilizadas em lugar dos componentes em V. Então, substitui-se V por V̂ e 

assim tem-se:  

BLUE yVX'X)VX(X'βX
11  ˆˆˆ . 

Ou seja, na análise do modelo linear misto tem-se, em geral, interesse na 

estimação e testes de hipóteses dos efeitos fixos. Entretanto, para a estimativa de 
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uma função estimável dos parâmetros de efeitos fixos, no modelo misto, é 

necessário o conhecimento das estimativas dos componentes de variância. Assim 

as estimativas dos parâmetros de efeitos fixos, no modelo misto, dependem 

diretamente dos métodos utilizados na obtenção das estimativas dos componentes 

de variância (McCulloch & Searle, 2001). 

 

 

2.2.3   

Predição dos efeitos aleatórios 

As suposições acerca dos efeitos aleatórios diferem das suposições dos 

efeitos fixos, e com isso o tratamento dos dois tipos de efeitos não é o mesmo. Um 

efeito fixo é considerado uma constante, que queremos estimar. Mas um efeito 

aleatório é considerado como apenas um efeito vindo de uma população de 

efeitos. Para enfatizar essa diferença, usamos o termo ‘predição de efeitos 

aleatórios’ ao invés de ‘estimação’ (McCulloch & Searle, 2001). 

Usando a suposição que os efeitos aleatórios realizados, que determinam 

os dados, são apenas uma seleção aleatória da população de efeitos aleatórios, a 

melhor predição (a que minimiza a média do quadrado dos erros de predição) para 

um efeito aleatório é a média condicional ]|[ yυE . 

Voltando ao caso geral onde, 

RZZDVV),(Xβ~y para, , 

e assumindo que y e υ  seguem uma distribuição Normal conjunta, temos a 

esperança condicional ]|[ yυE , 

)]|[ Xβ(yVZDyυE 1   . 

Substituindo β  por yVXX)VX(β 1110   , temos o melhor preditor 

linear não viesado (BLUP) de υ  sob normalidade. Escrevemos então 

)~ Xβ(yVZDυ 1    

PyZDXβ(yVZDυ 10   )~ 0 . 

E temos ZDVZDυ 1)~var(  e PZDZDυ0 )~var( . 

Quando D e V são conhecidos, o cálculo de υ~  não apresenta dificuldades 

e pode ser encontrado utilizando-se as equações do modelo misto. 
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Resolvendo o sistema de equações, obtêm-se as soluções para os efeitos 

fixos 0β  e predições para os efeitos aleatórios υ~ . Para tal desenvolvimento 

assume-se que V é conhecida. Quando isso não ocorre, D e V são estimadas por 

D̂  e V̂ , utilizando-se um dos métodos disponíveis, como o método da máxima 

verossimilhança (ML), ou o método da máxima verossimilhança restrita (REML). 

E as soluções podem ser escritas como: 





































)Xβ(yVZD

yVXX)VX(

υ

β
01

110

ˆ

ˆˆ

~                                                      (2.8) 

Assim, utilizando-se as expressões apresentadas em (2.8) obtém-se as 

estimativas dos efeitos fixos e as predições dos efeitos aleatórios, 0β  e υ~ , 

respectivamente. No caso de υ~ , o resultado é o chamado melhor preditor 

estimado não viesado (BLUP), representado por: 

yPZDβX(yVZDυ
1 ˆˆ)ˆˆˆˆ   . 

Um aspecto interessante das equações de modelo misto é que elas podem 

ser utilizadas em procedimentos iterativos para os cálculos das estimativas de ML, 

e REML, dos componentes de variância. 

 

 

2.2.3.1   

Quando devemos usar efeitos aleatórios? 

O modelo iijiij njqiey ,...,1,,...,1,    será o mesmo se 

assumirmos os i   sendo parâmetros fixos ou aleatórios. Então, quando devemos 

assumir os efeitos como aleatórios? 

Uma regra comum é que os efeitos são assumidos como fixos se o 

interesse está na inferência de valores específicos dos efeitos. Porém, acredita-se 

que essa é uma visão errada, pois implica que não é importante estimar os efeitos 

aleatórios. De fato, existem muitas aplicações onde existem interesses nos efeitos 

aleatórios. Existem, também, aplicações onde acreditamos que a resposta dependa 

de alguns fatores, mas nem todos são conhecidos ou mensuráveis. Essas variáveis 

DBD
PUC-Rio - Certificação Digital Nº 0812717/CA



 

 

28 

desconhecidas são normalmente modeladas como efeitos aleatórios. Quando 

medidas repetidas são obtidas de uma observação, o efeito aleatório é uma 

variável comum não observável para cada observação e é responsável pela criação 

de uma dependência ente as medições repetidas. Esses efeitos aleatórios devem 

ser considerados como uma amostra de alguma distribuição populacional 

convenientemente definida (Lee & Nelder, 2006). 

 

 

2.2.4  

Estimação dos componentes da variância  

Na análise de modelos lineares mistos, a estimação dos componentes de 

variância é de fundamental importância, pois tanto a predição dos efeitos 

aleatórios quanto à estimação dos efeitos fixos depende dessa estimação. Ou seja, 

para a obtenção do estimador (BLUE) de X e do BLUP de υ , é necessária a 

estimativa dos componentes de variância.  

O componente da variância é estimado para o fator, somente quando ele é 

considerado efeito aleatório. Isto reflete uma das diferenças entre efeitos fixos e 

aleatórios. Para os efeitos aleatórios nós queremos não apenas prevê-los, como 

também estimar suas variâncias. A variação nos níveis de um fator aleatório é 

assumida como sendo representativa da variação de toda a população de possíveis 

níveis. Dessa forma, variações nos níveis dos fatores aleatórios podem ser usadas 

para estimar a variação na população.  

A variação nos níveis dos fatores fixos é considerada arbitrariamente 

determinada pelo experimentador, ou seja, o experimentador pode fazer os níveis 

de um fator fixo variarem muito ou pouco como desejado. Sendo assim, a 

variação do fator fixo não pode ser usada para estimar a variância da população. 

Essas duas distinções básicas entre efeitos fixos e efeitos aleatórios são 

importantes para se conhecer melhor as propriedades dos componentes da 

variância. 

Diversos métodos têm sido propostos para estimar os componentes de 

variância, destacando-se o método da máxima verossimilhança (Maximum 

Likelihood: ML) devido a Hartley & Rao (1967); o método da estimação 

quadrática não-viesada de variância mínima (Minimum Variance Quadratic 
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Unbiased Estimation: MIVQUE) descrito em Rao (1971), e o método da máxima 

verossimilhança restrita (Restricted Maximum Likelihood: REML) descrito por 

Patterson & Thompson (1971). 

A idéia básica por trás da estimação por REML e ML é encontrar um 

conjunto de pesos para os efeitos aleatórios no modelo, que maximize o valor 

negativo do logaritmo natural da verossimilhança dos dados (a verossimilhança 

dos dados pode variar de 0 a 1, então minimizando o valor negativo do logaritmo 

natural vezes a verossimilhança dos dados significa maximizar a probabilidade, ou 

verossimilhança, dos dados).  

A estimação dos componentes da variância pelos vários métodos 

mencionados é similar. Componentes da variância REML e ML são estimados 

otimizando-se iterativamente a estimativa dos parâmetros para os efeitos no 

modelo. Os métodos de estimação dos componentes da variância REML e ML 

estão relacionados ao MIVQUE. De fato, nos programas, REML e ML utilizam 

as estimativas do MIVQUE como valores iniciais para uma solução iterativa para 

os componentes da variância (Iemma & Perri, 1999). 

O método REML difere do ML pelo fato da verossimilhança dos dados ser 

maximizada somente para os efeitos aleatórios. Sendo assim, REML é chamado 

de solução restrita. Em ambos, REML e ML, uma solução iterativa é encontrada 

para os pesos dos efeitos aleatórios, no modelo, que maximiza a verossimilhança 

dos dados. A seguir, serão tratados, com um maior detalhamento, os métodos ML 

e REML. 

 

 

2.2.5   

Método da máxima verossimilhança: ML 

Hartley & Rao (1967) aplicaram o método da máxima verossimilhança ao 

modelo misto geral. Tal método consiste em maximizar a função de 

verossimilhança em relação aos efeitos fixos e aos componentes de variância. 

Assim, para o modelo misto (2.4), assumindo y ~ N (X, V), a função de 

verossimilhança é: 
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



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
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))exp2 2 Xβ(yVXβ(y
2

1
V)(

1
2

1n

πL  

, onde |V| é o determinante da matriz V. 

O logaritmo da função de verossimilhança é dado por: 

))
2

1
log

2

1
2log

2

1
log Xβ(yVXβ(yV( 1  π)L             (2.9) 

Assim, - 2 log da função de verossimilhança (2.9) é  

                 π)(nL 2logloglog2  
)Xβ(yV)Xβ(yV

1     (2.10) 

Minimizando essa expressão com respeito a , tem-se: 

yVX'X)V(X'β
11  ˆˆˆ  

com β̂ e V̂ representando as estimativas ML de  e V, respectivamente. 

Substituindo β̂  na expressão (2.10), tem-se 

        )βX(yV)βX(yV(2π
1 ˆˆˆˆlog)loglog2  nL             (2.11) 

Minimizando-se essa função em relação à todos os parâmetros 

desconhecidos, obtém-se um sistema de equações cuja solução fornece as 

estimativas ML. 

Essas equações são não lineares e resolvidas numericamente, em geral, 

por processos iterativos como o algoritmo de Newton-Raphson. O processo é 

repetido até que o critério de convergência adotado seja satisfeito. Assim, o 

método da máxima verossimilhança supõe normalidade dos dados, é iterativo e 

fornece estimativas não-negativas de componentes de variância, mas estas são 

viesadas, pois o método não considera a perda de graus de liberdade resultante da 

estimação dos efeitos fixos do modelo (Iemma & Perri, 1999). 
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2.2.6   

Método da máxima verossimilhança restrita: REML 

Patterson & Thompson (1971) propuseram uma modificação do método 

da máxima verossimilhança para modelos mistos.  

Os estimadores REML são obtidos maximizando-se a parte da função de 

verossimilhança que é invariante ao parâmetro de locação, isto é, em termos do 

modelo misto y = X + Z + e, invariante a X Em outras palavras, os 

estimadores REML maximizam a função de verossimilhança de um vetor de 

combinações lineares das observações que são invariantes a X. Seja K’y esse 

vetor. Então K’y = K’X + K’Z + K’e é invariante a X se e somente se K’X 

=.  

Com y ~ N(X, V), tem-se que para K’X= , K’y ~ N(, K’VK). As 

equações REML também podem ser deduzidas das equações ML substituindo-se: 

y por K’y, X por K’X = 0, Z por K’Z, V por K’VK. 

O método REML é implementado construindo-se a função - 2 log LR. 

Assim, para a estimação REML, -2 log da função de verossimilhança restrita é 

 )2logˆˆloglog2 π(k)(nLR  
)βX(yV)βX(yV

1         (2.12) 

onde k é o rank da matriz X e yVXX)VX(β
11   ˆˆˆ , com β̂ e V̂  

representando as estimativas REML de e V, respectivamente. 

O método REML tem sido considerado o preferido para estimar 

componentes de variância de dados desbalanceados. As razões para essa 

preferência são justificadas pelas propriedades desses estimadores. 

O método REML supõe normalidade dos dados, é iterativo e fornece 

sempre estimativas não negativas dos componentes de variância, assim como o 

método ML. No entanto, considera a perda de graus de liberdade devido aos 

efeitos fixos, fornecendo estimadores não viesados e de variância mínima para 

dados balanceados. 

A principal diferença entre os métodos ML e REML é que o ML usa a 

função de verossimilhança de y ou o logaritmo desta função, enquanto o REML 

adota a função de verossimilhança de K’y, um vetor de combinações lineares das 

observações (com esperança nula) que representa efetivamente as observações 

ajustadas para os efeitos fixos (Iemma & Perri, 1999). 
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Vale ressaltar que para ambos os métodos de estimação utilizados, a 

estimação dos componentes de variância irá depender da estrutura de covariâncias 

adotada.  

 

 

2.2.7   

Estruturas gerais de covariâncias 

Conforme abordado anteriormente, a análise de modelos mistos envolve a 

análise da parte fixa e a análise da parte aleatória. Se existirem fatores aleatórios ou 

medidas repetidas, o pesquisador deve especificar o tipo de estrutura de covariância. 

O tipo de estrutura de covariância especificado é usado como um ponto de partida 

nos algoritmos REML e ML, para a estimação dos parâmetros. Em outras palavras, a 

estimação dos componentes de variância depende da estrutura da matriz D e do 

método de estimação utilizado. Especificando o tipo de estrutura de covariância, o 

pesquisador estará informando ao algoritmo a forma da matriz de covariância 

existente entre os termos aleatórios. Por exemplo, uma matriz de covariância onde 

apenas a diagonal principal é diferente de zero significa que as observações são 

independentes. 

Várias estruturas de covariâncias podem ser especificadas para a matriz D, 

no software S-Plus, como por exemplo: identidade, diagonal, simetria geral, 

simetria composta, dentre outras. A seguir são detalhadas algumas dessas 

estruturas. 

 

Alguns tipos de estrutura de covariância (da matriz D): 

- Identidade. Também chamada de ‘componentes da variância’, ‘estrutura 

simples’ ou ‘modelo independente’, porque a variância dos resíduos é 

independente das variâncias do efeito. Dessa forma, estrutura de 

componentes da variância assume que a correlação de qualquer par de 

medidas repetidas é igual não importando o quão distante estão. Esse tipo 

de estrutura associa uma matriz identidade com cada efeito aleatório. 
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- Diagonal. Esta estrutura de covariância apresenta variâncias diferentes (o 

que não ocorre com a estrutura ‘componentes da variância’) e correlação 

zero entre os elementos. Com isso, o pesquisador está assumindo que 

diferentes categorias da variável de efeito aleatório têm diferentes 

variâncias na variável dependente.  
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Para escolher o melhor tipo de estrutura de covariância, podem ser 

utilizadas as estatísticas de qualidade do ajuste (AIC e BIC, por exemplo). 

O software S-Plus além de oferecer várias opções para a estrutura de 

covariâncias da matriz D, também permite uma especificação geral da matriz de 

covariâncias dos erros. Isso é feito em duas etapas:  

(1) especificando a função de variância, onde o objetivo é modelar a 

heterocedasticidade dos termos de erro dentro do grupo;  

(2) determinando a estrutura de correlação, no qual o objetivo é 

modelar a correlação dentro do grupo, não capturada pelos efeitos 

aleatórios. Dessa forma, tal modelagem permite que os componentes de 

erro sejam correlacionados. 

 As funções disponíveis para os tipos de função de variância dentro do 

grupo no software S-Plus são, dentre outras: 

- Identidade: variâncias diferentes por níveis de um fator; 

- Fixed: pesos fixos determinados por uma covariante. 

- Exponencial: exponencial de uma covariante; 

- Combination: combinação de funções de variância. 

 Quanto às estruturas de correlação disponíveis, temos, dentre outras: 

- AR(1): estrutura auto-regressiva de primeira ordem com variância 

homogênea; 
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- Simetria composta: corresponde a uma correlação constante; 

- Simetria geral: matriz de correlação geral, sem estrutura adicional; 

- Exponencial: correlação exponencial espacial; 

- Linear: correlação linear espacial. 

Assim como na estrutura de covariância, para selecionar a melhor estrutura 

de correlação, podem ser utilizadas as estatísticas de qualidade do ajuste (AIC e 

BIC). 

 

 

Neste capítulo foi abordada a questão da restrição na aleatorização, devido 

à presença de fatores difíceis de mudar, e os problemas que isso acarreta, como, 

por exemplo, a dificuldade de estimação pelos métodos tradicionais (mínimos 

quadrados ordinários). Foi então introduzida a análise de modelos lineares mistos 

como uma solução a essa questão da modelagem na presença de dados 

provenientes de experimentos que não foram realizados de forma completamente 

aleatorizada. No próximo capítulo será apresentado o estudo de caso utilizado 

neste trabalho, com o objetivo de modelar a média e a variância da variável 

resposta utilizando modelos mistos. 
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