
7
Conclusions and Future Work

Self-organization and emergence are important aspects of decentralized

distributed systems. Through the applicability of self-organizing mechanisms,

distributed systems can have decentralized control and increase in robustness.

Although self-organization is an old biology concept, it is not a mature com-

puter science concept, and the community that investigates the particularities

of its usage in computer systems is still quite small, and mostly associated to

the Distributed Systems area.

We believe the widespread of building self-organizing emergent systems

depends on software engineering techniques and this was the focus of the re-

search presented in this thesis. Next section presents the main contributions of

the research. Then section 7.2 identifies the different future research directions

which this thesis implies. We present further details about the future directions

on which there are some partial research already developed.

7.1 Contributions

The research presented in this thesis represents a step toward the

advances on architectural design of self-organizing emergent systems. The

contributions of this thesis are fivefold:

1. Self-Organizing Software Engineering

We applied an agent-oriented technology to build self-organizing emer-

gent systems. This technology provides design support, engineering

method, a Simulation-based Self-Organizing Architecture (SSOA) and

best practices as reuse and modularity. Regarding the design support, we

have presented the Coordinated Statecharts concept that motivated the

UML meta-model customization in order to provide behavioral features

that help add semantics to the proposed modeling abstraction. Coordi-

nated Statecharts can be used to design the Information Flow concept

presented by De Wolf. In order to illustrate the use of the modeling ab-

straction, we have presented a base to develop a pattern language on

top of self-organizing patterns that already exist in the literature. This

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 128

pattern language contributes to the state of the art in many ways: (i)

providing a guide to use the patterns, (ii) providing reusable structures

and dynamics, and finally (iii) providing a way of combining basic pat-

terns into a complex one – the Gradient Fields. As a result, we believe

that the self-organizing system designer have both a design abstraction

complemented with a notational support that help with her design task.

Regarding SSOA, this architecture provides an asset base engineers can

draw from when developing self-organizing applications. The applica-

tion of the engineering guidelines and simulation-based self-organizing

architecture in three complex industrial applications is a contribution.

In particular, we have applied the various mechanisms for architectural

design of self-organizing systems to meet the functionality and satisfy

the desired guarantees of the system. The insights derived from the ar-

chitectural design of these applications have considerably contributed to

the development of the proposed architecture.

2. Agent-Oriented Software Engineering

In order to use an agent-oriented technology, a suitable notational sup-

port to this area was proposed, with the UML customizations, and also

an autonomic validation architectural features for validating emergent

behavior of multi-agent systems. Regardless self-organizing mechanisms,

agents in multi-agent systems need to be coordinated in some way, and

those customizations help on this task. Also, emergent behavior is an in-

herent multi-agent system characteristic, and the autonomic validation

method helps on the monitoring and controlling of agents misbehavior.

3. Normative Multi-Agent Systems

We investigated the notational support, engineering method and SSOA

application to a normative multi-agent system. This is currently a recent

and active area of research. Research on governance of multi-agent sys-

tems has mainly focused on representing or specifying norms in a precise

manner [Oren 2008, Silva 2008, Paes 2005, Esteva 2003], monitoring for

the violation of these norms [Meneguzzi 2008, Minsky 2000, Paes 2007],

explaining the outcomes of the monitoring process [Meneguzzi 2008],

enforcing behavior in a way that the agent cannot violate the norm

[Paes 2007] and ensure fault-tolerance according to norms [Gatti 2007].

However, languages and tools for specifying norms do not by themselves

provide understanding of the emergent behavior in a complex domain.

Somewhat related approaches are found in [Lacroix 2008] where the au-

thors focus on norms in simulation. They proposed to model behavioral

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 129

differentiation in such simulations as a violation of the norm, and il-

lustrate the approach through the traffic simulation. In [Bou 2007] the

authors study how traffic control strategies can be improved using a

case-based reasoning approach that allows an electronic institution to

self-configure its regulations. And in [Doniec 2006], the authors show

how the introduction of non-normative behaviors improves the micro-

scopic traffic simulation. By allowing agents to break some of the formal

rules of the road, norms are implicitly taken into account in the agents’

decision model. Our original contribution consists of the iterative refine-

ment of contracts and desired guarantees analysis that can be done with

the results of a simulation-based approach and contract model .We be-

lieve there is enough re-usability in the work described, taking Section

6.2.a as a general approach and the case study as a guiding example, for

others to benefit from this work.

4. Autonomic Computing

The main contribution for this area consists of the autonomic validation

method and architecture themselves, since the emergent misbehavior can

be avoided with these technologies. Moreover, it advances the state of the

art in this area by showing that autonomic principles can be applied in

the simulation field.

5. Biological Systems Computational Modeling

We illustrated through the stem cell computational modeling case study

how the proposed technologies help on the attempt to provide computa-

tional methods to the modeling and simulation of biology systems, how

their self-organizing properties can be analyzed and validated. It con-

tributes to the usability to express the models, their processes, dynamic

environment and partial view in this area.

7.2 Limitations

Given the goals proposed, it is important to understand the limitations

of this thesis. We understand that to provide a notational support that

customizes UML 2 is different from proposing full details of extensions,

including formalizations, to UML 2. Rather, the elements that we propose

in the dynamic models can be considered as a first step toward this goal.

Regarding the engineering guidelines, we have connected the notational

support to the description of the proposed architecture. We have illustrated

through the Unified Process how the simulation-based self-organizing archi-

tecture life-cycle can be realized. On the other hand, it was not the goal of

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 130

this thesis to provide a complete methodology or process. Instead, it means us

to compare the differences between related approaches; it provides guidelines

for using the notational support and architecture by showing how useful the

approach is in helping a software engineer to understand how the activities are

related to a well known and accepted software process and its phases.

In addition, it is important to emphasize that the proposed self-

organizing architecture is simulation-based, therefore it is not supposed to

be fully implemented (for instance, in a real warehouse). Instead, it works as

a support to the design activity because it is usually very expensive to imple-

ment self-organizing systems. Although the core self-organizing behavior will

be fully implemented at a later stage, the simulation and validation features

that the architecture provides are not supposed to exist at production time

since it is unfeasible.

Finally, the presented results achieved with the case studies are meant

to show how the architecture could be instantiated and evaluated w.r.t real

applications.

7.3 Future Directions

This work has uncovered a myriad of problems to be solved, which

are listed below on next sections. Some of them are current ongoing

works, and although they can be found in [Sangiorgi 2009, Motta et al. 2009,

Motta et al. 2010], we describe them in more details in order to reinforce their

contributions.

(a) A Model-driven Approach for the Engineering of
Self-Organizing Multi-Agent Systems

There is a need for a specific editor for the notational support, since

drawing the models by hand can be a really time-consuming task. Furthermore,

the artifact produced in this manner only contains drawings; there is no

semantic on the models, hence it is not possible to automatically validate

them.

Therefore, to have a specific editor to design the models would contribute

not only to faster modeling of static and dynamic models, but also would

lead us to a better understanding of emergent properties of the self-organizing

systems onto the proposed design. In addition, to have well defined models

leads the way for code generation in the future.

The model driven approach would consist of the meta-model to structure

entities, Coordination Statecharts, and an editor to support the modeling, and

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 131

a Java-based source code generation with the automatic instantiation of SSOA

framework.

Sangiorgi [Sangiorgi 2009] started the development of a group of Eclipse

plug-ins for the editor, mainly using GMF (Graphical Modeling Framework)1,

which allows a rapid development of graphical editors based on GEF (Graphi-

cal Editor Framework)2 for domain models specified with EMF (Eclipse Mod-

eling Framework)3. All these frameworks combined allow a user to visually

develop a domain model represented in a compliant XMI.

Both the dynamic and static models have been written using EMF,

extending the Eclipse UML2 framework model, just like the meta-models

extend UML’s model. According to [Bruck 2008], extensions to UML Tools

meta-models may be done using a lightweight, a middleweight or a heavyweight

approach. We had chosen to use the middleweight, since the lightweight uses

profiles and stereotypes, and therefore it was impossible to redefine structure

or behavior, and using the heavyweight one involves reuse by ”copy and

merge” instead of reuse by specializing types from the meta-model, which

could aggregate more complexity to the work and lose interoperability with

other UML tools.

Thus, we used a middleweight solution, creating our own state editor to

support the Coordinated Statecharts modeling. The editor trees for the static

and dynamic models were built in order to allow a first validation of the tool,

hence the visual editor can be developed. It is possible to add specific elements

to this editor (beyond the UML meta-model elements) in order to compose an

appropriate model to the proposed specification.

The dynamic model editor tree is identical to a state machine editor, with

the addition of the facility of transitions edition. As the transition syntax might

change in the future and is very long, we showed the visible attributes in a

different way (right inferior part of the Figure 3). Therefore, the visualization

is flexible enough, in the future, to allow the removal or shortening of very

extensive attributes.

In the same way, the straight edition of the transition is allowed, and the

attributes are filled in the right inferior part automatically, of course, respecting

the syntax. Therefore, the editor handles an XML file that contains an instance

of the meta-model:

<?xml version="1.0" encoding="UTF8"?>

<dynamicmodel:Model xmi:version="2.0"

1http://www.eclipse.org/modeling/gmf
2http://www.eclipse.org/modeling/gef
3http://www.eclipse.org/modeling/emf

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 132

Figure 7.1: The dynamic meta-model editor

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"

xmlns:dynamicmodel="dynamicmodel">

<elements xsi:type="dynamicmodel:Behaviour" name="Behaviour 1"

agent_instance="A2">

<elements xsi:type="dynamicmodel:State" name="State 1"/>

<elements xsi:type="dynamicmodel:State" name="State 2"/>

<elements xsi:type="dynamicmodel:StartPoint"/>

<transition source="//@elements.0/@elements.0"

target="//@elements.0/@elements.1" precondition="precond"

input_event="input_evt" attribute_name="att"

output_event="output_evt" action_output="output"

action_input="input"/>

<transition source="//@elements.0/@elements.2"

target="//@elements.0/@elements.0"/>

</elements>

Also, an editor tree was generated for the dynamic meta-model in a way

that what is seen in the editor tree is the same model in the Coordinated

Statecharts (dynamic) editor.

It is expected from the editors to have an epistemic function in a way

that the modeling of multi-agent systems itself leads to a better understanding

and observation of coordination mechanisms in self-organizing systems. Also,

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 133

the tool could be used to model architectural patterns of self-organization

optimizing the project time and effort for solutions that make use of those

patterns.

Furthermore, it is desired to have automatic communication between

both static and dynamic models, although we do not yet have it. Thus, the

next step is to build an interface between the models that updates them in both

directions, each time the models change since the programmatic interpreter of

both models is already built-in. It populates objects for each element on the

model, as well as updating the diagram view, whenever the XML underneath

changes. Thus, an interface can provide ways of delegating such functions for

the already built layer.

The next step, after the construction of update mechanisms, is the

generation of code based on the built models, which is eased by the Eclipse

platform, since the models are compatible with EMF framework and there are

available mechanisms of reflection and model transformation.

(b) SSOA Evolution

The main directions in which the SSOA architecture can be evolved is

twofold: regarding the self-organizing patterns, and the Manager component

w.r.t the validation method. A catalog of self-organizing patterns can be

encapsulated in SSOA architecture allowing the software engineer to easily

instantiate them in specific problems.

Regarding the Manager component, a set of debug improvements can

be encapsulated in a way that the Manager could provide causality relations

between local actions that could not be accepted with regard to the specific

macroscopic properties.

Also, the entropy concept can be introduced. From [Guerin 2004,

Parunak 2001, Balch 2000], (spatial) entropy is suitable to reflect the spatial

distribution of entities between different states and it is defined as:

E =
−

∑
N

i=1
(pi × log pi)

log N
(1)

Where pi is the probability that state i occurs and
∑

N

i=1
pi = 1. Dividing

by log N normalizes E to be between 0 and 1. Entropy is high (close to 1)

when the considered states have an equal probability to occur, and low (close

to 0) when only a few of the states have a high probability to occur. De

Wolf applied this measure to the distribution of AGVs: the different states for

the entropy measure are defined as the desired situations for the AGVs. And

considering the AGVs are already distributed between the desired situations.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 134

The probability for such an AGV to be in one specific desired situation at one

moment in time is used as the probability in the entropy equation.

Therefore, if the SSOA provides specific interfaces for instantiating this

operator, the Manager could be able to evaluate the system w.r.t the entropy

and re-initialize the simulation adaptively. In addition, the scientific numerical

analysis algorithms used by De Wolf (and other related ones) could also be

encapsulated in the Manager in a way that they could be easily executed to

different application domains.

(c) Transparent Distribution and Performance

Another future direction is to provide a transparent distributed parallel

simulation middleware. In 2D or 3D situated environments, regardless of the

visualization process, one requirement is the space management. In a sequential

simulation this does not incur in a problem because each request is treated in

the order of arrival. However, in a distributed parallel environment requests

may arrive at any time, so it is necessary to provide a solution for concurrency.

To achieve this goal, we have being investigating [Motta et al. 2009,

Motta et al. 2010] on how to provide the capabilities for the proposed archi-

tecture to become a distributed and parallel solution, in the sense that it could

work on a cluster environment in order to achieve better processing times or

larger problem sizes. The goal for this new architecture is to provide the user

with: the solution in less time, or; a solution to a larger instance of the problem

in the same time frame.

However, it is important to pay special attention to the representation of

the space. Regarding this issue, there were two choices that would affect the

cluster evolution:

i) if we represent the space in a distributed manner, each computing node

would be responsible for an octant of the space. This could improve

performance when communication between two agents at the same octant

takes place, but the growth would be eight machines each time, one for

each octant.

ii) the other approach would be to have the space virtually represented in

a centralized way, at first on a single machine, this way we can add

more processing nodes easily and one at a time. Although this solution

is limited by the network bandwidth and the central node throughput, it

was the approach that was selected and is described in the next section.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 135

Toward the solution

The solution selected and already started the development

[Motta et al. 2009, Motta et al. 2010] is based on a cluster environment

that uses processing nodes with the same hardware and software configuration

and fully dedicated to the solution processing. This is better suited when

trying to achieve improved parallel performance for a great number of agents

that need to share or compete for some resource. Over a cluster, we have a

software architecture that provides network transparency to the user.

We use an architecture based on classical solutions of parallelism to

provide the user a better alternative for solving problems faster or larger

problems. The solution rely on a master node that control the processing nodes

and its goal is to deliver parallelism over distribution being cost effective since

it allows for the growth of processing nodes, limited only by the master node

processing power.

Since the architecture implementation is Java based, the solution for

distribution is RMI, which is provided with the standard Java Development

Kit. This is the same approach used for the WebHLA by DoD [Dongarra 2003]

and is the best solution while we still have other aspects to optimize; only

when all of the alternatives have been explored should we try to change the

standard libraries for improved specific solutions.

For concurrency we chose to model the Sequential Object Monitors

[Caromel 2004], which are special active objects that can control a given

resource by providing a request queue to the clients and that use a processing

thread that consumes the queue in the arriving order. This allows clients to

work asynchronously with a nonblocking request call and at the same time

provides a means to control requests, so that when a request gets served it is

guaranteed to receive a unique space location, for instance.

The proposed solution creates an overlay network of brokers intercon-

nected through a communication bus that is provided by the central node,

which is responsible for step control and other services.

The goal is to provide a virtual environment that works exactly as

the local version, at least for the application programmer. The framework’s

infrastructure is responsible for connecting remote nodes that should have their

broker elements initialized at startup. The network bandwidth may become a

bottleneck for this solution; however, a hierarchy of central nodes may be

provided if necessary. A key concept here is that we use distribution as a mean

to parallelism, since it is more cost effective to have more machines than a single

multiprocessor. However, we have some communication and coordination cost

between nodes.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 136

Space Management as a Service

Many types of simulation will need not only 2D or 3D space management,

but also many other types of supporting services, such as diffusion algorithms,

force calculations and unique Id generation, the latter already being used and

provided on our framework. Seeing these as services becomes much easier not

only to provide them to the application through the framework, but also to

evolve them in an orthogonal fashion.

Using a Service Locator [Alur 2003] Design Pattern the application code

simply has to make a call to find the service needed. Implementing the correct

interface, framework developers may deploy as many services as needed and

may provide new abstraction levels to the application programmers.

We chose a centralized representation of the space to be used by the

application. That way we may have many working nodes processing the

simulation, although we will end up with many requests for locations. To

avoid concurrency problems we hold a queue of agents requests, which is an

implementation of the Sequential Object Monitor. Furthermore, exposing this

facility as a service makes it easier for agents to use it as if it was a local

resource.

Infrastructure Transparency

A major design goal is to provide the communication means to applica-

tion programmers in a way that it is not necessary to know where an agent

resides nor even that there is distribution, besides the start up process.

That said, all communication occurs through each node’s broker. If the

target agent resides on the same machine, the local broker is allowed to route

the message on its own. On the other hand, if it is a remote target, the local

broker routes the message to the master broker through the communication

bus. The central broker is then responsible for finding the target location on

its agents table and delivers the message to the target agent’s local broker,

which in turn will deliver it to the agent.

The Simulation Engine

Once the simulation class is ready, we use the infrastructure to deploy it

to the multiple remote worker nodes. To this end, each worker node’s Broker

must be instantiated at startup and wait for the Central Broker to start and

connect to each worker node. The worker nodes must be configured at the

central node that will connect to them in order to establish a star-like overlay

network through which all the communication will take place.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 137

Every time an agent or environment is created it must register at the

Central Broker to receive a unique id. The Central Broker can then register

this at a local table in order to keep the physical location of every entity

created. The Remote Broker for the requester will also keep a local table of

agents and environments that it keeps in order to enhance communication

performance.

The Central Broker and the Remote Broker must register at Java’s

RMI register (RMIRegistry) service in order to establish the distributed Java

environment for the application to start.

The Communication Bus

Since the proposed architecture uses many processing nodes it would be

a major issue if each node could be connected to its neighbors in order to

communicate. Since we can grow the cluster with nodes, this would saturate

the network with packages and it would degrade the application’s performance.

To overcome this problem, we provide a communication bus based on the

central broker, which is capable of routing any message to any agent. Thus it

is possible to find any entity with fewer steps although communication may

become a bottleneck if the cluster grows beyond a certain point.

Virtual Space: Distributed Parallel

Creating a virtual space gives the programmer the feeling that she

is working on a single centralized machine, and all the distribution and

parallelism is controlled and handled by the middleware. It is necessary,

however, to configure the working nodes to bring up the broker element and

also to configure the nodes’ addresses on the central broker.

Using brokers to create an overlay network allows the construction

of a distributed agent environment with centralized step control. Over the

distributed agent environment, agents are able to communicate the same way

they do on a single machine using the event diffusion mechanisms, according

to each self-organizing pattern and its strategies.

Furthermore, having the framework divided in layers allows us to evolve

each part independently; it is possible to optimize each component and have

the measure of its benefits available to the whole architecture.

Discussion

Currently, we have a working prototype that is able to connect to a

certain set of fixed nodes. However the simulation is started independently on

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 7. Conclusions and Future Work 138

each node. In order to coordinate the remote nodes the virtual space must be

fully operational.

The use of a centralized step control allows us to coordinate the execution

on the multiple nodes, and to this end the simulation is not started on

each node through the mechanisms provided by the original self-organizing

framework engine. The scheduler for each machine is disabled and each machine

is represented at the master node through an adapter that implements the

Steppable interface becoming a simple bridge to reach remote nodes.

Another interesting issue is that, on the master node, the adapters are

held in a ParallelSequence structure; this means that they receive their steps

in parallel, each adapter on its own thread. This allows for the cluster to

work with all nodes at the same time. The first, naive, implementation used

a different data structure, which led to a side effect of a sequential processing

cluster, i.e., each node executed one at a time according to its adapter order

on the master node.

The main contribution of this solution is to provide transparency for

the complexities regarding distributed and parallel processing. The use of

parallelism is targeted specifically at performance improvement, whether the

processing of larger instances of the given problem at the same processing time

or faster processing times for the given instance size.

The solution is layered, which allows independent evolution of each layer.

This capability is crucial for the benchmark of each optimization contribution

for the performance improvement. There are some optimizations specifically for

the communication, as follows: 1) changing from the standard RMI library to

a specialized communication infrastructure; and 2) using bulk communication

packs between remote nodes and the master node. Since each communication

will respect the step control, we can send a set of requests for 3D space locations

on a single network package and this, in turn, will improve the network usage

and traffic.

Other improvements may be provided as different services like different

interaction algorithms. As a means of monitoring a web console can be provided

to display the state of each processing node in terms of its health regarding

the distribution infrastructure; for agent behavior the user should refer to the

framework agent features. It is important for the application administrator to

be able to check what is going on with the machines since simulations may

require long processing times, depending on the problem instance size.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA




