
4
SSOA: A Simulation-based Self-
Organizing Architecture

An architectural design helps on the development of a modular program

structure and on the representation of the control relationships between mod-

ules [Pressman 2001]. It provides a software engineer with a picture of the pro-

gram structure and behavior. SSOA is a multi-environment-centric simulation-

based architecture that encourages the software engineer to concentrate on ar-

chitectural design before worrying about optimizations or code. The main goal

of SSOA is to provide an architecture that helps on the design, simulation, and

validation of self-organizing systems. At this point on this thesis, the reader

should be aware of the basic requirements that a self-organizing architecture

should fulfil. But in order to better understand the requirements and their

motivation, we first describe the engineering method to be applied when using

the architecture. The engineering method follows a simulation-based method-

ological approach adapted to include the architecture instantiation activity.

Therefore, this is a very reuse-based engineering method. After presenting

the engineering method and the architecture requirements, we describe the

architecture, its meta-model, and dynamics, including how it addresses the

requirements presented. A framework that implements SSOA was developed

during the case studies development presented in the next chapter. Therefore,

we briefly present this framework that implements SSOA. At the end we finally

present some blueprints on how to go from the designed models using coor-

dinated statecharts (presented in chapter 3) to the architecture instantiation

giving the reader an integrated design overview.

4.1 SSOA Iterative Life-Cycle

The earliest two main self-organizing life-cycles proposed in the literature

are due to De Wolf [De Wolf 2007] and Gardelli [Gardelli 2008]. They proposed

a simulation-based life-cycle for engineering self-organizing systems, in particu-

lar with the goal of verifying (Gardelli) and validating (De Wolf) these systems.

A simulation-based life-cycle is mainly based on three phases: modeling, simu-

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 59

lation, and tuning. It enables the software engineer to build an implementation

model, execute it, and thereby gain an understanding on how the system as

specified would behave if implemented. It is particularly important in an en-

vironment with high costs to enable operation, as the AGV problem or the

Contracts that regulate cross-organizational business applications. Of course

this approach can also be applied to biological systems simulation. We saw in

chapter 2 that biological systems have the same properties that self-organizing

systems, in fact decentralized systems are modeled with self-organizing mecha-

nisms which are bio-inspired. Therefore, the simulation-based process can also

be applied on the simulation of biological systems. To fully understand how it

can be applied, please refer to the solution of the third case study – the stem

cell behavior computational modeling – in next chapter.

Figure 4.1: The Design Iterative Life-Cycle w.r.t the Unified Process

In this work, we have extended the simulation-based life-cycle with the

addition of both the UML-based notational support – by using Coordination

Statecharts, presented in chapter 3 – and the instantiation of the architecture

here proposed. Because De Wolf founded his approach on the Unified Process,

defining what he called The Customized Unified Process, we shall also illustrate

the design approach proposed in this thesis based on the Unified Process for two

reasons. First, it allows us to compare the difference between both approaches.

And second, because it helps a software engineer to understand how the

activities are related to a well known and accepted software process and its

phases. This section has no intention to describe a full complete methodology.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 60

Instead, it is a starting point from which a full life-cycle methodology can be

based.

The Unified Process is an iterative and incremental development process.

In particular, when considering a simulation-based approach, a solution is

successively refined, with cyclic feedback from testing to design and adapting

the solution accordingly to converge to a suitable solution.

De Wolf argues that one should focus on how to address the desired

macroscopic properties in each discipline. We provide additional architectural

details that helps with this respect.

Requirement Analysis phase

Based on the Unified Process, this phase includes three types of ac-

tivities: eliciting, analyzing and recording requirements. They can be

accomplished by communicating with the customers and users to deter-

mine what their requirements are. Also determining whether the stated

requirements are unclear, incomplete, ambiguous, or contradictory, and

then resolving these issues, and documenting the requirements in vari-

ous forms, such as natural-language documents, use cases, user stories,

or process specifications, respectively. The problem is partitioned into

functional and non-functional requirement.

De Wolf customized this discipline with the identification of macroscopic

requirements (at the global level). To this end the software engineers have

to know how to identify a macroscopic requirement in the context of a

self-organizing system. De Wolf gave a hint on how to achieve this task

by explaining that a self-organizing emergent MAS typically ”maintains”

certain macroscopic properties. Therefore, explicitly identifying those

requirements that are ”ongoing” and have to be adaptively maintained,

is important. A specific question related to the macroscopic properties

that have to be addressed and explicitly engineered is how to measure

the system performance.

Although the customization proposed by De Wolf is of paramount

importance, we further exploit it and split this discipline into:

· Find and Outline Self-Organizing Requirements

Once the functional and non-functional requirement are gathered,

an analysis has to be done to identify between those requirements,

which are related to self-organization. More specifically, which of

them are goals and desired guarantees that could not be reducible

to local parts but drive the decentralized control and emergent

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 61

behavior? The purpose is to understand the problem considering

the desired guarantees in the system and document this.

· Detail Self-Organizing Requirements

The purpose of this activity is to describe one or more desired guar-

antees derived from the self-organizing requirements in sufficient

detail to be able to validate the desired guarantees, to ensure com-

pliance with stakeholder expectations and to permit software design

to begin.

Design phase

The design phase is concerned with the problem-solving and planning for

a software solution. The functional specification created describes what

has to be implemented. The design describes how the functions will be

realized using a chosen software environment. This phase is split into :

· Design the Core Self-Organizing Solution

In this phase we specify and design the model of the self-organizing

solution. To achieve this, two design methods are provided: Instan-

tiate SSOA and Design Coordinated Statecharts.

During the SSOA instantiation, the software engineer needs to

address the microscopic issues: identify agents, environment, objects

and structural relationships and the dynamics between them. As

it is a simulation-based life-cycle, we also need to instantiate the

simulation features of this application. This includes defining in

which order the entities are created and started, if they are stepped

in a sequence or in parallel.

After this, all the actions an agent or environment can perform

have to be identified. There are two types of actions: the internal

actions are the actions of the agents and the environment, and the

external actions are the input for the system. In order to identify

and model the actions, we have proposed to apply the notational

support described in chapter 3: Coordinated Statecharts.

· Refine the design with self-organizing patterns

Once the core self-organizing solution has been modeled, we need to

refine it with self-organizing patterns. A catalog of patterns can be

used to identify the most suitable one (or more). After each pattern

is chosen, we need to refine the models created using Coordinated

Statecharts models.

· Design the Validation Solution

The SSOA is a simulation-based life-cycle, therefore we need to

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 62

know a priori how the simulation of these models will be validated.

This activity is related to the macroscopic properties that De Wolf

introduced in the life-cycle and that we have been modeling as

the desired guarantees. Therefore we need to finish the SSOA

instantiation w.r.t the validation method. This can be accomplished

by first modeling a corresponding reversing action or set of actions

for each action. SSOA provides an autonomic validation method

that uses those reverse actions so the system can be run backward

if it enters in a undesired state. An example of reversing action is

to move back to a position.

At this point we have modeled all the entities and their dynam-

ics including self-organizing patterns. Now we can start modeling

the desired guarantees which we are aiming for, through which we

can assess the results of the simulations. We can do this by defin-

ing the state variables of the agents and environment. They will be

composed to monitor the desired guarantees. We finish the SSOA

instantiation SSOA w.r.t the validation method by modeling which

subset of states of the system need to be matched. Then the auto-

nomic validation module will be able to run the state evaluation.

This means that it will analyze all the global states already reached

and will verify which subset of the states matches the set of guaran-

tees for the macro properties that represents the desired behavior.

Implementation phase

The design then is expressed by using a specific language. De Wolf

proposed the programmer to focus on the microscopic level of the

system while implementing. In addition, we propose to also focus on

the macroscopic level when the programmer implements the validation

instantiation modeled in the last phase.

Testing phase

This phase consists of running the simulation itself. However before

that, it is necessary to provide scenarios. A scenario is a suitable set of

parameters for the model. They depend on the kind of the simulation and,

as we are dealing with self-organization and distributed control, some

parameters are expressed in terms of occurrence rates [Gardelli 2008].

The use of scenarios and simulation also enables the engineer to gather

meaningful statistics about the macroscopic properties. Since it might

be difficult for the engineer to put together a single, all-encompassing

scenario, a simulation can be developed using accumulated results from

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 63

other scenarios to obtain average-case metrics. Therefore, random events

are generated according to predefined probabilities. Thus, events that

occur very rarely can be assigned very low probabilities while others are

assigned higher probabilities, and with the random selection of events

this becomes realistic.

The required macroscopic properties are engineered in an iterative pro-

cess. This is an iterative method, because it is possible the desired guarantees

defined for the model built in the Design phase can never be satisfied. In this

case, the Autonomic Validation module retains the knowledge of all accepted

and reverted actions. The Autonomic Validation module has a key function

in this process, since it speeds the process by enabling to identify which local

behavior should be remodeled, and start the process again Hence, the design

discipline uses the testing results to get feedback and adapt the design to steer

toward the required solution.

Moreover the Autonomic Validation module also provides hooks for

doing self-configuration in the simulation. Therefore, as we can customize this

behavior depending on the model being analyzed and design the Autonomic

Validation module to change the input parameters for the external actions if a

set of backward was performed. It can speed the simulation process even more

in the case of testing several scenarios at once.

Therefore, our solution proposes a middle-out approach on the engineer-

ing of self-organizing multi-agent systems. While one can have a bottom up

approach on the microscopic analysis of the self-organizing mechanisms, we

also propose a top down approach achieved with the integration of the Auto-

nomic Validation module.

4.2 The Architecture Requirements

As a simulation-based self-organizing architecture, there are four macro

requirements to be considered to produce a proper architecture: simulation,

coordination, multi-environment and validation support. In this section we

present each of them separately and their motivation as a requirement.

(a) Simulation Support

At its heart, a simulation-based self-organizing architecture should pro-

vide interfaces that allows discrete-event simulation. In discrete-event simula-

tion, the operation of a system is represented as a chronological sequence of

events. Each event occurs at an instant in time (which can be called a step)

and marks a change of state in the system. The step exists only as a hook on

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 64

which the execution of events can be hung, ordering the execution of the events

relative to each other. The agents and environment are considered events at

the simulation core. It is worth noting the difference of a steppable event and

an event that can be fired in the environment. The former is a concept re-

lated to discrete event-based simulations, while the latter is the information

that allows the coordination and the decentralized control of the system. On

the other hand an event fired by an agent can also be steppable. It usually

happens, for instance, when this event was propagated in the context of the

Evaporation pattern. In this pattern, in some point of time after the event was

fired, it has to disappear from the environment. This can only be achieved if

the event is treated as a steppable event.

For any discrete-event simulation there are a number of requirements,

and a simulation-based self-organizing architecture also inherits those require-

ments, such us: ability to compress or expand time, ability to control sources

of variation,avoids errors in measurement, ability to stop and review, ability

to restore system state, and others [Fishman 2001].

The main loop of a discrete-event simulation w.r.t a multi-agent-based

simulation is:

Start

.Initialize Ending Condition to FALSE.

.Initialize system state variables: the environment and the agents.

.Initialize clock (usually starts at simulation time zero).

.Schedule initial events (add to the Events list): this means to schedule

the environment and its agents.

”Do loop”

.While (Ending Condition is FALSE) then do the following:

· Set clock to next event time.

· Do next event (step the agent or environment) and remove from the

Events List.

· Update statistics.

End

.Generate statistical report.

In a self-organizing system, the statistics are the desired guarantees

related to the macroscopic properties. Furthermore, the scheduling mechanism

should allow for more sophisticated dynamic schedules such that the execution

of an event can itself schedule other events for execution in the future. This

is particular used by the environment that on each addition or removal of an

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 65

agent (or any steppable entity) will add the agent to/ remove the agent from

the Events list, respectively.

(b) Coordination Support

Among all the possible interaction mechanisms, a simulation-based

self-organizing architecture has to support uncoupled and anonymous ones

[Mamei 2004]. Uncoupled and anonymous interaction can be defined by the

fact that the two interaction partners need neither to know each other in ad-

vance, nor to be connected at the same time in the network. Uncoupled and

anonymous interaction has many advantages. Summarizing, uncoupled and

anonymous interaction is suited in those dynamic scenarios where an unspec-

ified number of possibly varying agents need to coordinate and self-organize

their respective activities.

Therefore, the taxonomy created of the events in a simulation-based

self-organizing architecture has to relies on what and how information is

being communicated: explicit or implicit interaction, directly to the receiver,

propagation though neighbors, and so on. Moreover, the agent may react in a

different way according to the information type.

Figure 4.2: Coordination Support for Feedback Loops

Figure 4.2 illustrates a coordination example of positive and negative

feedbacks through the activation of agent or environment actions. Action A

of an Agent X produces a growing behavior while can directly or indirectly

activate Action B of an Agent Y (it could be also the Agent X itself) and

the Action B in turn directly or indirectly activate Action A. While Action C

produces a slowing behavior and is activated by Action B and also directly or

indirectly activate Action B.

(c) Multi-Environment Support

Depending on each agent type being developed, the environment types

vary. The environment defines its own concepts and their logics and the

agents must understand this in order to perceive them and to operate. The

environment might be accessible, sensors give access to complete state of the

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 66

environment or inaccessible; deterministic, the next state can be determined

based on the current state and the action, or nondeterministic, and so on.

Figure 4.3: The Multi-Environment Perspective

Each application domain has its own view of what is an environment

and what are the functionalities implemented by an environment. In current

approaches, each time a different aspect of the application domain is identified

this aspect is then appended to the environment in an ad hoc manner. As

a result, the environment centralizes all the different aspects of the targeted

application. In particular, for a situated environment, an additional element

characterizes this agent-environment relationship: the localization function

is specifically provided by situated environment. In a situated environment,

one can define the location of an agent in terms of coordinates within the

environment [Weyns 2006, Gatti 2009].

A self-organizing system has a structurally distributed environment; in

other words, at any point in time, no centralized entity has complete knowledge

of the state of the environment as a whole. Furthermore, a designer may decide

to model environments using various underlying structures. For example, an

environment can be modeled as a graph, a discrete grid, a continuous space or

a combination of these (figure 4.4). In addition, to achieve performance in a

cluster or computational grid, or even because of the domain application, the

environment can be distributed from a processing perspective if it is designed

to be executed in a distributed network. So, the more choices for environment

structures, the broader its application in the field of multi-agent simulation

systems.

The process of building such a self-organizing system with a multi-

environment framework that merges several aspects is made clearer at both

the design and implementation levels. So, the agents can exist in several

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 67

Figure 4.4: The Multi-Environment Perspective: a)Graph: each agent or sub-
environment can be located in a node and perceives its neighbors; b) 2D double
point grid: each agent or sub-environment can be located in a discrete 2D
double point position in the grid; c)3D continuous grid: each agent or sub-
environment can be located in a 3D floating point grid.

and independent environments. Each environment is concerned only with a

specific aspect and can be developed independently from other environments.

Therefore, existing environments do not need to be redefined or modified. The

environment has a dual role as a first-order abstraction: (i) it provides the

surrounding conditions for agents to exist [Weyns et al. 2007], which implies

that the environment is an essential part of every self-organizing multi-agent

system, and (ii) the environment provides an exploitable design abstraction to

build multi-agent system applications.

(d) Validation Support

The requirements for validation support in a simulation-based self-

organizing architecture are related to the macroscopic properties design sup-

port and monitoring and evaluation at the testing phase. Therefore interfaces

have to be provided at the architecture level so the engineer is able to model

the relation between the macro-micro levels and evaluate the macro level w.r.t

the simulation at the micro level.

The architecture have to provide abstractions to enable an entity to per-

ceive all the input and output events or actions from the agents and environ-

ments at the micro level. The impact of those actions on the environment at

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 68

the macroscopic level is then evaluated. At this point, the execution flow has

to be divided in two flows:

i) if an action had a positive impact in the simulation, i.e., contributed to

the desired guarantees, nothing is done and the iteration is back to the

beginning;

ii) if an action led the simulation to an undesired state or is deviating the

system from the goal state, the Plan module has to be activated. It

is responsible for effectively planning the system state backward steps

so the Execution module can execute backward and the system could

converge to a desired or optimum state, if reachable.

Therefore, the architecture has to be able to provide interfaces for the

definition of symmetric actions so backward procedures can be performed

when needed. It is necessary to provide an interface that will be realized by

a domain-based algorithm that operates through the flow of control according

to the actions, declare the subset of states that characterize a goal or emergent

property (for each), and provide the state evaluation strategy that is based on

trends or allowed average behavior.

4.3 The SSOA Description and Dynamics

Figure 4.5: The SSOA Components

The two main components of the architecture can be seen inside the

dashed box: MESOF and MANAGER.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 69

(a) MESOF Component

The MESOF component encapsulates a Multi-Environment Self-

Organizing Framework. It provides the hierarchy concept of environments

in self-organizing multi-agent systems, i.e., it allows the modeling of multiple

environments with different structures in a single simulation. MESOF also

provides a set of coordination components that assist in the engineering of

self-organizing mechanisms.

MESOF Meta-Model

The MESOF meta-model is described in this section. Figure 4.6 illus-

trates its structural and hierarchies and is explained through the features that

correspond to the architecture requirements as follows:

Figure 4.6: The MESOF Meta-Model

Simulation Features

The abstract Simulation class represents the simulation itself and has

control of the simulation. It encapsulates the main environment (represented

by the Environment class), being able to access its state. Another duty of the

Simulation class is to give a unique identifier about the current simulation

state. It will allow the Manager Component to monitor and rollback the

simulation states when needed.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 70

The Environment manages the Schedule of its entities when it is started

by the Simulator. And, for each time step, it manages the entrance of Entity

and schedules each new added entity. The entities being scheduled could be

executed in different modes such as an ordered sequence, random sequence or

parallel sequence.

Coordination Features

The Entity class is an abstract class that represents any entity that exists

in the Environment. In a situated environment, the Agent holds a Location in

the Environment. This class cannot be directly instantiated, rather, to do so

through the Agent and Environment specialized classes.

The abstract Agent class represents the agent that can be either an active

or reactive entity. It can observe and act in the Environment (sensing and

producing events), always with a proposal of achieving its goals or reacting

to events. An agent is able to: communicate with other agents and the

environment, and to move between environments. The abstract Environment

class is an active entity and, therefore, it is a specialization of the Agent class.

If the Environment is a situated environment, it manages the Space in which

the agents have a specific Location. Each Location can be given to an agent, a

sub-environment, or events to be sensed by other entities.

An event (Event class) is any information fired by an Agent or Envi-

ronment. It can be sent to the environment directly, to a specific location so all

the agents in this location can perceive the event, or directly to an agent. The

listeners (EntityListener, EventListener, AgentListener and EnvironmentLis-

tener) are interfaces that allow any element interested in these entities or

events to be notified.

The AbstractAction class represents an action that own a source entity

(the action performer) and a target entity (the action receptor) that can be

either an Agent or an Environment. Each subclass Action must have one or a

set of ReverseAction(s) because they will be called by the Manager Component

to perform rollbacks in the simulation. An Action does not require reverse

behavior only if it is not interesting for the Manager Component to analyze it

(when it has no impact in the system).

Regarding a situated environment, the coordination is achieved using

directly communication (through treating events as messages) and indirectly

communication through propagation of events in the neighborhood in 2D/

3D and discrete/ continuous grid. Moreover, there is a specific type of event,

called Positional Event, which can be propagated instead of a regular event.

The Positional Event has a time to live in the environment. Therefore, if an

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 71

agent takes too many time steps to reach the source location of the event, it

might have disappeared. This is useful for the Diffusion pattern, for instance,

and for its combination with other patterns.

Another important principle of the MESOF Component that allows

the coordination to be flexible and fast is that the space of the situated

environments are considered sparse fields. Therefore, many objects can be

located in the same location and different search strategies can exist for each

entity type. The MESOF also provides a set of neighborhood lookups for each

environment type such as: get agents at a node/ position, get agents within

distance, get events at location.

Furthermore, the Agent and Environment use the Template Method

design pattern in order to implement the invariant parts of the common

behavior:

· Agent: step template method

This template method first, post all events. Then, for each perceived

event, the agent tries to handle this event. If the event was handled,

notify all the event and agent listeners.Then, do agent behavior.

STEP(s)

input: Simulation s

1 count := events.size

2 for (i := 0; i < count; i++)

3 e := events[i]

4 if (doHandleEvent(e, s))

5 e.notifyHandled(this)

6 for (EntityListener listener in listeners)

7 if (listener instanceof AgentListener)

8 listener = (AgentListener)listener

10 listener.eventHandled(this, e)

11 events[i] := NULL

12 i := i - 1

13 count := count - 1

14 doBehavior(s)

· Agent: doHandleEvent ”hook” operation

Handles an event. Return true if and only if the event was handled.

Otherwise, return false. If the event was not handled, it will be kept in

the queue so it can be handled at a later step.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 72

· Agent: doBehavior ”hook” operation

Performs any activities other than handling events. Note that this

method is only called when the agent has no event left to be handled.

To better explain these behavior from the coordination point of view,

consider two agents A1 and A2 and their behavior considering the template

method and hooks operations described:

Figure 4.7: The coordination between two agents

Note that there are two properties at this coordinated statecharts model.

First, the A1 Agent Behavior is exactly the same as the A2 Agent Behavior,

despite the name of the event being fired. The name is different because

they are different instances. This illustrates the reuse principle on each SSOA

resides and how coordinated statecharts modularize behaviors to support reuse.

Second the information flow between the two agents are represented by the gray

dashed lines (which are illustrative, they are not part of the diagram). Note

how the emission of an event (for instance, E1) reinforces the emission of other

event (following the example, E2) which in turn emits more E1.

· Environment: doBehavior override

All the subclasses of Environment have to call the doBehavior implemen-

tation of the Environment class. The Agent and Environment subclasses

might need to use the reference for the simulation, therefore, this over-

ride has the simulation as an input. The dead structure is a hash that

contain the received and handled events. If the event was received by an

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 73

entity but not handled, it will not be added to the dead hash. Otherwise,

it will be added and at the end will be removed from the location. This

algorithm propagates all the event of a specific location to all agents at

the same location.

doBehavior(s)

input: Simulation s

1 dead := new HashSet<EventV>()

2 for (Location l in locations)

3 content := locEvents.get(l)

4 dead.clear()

5 for (Event e in content)

6 entities := getOtherEntitiesAt(l, e.getSource())

7 for (Entity entity in entities)

8 if (((Agent)entity).receiveEvent(e))

9 if (not e.update())

10 dead.add(e);

11 for (Event event in dead)

12 content.remove(event)

Multi-Environment Features

Regarding the multi-environment features, at the meta-model we have

the simulator engine that schedules the main environment. All the agents

and sub-environments on the main environment are scheduled by the main

environment and added to the simulator engine depending on their states.

The environment state is dynamic and if one agent leaves the environment or

moves itself, the environment state changes.

We have seen that the environment is locally observable to agents and if

multiple environments exist, any agent can only exist as at most one instance

in each and every environment. In self-organizing systems, the environment

acts autonomously with adaptive behavior just like agents and interacts by

means of reaction or through the propagation of events.

The meta-model provides the AgentNetwork and EnvironmentNetowrk

abstract classes for situated environment using a graph network, which is

represented by the class Network. This class handles the addition, removal and

search of agents and events in a graph network with a double point location.

The meta-model also provides the Agent2D and Environment2D abstract

classes for situated environment using a discrete 2D double point grid, which

is represented by the class Grid2D. This class handles the addition, removal

and search of agents and events in a double point location.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 74

Regarding the 3D environment, the meta-model provides a 3D continuous

space through the ContinuousGrid class, and the entities are represented

by a triple (x, y, z) of floating-point numbers. All the agent-environment

relationships and simulation schedule described for a non-situated environment

is reused in these components.

(b) Manager Component

The continuous style box shows that an application can be totally

decoupled from the Manager Component, if desired. I.e., the application, which

is a self-organizing multi-agent system to be simulated, can instantiate MESOF

and run without instantiating and turning on the Manager Component.

However, it is a constraint to design the agents and environment to realize

the Action interface provided by MESOF in order to be able to activate the

Manager in the future. The Manager instantiation consists of realizing the Goal

interface.

Manager Meta-Model

Figure 4.8: The Manager Meta-Model

Autonomic Validation Features

The Goal interface defines a desired guarantee. In the planning context,

a goal is satisfied when one or more state variables have optimum values. A

set of goals (GoalSet class) can be used when it is necessary to define more

than one desired guarantee. The goals are the method pillar. The system can

only be considered valid if all goals are satisfied.

When an action is performed, the Manager has to evaluate if this action

contributes to the goals defined or if it leas the simulation to an undesired

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 75

state. The Manager class is the central class of the Manager Component. This

class unifies all the auxiliary resources to monitor and validate the simulation.

The mechanism starts with the Manager being notified about an action

execution. This is possible because the Manager realizes the ActionListener

and EnvironmentListener interfaces. After this, the process is divided by two

execution flows:

1. If the verification was started because of an action execution, the

Manager checks if the goal (or set of goals) is satisfied. And the three

execution flows can be executed:

a.If the goal is satisfied, the cycle returns with success and the action

is accepted.

b. If the goals was not satisfied, the Manager tries to revert the current

action. If the action is reverted, the cycle returns with success.

c. Otherwise, if the action could not be reverted, then the cycle returns

with error.

2. If the verification was started because the environment step, including all

its entities steps, has finished, the three execution flows can be executed:

a.If the goal is satisfied, the cycle returns with success and the step is

accepted.

b. If the goals was not satisfied, the Manager tries to revert the current

step, including all entities steps. If the step(s) is(are) reverted, the

cycle returns with success.

c. Otherwise, if the step(s) could not be reverted, then the cycle returns

with error.

4.4 A Framework that Implements SSOA

To demonstrate the feasibility of the SSOA, we have developed an

object-oriented framework in Java that implements the SSOA components

[Gatti 2009]. The framework shows a concrete design of the architecture

and supports the development of simulation-based self-organizing multi-agent

systems that help with the engineering of self-organizing systems design.

The MESOF component was built on top of MASON [Luke 2004] that

offers many interesting resources for simulating multi-agent systems in a

discrete and event-based manner as two- and three-dimensional visualizations,

charts and reports construction, video recording and much more. The entities

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 76

being scheduled can be both executed in all modes provided by MASON

library, i.e., sequential types and parallel sequence.

If we take a look in the figure 4.6, the Simulation, Schedule, Steppable

and Stoppable classes were replaced by the corresponding MASON classes and

we specialized the Simulation class (which is called SimState in MASON) with

more functionalities specified in SSOA description. Also Network and Grid2D

classes were implemented through the existent classes in MASON. On the

other hand the ContinousGrid class [Faustino et al. 2008] had to be created.

All other entities did not exist previously in MASON.

Developing the framework was a valuable experience. It is worth saying

that several versions of the case studies presented in next chapter were

developed in order to reach the final architecture here proposed and that

enable the framework development. Furthermore, the framework development

has improved our general understanding of important aspects of self-organizing

systems such as the state of the environment, multi-environment hierarchy, the

coordination and information flows design and the application of a middle-out

approach that relate the micro and macro level to validate and sometimes

to speed the design solution development. We also learned that deriving a

concrete design from the architecture is not self-evident, in particular because

there are different environment structures, and it requires a lot of effort and

expertise of the designer.

4.5 Implementation Blueprints

In this section we present some implementation blueprints to be consid-

ered when implementing and instantiating SSOA.

How to initialize the simulation

First the Simulator controller must instantiate the Environment during

initialization. This will represent the main environment. Then other entities

can be initialized then after this when needed. Still during the simulation

initialization, if the Manager Component will be activated, the following code

should be added to initialize this component and activate it:

Simulation class

void INIT()

...

Manager manager := Manager.getInstance()

manager.addListener(this)

manager.init(goals)

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 77

void START()

...

Manager.getInstance().start(this)

This ensures that: there are only one instance of the Manager in the

simulation (Singleton pattern), that the simulation is a listener of the Manager

(in order to gather statistics about number of actions or steps reverted or

accepted, and the goals were passed to the Manager initialization. Also all the

external actions have to be created during initialization.

When instantiating the start() method of the Environment class , if

overridden, must be called by the start() method implemented by the subclass.

It starts the existent entities of the environment.

How to implement coordinated statecharts into code

Transitions are fired per step according to pre-conditions and input

events. The events are handled during the doHandleEvent() hook method.

States can be defined as enumeration constants and Events can be typed using

the Event.Type enum constant. Therefore, event-trigged actions are executed

as a match of Event and State inside the doHandleEvent() method.

How the Manager knows the action to revert

If one action needs to be reverted, the Manager must have a reference to

this class. Therefore, each time that an Action is instantiated and executed, it

has to be added to the Agent actions list.

1 MyAction action := new MyAction(source, target)

2 actions.push(action)

3 action.execute(simulation)

As an observation, when creating an Action be sure that all the previous

attributes state are recorded and passed to the ReverseAction class during its

instantiation, so it is able to rollback the state of all changed attributes.

4.6 Chapter Remarks

This chapter contains the main contribution of this thesis. Here we

connected all the others contributions, as the notational support, with the

description of the architecture proposed. We illustrated through the Unified

Process how the SSOA life-cycle is realized. Then we presented the architecture

requirements and the details of all entities, structures, components, and

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

Chapter 4. SSOA: A Simulation-based Self-Organizing Architecture 78

dynamics of the SSOA. Some lessons learned were discussed during the

development of the framework that implements SSOA and, finally, some

implementation blueprints were presented for the software engineer who wants

to build an executable simulation model that implements SSOA.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA

