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2
A guestao darestricao na aleatorizagcéo e a utilizacao de

Modelos mistos

Neste capitulo é apresentada inicialmente a questdo da restricdo na
aleatorizacdo em planejamento de experimentos, e em seguida € descrito o
procedimento experimental split-plot. Além disso, é abordada a utilizacdo de
modelos mistos como uma solucdo para a estimacdo dos pardmetros quando
ocorre restricdo na aleatorizacdo durante as rodadas do experimento. Para isso, €
detalhada a modelagem mista, incluindo a estimacdo dos parametros de efeitos

fixos, efeitos aleatdrios e a estimacdo dos componentes da variancia.

2.1

Restricdo na aleatorizagéo

Em um experimento planejado, normalmente assume-se que as rodadas
sdo realizadas de forma completamente aleatorizadas. Isso significa que as
corridas sdo executadas de forma aleatéria, e os niveis dos fatores sdo
reinicializados em cada uma das rodadas do experimento. Quando pelo menos
uma dessas caracteristicas nao ocorre, dizemos que hé restri¢do na aleatorizacéo.

A questdo da restricdo na aleatorizacdo é natural nos experimentos que
envolvem blocos. Nessas situacdes, 0s blocos surgem como componentes
necessarios do planejamento experimental. Porém, o uso de blocagem padrdo nao
€ a Unica fonte de restricdo na aleatorizacdo. Em algumas vezes, um experimento
que € definido, pela sua eficiéncia, como completamente aleatorizado, deveria
utilizar um formato de ‘restricdo a aleatorizacao’, devido a consideragdes praticas.

Tais consideracfes dizem respeito a fatores que possuem niveis dificeis de mudar,
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ou dificeis de controlar, e com isso ndo séo reinicializados nas sucessivas rodadas
do experimento (Myers & Montgomery, 2002).

Segundo Webb et al. (2004), é muito comum, na industria, 0s niveis dos
fatores ndo serem reinicializados de uma rodada para a outra, em um experimento.
As principais causas de ndo reinicializar os niveis dos fatores séo tempo e custo.
Segundo registros dos autores, pelo menos um fator ndo é reinicializado na
maioria dos experimentos. E dessa forma, algumas vezes sdo utilizadas técnicas
como blocagem ou split-plot para tratar dos fatores que ndo foram reinicializados.

Quanto a estimacdo dos parametros, o fato dos niveis de um ou mais
fatores serem 0s mesmos em sucessivas rodadas pode acarretar a quebra da
premissa de independéncia, o que faz com que 0 método dos minimos quadrados
ordinarios produza estimadores viesados, gerando testes e inferéncias incorretos
(Webb et al., 2004). Além disso, a ndo reinicializacdo dos niveis dos fatores — em
sucessivas rodadas — gera perda de precisdo na estimativa dos parametros e
variancia maior do que a esperada.

Ju e Lucas (2002) estudaram experimentos com estrutura fatorial onde
nem todos os fatores sdo reinicializados nas sucessivas rodadas do experimento.
Como mencionado anteriormente, a ndo reinicializacdo acarreta uma restricdo na
aleatorizacdo. Com isso, um experimento completamente aleatorizado ndo é
atingido mesmo quando o experimento é conduzido usando-se uma ordem
aleatdria nas rodadas. Segundo Ju e Lucas (2002), a restricdo na aleatorizacao
mais comum ocorre quando o experimento é executado em ordem aleatdria, mas
nem todos os fatores s&o reinicializados em cada rodada. Isso acontece
principalmente devido a presenca de fatores cujos niveis sdo dificeis de mudar.
Em linhas gerais, podemos considerar dois tipos de fatores em relagéo a facilidade
de mudar os niveis. Sao eles: fatores faceis de mudar e fatores dificeis de mudar.

O fator facil de mudar é definido como sendo o fator cujos niveis séo
estabelecidos de forma independente em cada rodada do experimento, ou como o
fator que ndo necessita ser reinicializado. Ja o fator dificil de mudar é definido
como o fator cujos niveis ndo sdo reinicializados em sucessivas rodadas que
possuem o mesmo nivel para o fator. Normalmente, o fator dificil de mudar leva
mais tempo e consome mais recursos, sendo mais caro para ser reinicializado do

que o fator facil de mudar.
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Segundo Myers & Montgomery (2002), um experimento completamente
aleatorizado €, geralmente, muito dificil de ser conduzido. Torna-se praticamente
inviavel quando existem fatores cujos niveis séo dificeis de mudar ou dificeis de
controlar. Um exemplo é o fator temperatura. Em experimentos fatoriais de dois
niveis, € conveniente e mais barato executar 0 experimento em que sejam
realizadas, primeiramente, as rodadas em baixa temperatura, e posteriormente em
alta temperatura. 1sso eliminaria ter que por a temperatura de volta e esquentar o
forno de acordo com a ordem do esquema atribuido na aleatorizacdo. Em muitas

aplicacdes existem fatores que sdo dificeis de mudar.

2.1.1
Estruturas Split-Plot

Existem ocasides em que a dificuldade em mudar um ou mais fatores
requer o uso da estrutura split-plot (Myers & Montgomery, 2002). Tal estrutura
envolve fatores cujos niveis sdo atribuidos aleatoriamente aos whole plots (ou
main plots), e outros fatores com seus niveis atribuidos aleatoriamente aos
subplots. Os subplots ficam aninhados no interior dos whole plots, tal que um
whole plot consiste em um cluster de subplots, e um nivel de um desses fatores do
whole plot é aplicado ao cluster inteiro. Os fatores dificeis de mudar tém seus
niveis atribuidos aleatoriamente aos whole plots. Os fatores que ndo sdo dificeis
de mudar tém seus niveis atribuidos aleatoriamente as unidades experimentais do
subplot. Como resultado, cada whole plot recebe somente um nivel do fator dificil
de mudar, mas todos os niveis dos fatores que ndo sao dificeis de controlar. Como
tal estrutura fatorial envolve restricdo na aleatorizagdo, ndo se trata de um
experimento completamente aleatorizado.

Em uma estrutura split-plot com replicacdo € necessario, inicialmente,
testar os efeitos do whole plot e do subplot. Para isso, as duas médias quadréaticas
dos erros sdo usadas separadamente. Se a replicacdo for uma opcdo prética, entéo
os testes de significancia das variaveis podem ser realizados pelo uso de dois
termos de erro (erro do whole plot e do subplot). E com isso, a estimacdo dos

coeficientes da regressdo € afetada pela existéncia de dois componentes da
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variancia (o e o), onde o’ ¢ a variancia do erro do sub-plot e o €é variancia
do erro do whole plot. Para ilustrar os problemas associados com a estimagéo do
modelo sob a estrutura split-plot, considere o modelo da equagdo na forma
matricial, a seguir:

y ~ N(u(x,p), V) (2.1)
onde V = var(y) € a matriz de variancia-covariancia da resposta y. Vale ressaltar
que quaisquer duas observacfes no mesmo whole plot ndo sdo independentes.
Elas tém covariancia o porque compartilham o mesmo componente de erro. E
quaisquer duas observac¢des em diferentes whole plots séo independentes. A forma

da matriz V é dada por:

T, 0 - 0
0T, - 0

v=l0 i . 2.2)
0 0 - T,|

onde T, =o2,, +01,,1',,, onde a é o numero de whole plots, b

representa os niveis do sub-plot, e:

o? = variancia do erro sub-plot

o = variancia do erro whole plot.
Entdo, a estimativa dos parametros € dada por:
b=(XV*'X)*XV'y (2.3)
onde X € a matriz das variaveis regressoras e V € matriz de variancia-covariancia
na Equacdo 2.1. Os estimadores na Equagdo 2.3 sdo estimadores de minimos

quadrados generalizados que s3o apropriados quando V = oI Infelizmente, a

Equacdo 2.3 ndo pode ser usada diretamente, pois o analista ndo tem
conhecimento de o® e & e por isso ndo pode calcular V. Ou seja, enquanto que
a estrutura split-plot resulta em um conveniente meio de experimentacdo, oS
aspectos da andlise da regressdo se tornam complicados devido & presenca de

observacdes correlacionadas. Sendo assim, o0 principio da estimagdo por minimos

quadrados generalizados, descrito na Equacdo 2.3, sugere o uso da abordagem de

modelos mistos para estimar o* e o;.
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2.2

Modelos lineares mistos (LMM)

Os modelos mistos s@o utilizados para descrever dados de experimentos
cuja estrutura de tratamentos envolve fatores fixos e aleatérios. Ou seja, séo
modelos que permitem que se trabalhe com ambos os efeitos fixos e aleatorios em
um modelo linear que possui uma varidvel resposta continua.

Um modelo linear padréo é construido para tratar de efeitos fixos, no qual
os niveis do fator representam todos 0s niveis possiveis para aquele fator, ou todos
0s niveis em que inferéncias serdo feitas. Por outro lado, os efeitos sdo
considerados aleatorios se os niveis dos fatores em um estudo sdo aleatoriamente
selecionados de uma populacdo de possiveis niveis daquele fator. Nesse caso, a
populacdo de possiveis niveis de um efeito aleatério tem uma distribuicdo de
probabilidade, com determinada média e varidncia. Ao modelar ambos os fatores,
fixos e aleatdrios, os modelos mistos fornecem a flexibilidade de ndo modelar
somente a média, como em um modelo linear padrdo, mas também as variancias e
covariancias.

Além disso, os modelos lineares mistos trabalham com dados onde as
observacgdes ndo sdo independentes, como ocorre quando hd medidas repetidas.
Ou seja, 0 LMM corrige modelos com erros correlacionados.

Existem duas vertentes distintas no desenvolvimento de modelos mistos. A
primeira ocorreu em planejamento de experimentos, onde a introducdo da
estrutura split-plot conduziu a modelos com alguns componentes de erro. Nesse
caso, 0 maior interesse esta na inferéncia sobre médias, ou seja, nos efeitos dos
tratamentos (Lee et al., 2006). A segunda vertente surgiu em modelos de
componentes da variancia, onde os dados sdo desbalanceados, € o0 interesse ndo
estd centrado nas variancias dos efeitos aleatdrios, porém na estimagdo dos

préprios efeitos aleatorios.
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Representacao matricial dos modelos mistos

Seja 'y um vetor de observacgdes referente a varidvel resposta, de dimenséo
N x 1, e seja X matriz dos regressores de efeitos fixos, conhecida, de dimensédo N
X p, e Z matriz de regressores de efeitos aleatorios, conhecida, de dimensdo N x q.

Seja ainda B o vetor de efeitos fixos, desconhecido, de dimensédo p x 1 e v vetor
de efeitos aleatorios, desconhecido, de dimenséo g x 1.
O modelo linear misto padrdo pode ser representado por:
y=Xp+2Zv+e (2.4)
onde e ~ N(0,R), v~ N(0,D), e v e e sdo independentes. Sendo que e é vetor

de erros aleatorios ndo observaveis, de dimensdo N x 1.

Podemos escrever também:

Ely |v]=Xp + 2v,

significando que para o v realizado, a equagdo acima representa a média
condicional (McCulloch & Searle, 2001).

Para especificar var(y), usamos var(v )=D e definimos

var(y |[v)=R
Com isso, temos:
y~(Xp, ZDZ' + R),

mostrando que os efeitos fixos entram apenas na média enquanto que a matriz de
regressores de efeitos aleatérios e matriz de covariancia dos efeitos aleatdrios
entram na variancia de y. Ou seja, em modelos lineares mistos, os efeitos fixos sdo
usados para modelar a média de y, enquanto que os efeitos aleatorios governam a
estrutura de variancia-covariancia de y. De fato, a principal razdo de se usar
efeitos aleatorios e simplificar a dificuldade de especificagdo de N(N+1)/2
elementos distintos da var(ynxi). Sem usar efeitos aleatérios, teriamos que lidar
com os elementos de var(y) com uma variedade de formas. Porém, com o uso de
efeitos aleatorios podemos lidar com variancias e covariancias atribuiveis a
fatores reconhecidos em estarem afetando os dados. Uma vez que os dois tipos de
efeitos (fixos e aleatorios) sdo diferentes e sdo tratados de forma diferente quando
0s dados sdo analisados, devemos decidir, para cada fator, quando ele deve ser

considerado fixo ou aleatorio.
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Nos modelos mistos, trés aspectos sdo fundamentais: estimacéo e testes de
hipoteses dos efeitos fixos, predicdo dos efeitos aleatorios e estimacdo dos

componentes de variancia.

2.2.2

Estimacéo dos efeitos fixos

Considerando, y ~ N(XB,V),

o logaritmo da verossimilhanca é

1 o 1 N
(==2@ -wWV(y -w--log|V |- log2m. (2.5)
2 2 2
Tomando a derivada do log da verossimilhanca em relacdo a @ , temos:
ol ou' .,
i« BV —n),
- 20 y-m

com p=Xpe O=p. Substituindo na derivada e igualando a zero, com p
representado por p°tem-se
X'V*IXB® =X'V'y
tal que
B =(X'V'X)"X'V'y (2.6).
Como B° varia com (X'V*X)", limitamos a atengdo em XB°que é
invariante, uma vez que (X'V"X)” X'V 0 é. Dessa forma,
ML(XB) = X(X'VIX)" X' Vly (2.7)
é 0 estimador de méaxima verossimilhanca de Xp, e assim, L' Xp°é o estimador

de méxima verossimilhanca de A" Xp para qualquer 1.
Com var(y) =V pode-se ver que
var(Xp°) = X(X'VIX)" X' VXX VX)X,
Uma vez que (X'V7'X)"é uma inversa generalizada de (X'V'X), e
também por causa da propriedade da invariancia mencionada anteriormente,

var(Xp°) = X(X' VX)X
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Para testar a hipotese nula H, :S"Xp=m, onde S'possui rank completo
(r, <ry ), aestatistica de qui-quadrado pode ser obtida usando-se
X2 =(S'XB° —m)'[S'X(XVX)~ X'STHS' XB° —m).
Sob Ho, X2 tem distribuicdo y*com rs= rank(S) graus de liberdade.

Mais tipicamente, V é conhecida por um mdltiplo escalar. Para simplificar
a notacdo, escrevemos V em termos de uma matriz de pesos W, que € a inversa de
V de acordo com o multiplo escalar, ou seja, V =c°W™, onde W é conhecido.
Nesse caso, a estatistica a seguir pode ser obtida como um teste de razdo de
verossimilhanga:
_(S'XB° —m)'[SX(X" WX) ~ X'ST*(S'XB° —m)

~2
r,o

F

onde

52 = y'TW = WX(X" WX) ~ X'W]y
N —ry

Sob a hipétese nula, F tem uma distribuicdo F com rse N — rx graus de
liberdade.
Quando V for desconhecido, a funcdo log de verossimilhanca ¢ de 2.5

tem que ser maximizada em relacdo aos elementos de p e V. Para p=Xpe

0=, fixando 5%9 igual a zero, chegaremos a0 mesmo resultado encontrado

para B°em (2.6), somente quando V for estimado por V a partir da maximizagéo
¢ em relacdo aos parametros em V. Dessa forma, o estimador de Xp sera
ML(XB) = XB = X(X' VX)X Vly.
Uma dificuldade é que (2.7) requer V = var(y), ou seja, envolvem 0s
componentes de varidncias. Em muitas situacGes praticas os componentes de

variancia ndo sdo conhecidos. Nesses casos, uma estratégia interessante e

conveniente consiste em obter estimativas dos componentes de variancia, que

serdo utilizadas em lugar dos componentes em V. Entéo, substitui-se V por Ve
assim tem-se:
BLUE Xp=X(X'V1X) X'V1y.
Ou seja, na analise do modelo linear misto tem-se, em geral, interesse na

estimacdo e testes de hipoteses dos efeitos fixos. Entretanto, para a estimativa de
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uma funcdo estimavel dos pardmetros de efeitos fixos, no modelo misto, é
necessario o conhecimento das estimativas dos componentes de variancia. Assim
as estimativas dos parametros de efeitos fixos, no modelo misto, dependem
diretamente dos métodos utilizados na obtencdo das estimativas dos componentes
de variancia (McCulloch & Searle, 2001).

2.2.3

Predicdo dos efeitos aleatorios

As suposicdes acerca dos efeitos aleatorios diferem das suposi¢cdes dos
efeitos fixos, e com isso o tratamento dos dois tipos de efeitos ndo é o mesmo. Um
efeito fixo é considerado uma constante, que queremos estimar. Mas um efeito
aleatério é considerado como apenas um efeito vindo de uma populacdo de
efeitos. Para enfatizar essa diferenga, usamos o termo ‘predicdo de efeitos
aleatdrios’ ao invés de ‘estimacdo’ (McCulloch & Searle, 2001).

Usando a suposi¢cdo que os efeitos aleatdrios realizados, que determinam
os dados, sdo apenas uma selecdo aleatoria da populacdo de efeitos aleatorios, a
melhor predicdo (a que minimiza a média do quadrado dos erros de predicao) para
um efeito aleatorio é a media condicional E[v|y].

Voltando ao caso geral onde,

y ~(XB, V), paraV =2ZDZ'+R,
e assumindo que y e v seguem uma distribuicdo Normal conjunta, temos a

esperanga condicional E[v|y],
Elv|y]=DZ'V ' (y - XB).

Substituindo B por B° =(X'V*X)'X'V'y, temos o melhor preditor
linear ndo viesado (BLUP) de v sob normalidade. Escrevemos entdo
v=DZ'V(y — XB)

v’ =DZ'Vi(y-Xp°)=DZPy.
E temos var(v) =DZ'V*ZD e var(v°) =DZ'PZD.
Quando D e V séo conhecidos, o calculo de v néo apresenta dificuldades

e pode ser encontrado utilizando-se as equag0es do modelo misto.
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X'X X'z B) (XY
ZX Z2Z+6Dt )\ v) \zy
Resolvendo o sistema de equacOes, obtém-se as solucbes para os efeitos
fixos B° e predicdes para os efeitos aleatérios v. Para tal desenvolvimento

assume-se que V é conhecida. Quando isso ndo ocorre, D e V sdo estimadas por

D e V, utilizando-se um dos métodos disponiveis, como o método da maxima
verossimilhanca (ML), ou 0 método da maxima verossimilhanca restrita (REML).
E as solucdes podem ser escritas como:
(p:’] _ [(X'V:1X)‘X'\7‘1yj 28)
v DZ'V*(y-Xp°)

Assim, utilizando-se as expressdes apresentadas em (2.8) obtém-se as
estimativas dos efeitos fixos e as predicdes dos efeitos aleatorios, ° e v,
respectivamente. No caso de v, o resultado é o chamado melhor preditor
estimado ndo viesado (BLUP), representado por:

2=DZ'V(y - XB) =DZ'Py.
Um aspecto interessante das equacdes de modelo misto é que elas podem

ser utilizadas em procedimentos iterativos para os céalculos das estimativas de ML,
e REML, dos componentes de variancia.

2231

Quando devemos usar efeitos aleatérios?

O modelo y; =u+v, +¢; i=1..,q, j=1..,n, sera 0o mesmo se

assumirmos os o, sendo pardmetros fixos ou aleatorios. Entdo, quando devemos

assumir os efeitos como aleatorios?

Uma regra comum € que os efeitos sdo assumidos como fixos se o
interesse esta na inferéncia de valores especificos dos efeitos. Porém, acredita-se
gue essa é uma visdo errada, pois implica que ndo é importante estimar os efeitos
aleatdrios. De fato, existem muitas aplicacdes onde existem interesses nos efeitos
aleatdrios. Existem, também, aplicaces onde acreditamos que a resposta dependa

de alguns fatores, mas nem todos sdo conhecidos ou mensuraveis. Essas variaveis
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desconhecidas sdo normalmente modeladas como efeitos aleatérios. Quando
medidas repetidas sdo obtidas de uma observacdo, o efeito aleatorio € uma
variavel comum ndo observavel para cada observacao e é responsavel pela criacéo
de uma dependéncia ente as medicOes repetidas. Esses efeitos aleatdrios devem
ser considerados como uma amostra de alguma distribuicdo populacional

convenientemente definida (Lee & Nelder, 2006).

224

Estimac&o dos componentes da variancia

Na anélise de modelos lineares mistos, a estimagdo dos componentes de
variancia é de fundamental importancia, pois tanto a predicdo dos efeitos
aleatorios quanto a estimacdo dos efeitos fixos depende dessa estimagdo. Ou seja,
para a obtencdo do estimador (BLUE) de XB e do BLUP de v, é necesséria a
estimativa dos componentes de variancia.

O componente da variancia é estimado para o fator, somente quando ele é
considerado efeito aleatorio. Isto reflete uma das diferencas entre efeitos fixos e
aleatorios. Para os efeitos aleatorios nés queremos ndo apenas prevé-los, como
também estimar suas variancias. A variacdo nos niveis de um fator aleatorio é
assumida como sendo representativa da variacdo de toda a populacdo de possiveis
niveis. Dessa forma, variacdes nos niveis dos fatores aleatérios podem ser usadas
para estimar a variagdo na populacéo.

A variacdo nos niveis dos fatores fixos é considerada arbitrariamente
determinada pelo experimentador, ou seja, 0 experimentador pode fazer os niveis
de um fator fixo variarem muito ou pouco como desejado. Sendo assim, a
variacdo do fator fixo ndo pode ser usada para estimar a variancia da populacao.
Essas duas distingdes basicas entre efeitos fixos e efeitos aleatorios sao
importantes para se conhecer melhor as propriedades dos componentes da
variancia.

Diversos métodos tém sido propostos para estimar 0s componentes de
variancia, destacando-se 0 método da maxima verossimilhanca (Maximum
Likelihood: ML) devido a Hartley & Rao (1967); o método da estimacédo

guadratica ndo-viesada de variancia minima (Minimum Variance Quadratic
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Unbiased Estimation: MIVQUE) descrito em Rao (1971), e 0 método da maxima
verossimilhanca restrita (Restricted Maximum Likelihood: REML) descrito por
Patterson & Thompson (1971).

A idéia bésica por tras da estimacdo por REML e ML é encontrar um
conjunto de pesos para os efeitos aleatorios no modelo, que maximize o valor
negativo do logaritmo natural da verossimilhanga dos dados (a verossimilhanga
dos dados pode variar de 0 a 1, entdo minimizando o valor negativo do logaritmo
natural vezes a verossimilhanca dos dados significa maximizar a probabilidade, ou
verossimilhanca, dos dados).

A estimacdo dos componentes da variancia pelos varios métodos
mencionados é similar. Componentes da variancia REML e ML s&o estimados
otimizando-se iterativamente a estimativa dos parametros para os efeitos no
modelo. Os métodos de estimacdo dos componentes da variancia REML e ML
estdo relacionados ao MIVQUE. De fato, nos programas, REML e ML utilizam
as estimativas do MIVQUE como valores iniciais para uma solucéo iterativa para
0s componentes da variancia (lemma & Perri, 1999).

O método REML difere do ML pelo fato da verossimilhanca dos dados ser
maximizada somente para os efeitos aleatdrios. Sendo assim, REML é chamado
de solucdo restrita. Em ambos, REML e ML, uma solucdo iterativa é encontrada
para 0s pesos dos efeitos aleatorios, no modelo, que maximiza a verossimilhanca
dos dados. A seguir, serdo tratados, com um maior detalhamento, os métodos ML
e REML.

2.2.5
Método da méaxima verossimilhanca: ML

Hartley & Rao (1967) aplicaram o método da maxima verossimilhanca ao
modelo misto geral. Tal meétodo consiste em maximizar a fungdo de
verossimilhanga em relagdo aos efeitos fixos e aos componentes de variancia.
Assim, para 0 modelo misto (2.4), assumindo y ~ N (XB, V), a fungdo de

verossimilhanga é:
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L= (ZEPIVI‘% exp [—%(y ~XB)'V 1y - xm}

, onde |V| é o determinante da matriz V.

O logaritmo da funcdo de verossimilhanca € dado por:
1 1 1 o
/=logL = -5 log(27 - log|V| - E(y —XB)'Vy - XB) (2.9)

Assim, - 2 log da funcédo de verossimilhanca (2.9) é
—2logL =log|V|+(y—XB )’V (y—XB )+nlog(2z) (2.10)
Minimizando essa expressdo com respeito a 3, tem-se:
B=(XVIX)"X'Vly
com Be V representando as estimativas ML de B e V, respectivamente.
Substituindo [5 na expressao (2.10), tem-se
—2logL = nlog(2x) + |ogM +(y=XB YV —XB) (2.11)

Minimizando-se essa funcdo em relacdo a todos os parametros
desconhecidos, obtém-se um sistema de equacdes cuja solucdo fornece as

estimativas ML.

Essas equacOes sdo ndo lineares e resolvidas numericamente, em geral,
por processos iterativos como o algoritmo de Newton-Raphson. O processo é
repetido até que o critério de convergéncia adotado seja satisfeito. Assim, 0
método da méaxima verossimilhanca supde normalidade dos dados, é iterativo e
fornece estimativas nao-negativas de componentes de variancia, mas estas sao
viesadas, pois 0 método ndo considera a perda de graus de liberdade resultante da

estimacéo dos efeitos fixos do modelo (lemma & Perri, 1999).
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2.2.6

Método da maxima verossimilhancga restrita: REML

Patterson & Thompson (1971) propuseram uma modificagdo do método
da maxima verossimilhanca para modelos mistos.

Os estimadores REML sdo obtidos maximizando-se a parte da fungédo de
verossimilhanga que é invariante ao pardmetro de locagdo, isto é, em termos do
modelo misto y = XB + Zv + e, invariante a Xp. Em outras palavras, 0s
estimadores REML maximizam a funcdo de verossimilhanga de um vetor de
combinacgOes lineares das observacfes que séo invariantes a Xp. Seja K’y esse
vetor. Entdo K’y = K’Xf + K’Zv + K’e é invariante a Xp se e somente se K’X
=0.

Com y ~ N(XB, V), tem-se que para K’X= 0, K’y ~ N(0, K’VK). As
equacdes REML também podem ser deduzidas das equagdes ML substituindo-se:
y por K’y, X por K’X =0, Z por K’Z, V por K’VK.

O método REML é implementado construindo-se a fungdo - 2 log Lg.
Assim, para a estimacdo REML, -2 log da funcdo de verossimilhanca restrita é

—2log Ly =log[V|+(y —XB YV (y—XB )+(n—Kk)log(27)  (2.12)

A

onde k é o rank da matriz X e fp=(XVX) " XV7ly, com pe V
representando as estimativas REML de 8 e V, respectivamente.

O método REML tem sido considerado o preferido para estimar
componentes de variancia de dados desbalanceados. As razdes para essa
preferéncia sdo justificadas pelas propriedades desses estimadores.

O método REML supde normalidade dos dados, € iterativo e fornece
sempre estimativas ndo negativas dos componentes de variancia, assim como o
método ML. No entanto, considera a perda de graus de liberdade devido aos
efeitos fixos, fornecendo estimadores ndo viesados e de variancia minima para
dados balanceados.

A principal diferenga entre os métodos ML e REML é que o ML usa a
funcdo de verossimilhanca de y ou o logaritmo desta fungédo, enquanto o REML
adota a funcéo de verossimilhanca de K’y, um vetor de combinac6es lineares das
observagdes (com esperanca nula) que representa efetivamente as observagoes

ajustadas para os efeitos fixos (lemma & Perri, 1999).
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Vale ressaltar que para ambos os métodos de estimacdo utilizados, a
estimacao dos componentes de variancia ira depender da estrutura de covariancias

adotada.

2.2.7

Estruturas gerais de covariancias

Conforme abordado anteriormente, a analise de modelos mistos envolve a
analise da parte fixa e a analise da parte aleatdria. Se existirem fatores aleatorios ou
medidas repetidas, o pesquisador deve especificar o tipo de estrutura de covariancia.
O tipo de estrutura de covariancia especificado é usado como um ponto de partida
nos algoritmos REML e ML, para a estimacao dos parametros. Em outras palavras, a
estimacdo dos componentes de variancia depende da estrutura da matriz D e do
método de estimacgdo utilizado. Especificando o tipo de estrutura de covariancia, o
pesquisador estara informando ao algoritmo a forma da matriz de covariancia
existente entre os termos aleatorios. Por exemplo, uma matriz de covariancia onde
apenas a diagonal principal é diferente de zero significa que as observacdes sdo
independentes.

Vérias estruturas de covariancias podem ser especificadas para a matriz D,
no software S-Plus, como por exemplo: identidade, diagonal, simetria geral,
simetria composta, dentre outras. A seguir sdo detalhadas algumas dessas

estruturas.

Alguns tipos de estrutura de covariancia (da matriz D):

- Identidade. Também chamada de ‘componentes da varidncia’, ‘estrutura
simples’ ou ‘modelo independente’, porque a varidncia dos residuos ¢
independente das variancias do efeito. Dessa forma, estrutura de
componentes da variancia assume que a correlagdo de qualquer par de
medidas repetidas é igual ndo importando o qudo distante estdo. Esse tipo

de estrutura associa uma matriz identidade com cada efeito aleatorio.
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o O O B+
o O - O
o — O O
O O O

- Diagonal. Esta estrutura de covariancia apresenta variancias diferentes (o
que ndo ocorre com a estrutura ‘componentes da variancia’) e correlagao
zero entre os elementos. Com isso, 0 pesquisador esta assumindo que
diferentes categorias da varidvel de efeito aleatério tém diferentes

variancias na variavel dependente.

sz 0 0 0
0 62 0 0
0 0 o2 0
0 0 0 o

Para escolher o melhor tipo de estrutura de covariancia, podem ser
utilizadas as estatisticas de qualidade do ajuste (AIC e BIC, por exemplo).

O software S-Plus além de oferecer varias op¢Oes para a estrutura de
covariancias da matriz D, também permite uma especificacdo geral da matriz de
covariancias dos erros. 1sso € feito em duas etapas:

(1) especificando a funcdo de variancia, onde o objetivo é modelar a

heterocedasticidade dos termos de erro dentro do grupo;

(2) determinando a estrutura de correlacdo, no qual o objetivo é

modelar a correlacdo dentro do grupo, ndo capturada pelos efeitos
aleatorios. Dessa forma, tal modelagem permite que os componentes de
erro sejam correlacionados.

As funcdes disponiveis para os tipos de funcdo de varidncia dentro do

grupo no software S-Plus séo, dentre outras:
- Identidade: variancias diferentes por niveis de um fator;
- Fixed: pesos fixos determinados por uma covariante.
- Exponencial: exponencial de uma covariante;
- Combination: combinacéo de funcdes de variancia.

Quanto as estruturas de correlagdo disponiveis, temos, dentre outras:

- AR(1): estrutura auto-regressiva de primeira ordem com variancia

homogénea;
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- Simetria composta: corresponde a uma correlagao constante;
- Simetria geral: matriz de correlagéo geral, sem estrutura adicional;
- Exponencial: correlacdo exponencial espacial;
- Linear: correlacéo linear espacial.
Assim como na estrutura de covariancia, para selecionar a melhor estrutura
de correlacdo, podem ser utilizadas as estatisticas de qualidade do ajuste (AIC e
BIC).

Neste capitulo foi abordada a questdo da restri¢cdo na aleatorizagdo, devido
a presenca de fatores dificeis de mudar, e os problemas que isso acarreta, como,
por exemplo, a dificuldade de estimacdo pelos métodos tradicionais (minimos
quadrados ordinarios). Foi entdo introduzida a analise de modelos lineares mistos
como uma solugdo a essa questdo da modelagem na presenca de dados
provenientes de experimentos que ndo foram realizados de forma completamente
aleatorizada. No proximo capitulo serd apresentado o estudo de caso utilizado
neste trabalho, com o objetivo de modelar a média e a variancia da variavel

resposta utilizando modelos mistos.
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