
3
Notational Support

As it is the case with any new software engineering paradigm, the suc-

cessful and widespread deployment of self-organizing systems require: nota-

tions that explore the use of self-organizing related abstractions and promote

the traceability from the design models to code. Although information flows

are essentials to support self-organization, an important matter is to design

considering modularity and reuse. Due to lesser customization, and less learn-

ing time, reuse reduces cost, time, effort, and risk; and increase productivity,

quality, performance, and interoperability. In addition, modularity should be

easy to work with because modules can be easily understood in isolation, and

changes or extensions to functionality would be easily localized. Hence we need

modeling approach that combines information flows, state dynamics and soft-

ware engineering principles as reuse and modularity. That said, this chapter

presents UML 2 [OMG 2005] customizations that address these issues.

3.1 Information Flow Design

In a self-organizing multi-agent system an agent can execute several

actions regarding its goals or perceptions. As well, the environment has

the same features. The action behavior feature is executed during agent or

environment execution without explicitly being called by other objects or

agents. Agents interact with one another and the environment, sending and

receiving messages or sending and receiving events through propagations in

the environment.

In this context, in order to design the essential self-organizing feedback

loops, the interplay between information flows AND actions AND states on

control flows needs to be considered. De Wolf proposed to define Feedback

Loop = Information Flows + Actions. Here we propose to extend this concept

to Feedback Loop = Information Flows + Actions + Behavioral States. A

behavioral state is a particular instance of the agent or environment in a

scenario that represents a typical path through the state space within a

single state machine, i.e., an ordered sequence of state transitions triggered

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 39

by events and accompanied by actions. To enable the design that addresses

this new feedback loop concept, we propose to use Coordinated Statecharts,

an extension of UML State Machine.

Next sections describe what is needed to exist in the UML 2 meta-model

in order to support the customizations and more details about Coordinated

Statecharts and its relation to existent statecharts concepts.

3.2 UML Customization with Coordinated

Statecharts

The foundation of the design abstraction that enables the design of infor-

mation flow with modularity and reuse principles relies on the customization of

the UML 2 meta-model and behavioral statecharts, called Coordinated State-

charts [Gatti 2008a]. Our objective is not to compete with any of the existent

efforts on modeling languages and methodologies for agent-oriented systems,

but rather to extend and apply a widely accepted modeling and representa-

tional formalism (UML) in a way that makes it useful in communicating across

the self-organizing research groups.

(a) Motivation

Before presenting the extensions it is important to understand why

traditional statecharts are not enough and why/what we had to customize.

First, a state machine diagram is a graph that represents a state machine.

States and various other types of vertices (pseudostates) in the state machine

graph are rendered by appropriate state and pseudostate symbols, while

transitions are generally rendered by directed arcs that connect them or

by control icons representing the actions of the behavior on the transition

[OMG 2005].

Odell [Odell 2000] has already proposed to use statecharts to specify the

internal processing of a single agent based on Singh’s notion of agent skeletons

[Singh 1998]. On the other hand it was not enough to design the feedback loop

as we proposed in the last section.

We propose Coordinated Statecharts as a combination of statecharts

[Harel 1988] with action and communication of agent and environment be-

haviors to allow the design of feedback loops. We consider the environment

as an explicit part of multi-agent systems, considering both the environment

and the agents as first-order abstractions. The rationale for making the en-

vironment a first-order abstraction in multi-agent systems is presented in

[Weyns 2005b, Weyns et al. 2005, Weyns et al. 2007]. In self-organizing sys-

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 40

tems the environment is an essential part of every multi-agent system, and

the environment provides an exploitable design abstraction to build multi-

agent system applications [Weyns et al. 2007]. In self-organizing systems, the

environment acts autonomously with adaptive behavior just like agents and

interacts by means of reaction or through the propagation of events.

A State Machine Diagram describes discrete behavior modeled through

finite state-transition systems. The UML 2 behavioral state machines

[OMG 2005] is an object-based variant of Harel state charts. The most no-

ticeable concepts of statecharts are hierarchy, orthogonality and submachine

[Harel 1988]. The hierarchy concept allows hierarchical state decomposition,

i.e., nesting of states within states. The outer enclosing state is called a super-

state, and the inner states are called substates. The problem is that the parent

state is always in a single child state.

Another important concept, called orthogonality, allows a state on one

statechart to be decomposed into two or more concurrent and independent

orthogonal regions. Each of the orthogonal regions is named and operates

independently of the other regions, and the state of the entire machine or

enclosing superstate is represented by a combination of active states of the

orthogonal regions. For instance, if a statechart consists of two, X and Y,

orthogonal regions. When an event occurs, it is transferred to both orthogonal

regions X and Y simultaneously, resulting in the two final states for each region.

It provides little concurrency support when dealing with concurrent real-time

tasks, in this case, agent behaviors.

Regarding the submachine concept, it is often convenient to reuse a

fragment of a state machine in other state machines. A state machine can

be given a name and referenced from a state of one or more other machines.

The target state machine is a submachine, and the state referencing it

is called a submachine state. The problem is that it allows only a single

behavior within itself at a time, thus executing concurrent behaviors (for each

agent/environment) only in a sequential manner.

Coordinated statecharts extend the orthogonal behavior to support

self-organizing mechanisms. Each agent behavior can be considered as an

orthogonal behavior with broadcasting capabilities. But in broadcasting

[Yacoub 1998], for instance, when an event occurs, it is transferred to all or-

thogonal regions simultaneously, resulting in the several (the number of re-

gions) final states. Therefore, how could you have orthogonal behavior co-

existing although not being activated at the same time? Furthermore, how

could you detach this behavior one from another, so you can reuse it in other

models?

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 41

Figure 3.1: Cordinated Statecharts Concept

(b) Customized Meta-model

Coordinated statecharts address these issues by composing behaviors in

parallel. With coordinated statecharts, a behavior is a particular instance of

the agent or environment in a scenario that represents a typical path through

the state space within a single state machine, i.e., an ordered sequence of

state transitions triggered by events and accompanied by actions. I.e., each

agent and environment behavior is designed using behavioral state machine

diagrams. Each behavioral state machine diagram is composed of actions and

can communicate with all the other diagrams through a communication chan-

nel and the desired feedback loop appears as a result of that communica-

tions/coordination.

We are not addressing the agent local interactions through protocols

and messages in this work since there has been a huge effort from the agent

research community about inter-agent communication. For instance, MAS-ML

or AUML protocols diagrams can be combined with the work proposed here

for designing interaction protocols.

In order to better understand the extensions, Fig. 3.2 shows the new

meta-classes that have been proposed. First, the CoordinatedStateMachine

meta-class extends the StateMachine meta-class, which in turn extends the

Behavior meta-class. Any agent or environment behavior can be coordinated

using CoordinatedStateMachine. It adds the composition relationship which

means that a CoordinatedStateMachine only exists if connected to another

CoordinatedStateMachine. Another variation that is not represented in the

diagram is that a CoordinatedStateMachine may not have a final state. Which

means: there is always an active state to that agent or environment behavior

waiting for receiving an event or to complete an action.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 42

Figure 3.2: The customized UML 2.0 meta-model

Figure 3.3: The coordinated state machine notation for an agent’s behavior

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 43

All transitions of a CoordinatedStateMachine must be coordinated tran-

sitions. The CoordinatedTransition meta-class extends the Transition meta-

class with regard to relationships with other meta-classes, such as Vertex, but

it redefines the semantics.

In UML, a trigger that causes a transition to occur is called as an event

or action. An event can appear synchronously or asynchronously. Call and

exception are synchronous events whereas a signal event is asynchronous. A

signal is an event sent by another object.

Apart from the operation call event, events are generally used for

expressing a dynamic behavior interpretation of coordinated state machines.

An event that is not a call event can be specified on coordinated transitions.

The problem with the original signal event concept is that the receiving

object handles the signal instance as specified by its receptions, like a call

event, at the time that the receiving object receives the signal. On the other

hand, agents are autonomous. They may not execute an action right on time

if they so decide. Therefore, the signal cannot be specified as a call event

at the target object. Due to this constraint, we extended the Signal element

with the CoordinatedSignal meta-class. A new event meta-class was defined,

called CoordinatedEvent, which represents the receipt of an asynchronous

coordinated signal instance. A coordinated event may, for example, cause a

state machine to trigger a transition when the specified action is executed

due to the coordinated event and agent’s decision. Nevertheless, an Action

meta-class is a BehavioralFeature that represents any agent or environment

action according to its decision-making process. An action is executed without

explicitly being called by other objects or agents. Agents interact with one

another and the environment, sending and receiving messages or sending and

receiving coordinated signals.

Fig. 3.3 illustrates the coordinated state machine notation for an agent’s

behavior. From the diagram top you have to define the instance of the agent for

that behavior state. If it was an environment behavior, then the agent instance

name has to be replaced by the environment instance name. Each behavior

state diagram must start with a transition. The behavior state of the agent

(or environment) instance may change according to a transition firing (action

execution); the transition will only be fired if the agent executing the specified

behavior is in State 1 and according to the input event (a coordinated signal

send by other agents) received and the evaluated pre-condition, if specified.

In order to identify which entity would perceive the output event (a

coordinated signal sent to other agents) in a complex composition behavior,

attributes can be defined and specified in the transition before the ”caret”

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 44

symbol (ˆ) and the output event to be perceived by the entity (ies).

We also classify the coordinated signals as:

(i) emission: signal an asynchronous interaction among agents and their

environment. Broadcasting can be performed through emissions;

(ii) trigger: signal a change of agent state as a consequence of a perceived

event. For instance, an agent can raise a trigger event when perceiving

an emission event which changed its state;

(iii) movement: signal an agent movement across the environment;

(iv) reaction: signal a synchronous interaction among agents, however without

an explicit receiver. It can be a neighbor of the agent or the environment;

and

(v) communication: signal a message exchange between agents with explicit

receivers (one or more).

Note that when the coordinated signal is an emission, the agent does

not wait for a response, while in a communication it may wait. Each of those

coordinated signals may be raised by actions performed by agents or by the

environment and updates their states. Furthermore, the messages exchanged

through communication events are interaction protocols and should be FIPA

[FIPA 2009] compliant so they can be understood by the receiver agents.

Figure 3.4: Coordinated state machine notation - input versus output coordi-
nated signal perceptions

Fig. 3.4 shows how behaviors can communicate. The figure shows the

coordinated state machine communication channels and input versus output

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 45

coordinated signal perceptions. For instance, an output coordinated signal from

the upper left model from State 1 to State 2 (dashed line1) may be perceived

as an input coordinated signal that starts at the bottom left model and takes

it to State 1. The arrows between behaviors’ state models show how they

communicate among themselves and whether they perceive an input or an

output coordinated signal.

3.3 Exemplar Application: Toward a Self-

Organizing Pattern Language

This section illustrates the Coordinated Statecharts use through the

proposal of a self-organizing pattern language. A pattern language is a set

of patterns that are used together to solve a problem. It guides a designer by

providing workable solutions to several of the problems known to arise in the

course of design. This section proposes a pattern language for self-organizing

systems. The language is compliant with the well-known foundations for self-

organized systems, which are previously defined in conceptual design patterns

[De Wolf 2007a, Gardelli 2008].

The conception of our pattern language has two purposes:(i) the descrip-

tion of five self-organizing mechanisms as patterns, and (ii) the organization

of these patterns as a comprehensive pattern language for self-organizing soft-

ware systems. The basic patterns are [Gardelli 2008]: Diffusion, Evaporation,

and Aggregation. They were isolated from the other patterns in the language

so that they can be used individually. The combination of basic patterns is

required to produce more complex patterns of self-organizing systems as Gra-

dient Fields.

This section presents several contributions. First, to the best of our

knowledge there is no evidence in the literature of a pattern language in

self-organizing systems areas, only isolated design patterns or combination of

them to achieve a domain specific macroscopic behavior. Second, the existent

patterns have not been presented at the modeling level such as statecharts, but

rather only at the conceptual architectural level. And third, during the pattern

language description the already known patterns are described with regard to

the presented architectural models and dynamics. This gives a deep knowledge

about how those patterns can be realized using a reusable architecture. Hence,

the low level allows them to be implemented in a framework and used as

templates for many applications.

1The dashed lines are illustrative and have no semantics or representations at the meta-

model customizations

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 46

The self-organizing mechanisms are described in a format known in

mainstream software engineering which promotes their usage. We combine the

pattern scheme presented in the Gang of Four (GoF) [Gamma et al. 1995] and

in the catalog of patterns illustrated with UML (Patterns in Java). Therefore,

we have based the pattern language with the following structure:

Context A specific scenario motivating the pattern need and what should

be a design solution.

Problem What is solved by this pattern? Engineers compare this section

with their problem in order to select coordination mechanisms.

Applicability What are the situations in which the pattern can be applied?

What are examples of poor designs that the pattern can address? How

to recognized these situations?

Forces What are the considerations that lead to the general solution pre-

sented in the Solution section?

Solution1 How does the pattern solve the problem that the pattern ad-

dresses?

Consequences How does the pattern support its objectives? What are the

trade-offs and results of using the pattern? What aspects of the solution

does it let the designer vary independently?

Implementation Factors What pitfalls, hits, or techniques should you

be aware of when implementing the self-organizing pattern? Are there

language specific issues?

Example1 A scenario that illustrates a design problem and how the classes

and or objects, agents and environment structures in the pattern solve

the problem. The scenario will help one understand the more abstract

description of the pattern that follows.

Known Uses What are examples of the pattern found in real systems?

Moreover, the pattern language has a micro-architecture that focuses on

the forces acting over the instantiation of our generic structure and behavior

for the basic patterns. Figure 3.5 is a directed acyclic graph of dependence

among patterns. An edge from pattern A to pattern B means pattern B is

generated from pattern A. All other patterns are combinations of the three

1Those sections contain novel reusable design details at the low level if compared to the

existent design patterns in the literature

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 47

basic patterns. And all five self-organizing patterns instantiate the micro-

architecture. A walk on the graph is directed by two questions: What self-

organizing mechanisms should be used to address application needs? And how

should the self-organizing mechanisms be structured as reusable and flexible

components?

Figure 3.5: Self-Organizing Design Patterns and Their Relationships

In order to illustrate the applicability of this pattern language,the self-

organizing basic patterns is used over the automated guided vehicle warehouse

transportation system case study described in chapter 2, subsection II.3.a.

Only the self-organizing-based aspects of such applications are considered.

(a) MICRO-ARCHITECTURE PATTERN

Context

Two or more entities are coordinated through self-organizing mechanisms

in an environment. The design of self-organizing components should

be modular so that they can be easily combined to achieve the target

coordination.

Problem

How to design a flexible agent-oriented micro-architecture for a self-

organizing design in order to facilitate component reuse?

Applicability

When defining the best combination of self-organizing mechanisms to

achieve optimal coordination. When a generic micro-architecture to

several kinds of self-organizing mechanisms is necessary.

Forces

The dependencies between coordination features and application code

should be minimized in order to facilitate reuse. The readability of

programs with self-organizing code should be increased.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 48

Solution

The Environment is inhabited by Agents and may contain Sub-

Environments. The Environment manages the Space that contains Lo-

cations. Each Agent is situated in one Location. A Location may have

several Agents and Events. An Agent perceives the Events in each Loca-

tion and may react or not to the events (Figure 3.6).

Figure 3.6: Micro-Architecture Structure

For each coordination action, i.e. the agent reaction to a gradient,

or propagation rule action there is an abstract class representing the

Strategy Design Pattern [Gamma et al. 1995]: the CoordinationStrategy

and PropagationStrategy classes. The Strategy pattern is useful for

dynamically swapping the algorithms used in an application. The Agent

is the Context of the strategies. Hence the Agent must define them to

later execute their behaviors.

The coordinate() action will call one of the concrete coordination strate-

gies. And the propagate() action will first choose from one of the propa-

gation types, in locations, to agents or in space implemented by the re-

spective operations propagateInLocations(), propagateToAgents(), propa-

gateInSpace().

Figure 3.7 illustrates the micro-architecture dynamics using Coordinated

Statecharts. The A1 Initiator Agent starts the coordination mechanism

through the emission of an event, for instance the GF event. An A2

agent will trigger the GF event and will propagate it in the neighborhood

locations or spaces or agents according to the propagation rules. At the

location, the propagation might represent the addition of the GF event

in the location or its removal. At the space, the propagation happens in

all the locations it contains.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 49

Figure 3.7: Micro-Architecture Dynamics

Other agents will perceive the event at the time of the propagation in the

case the event is propagated to their locations or when they move their

locations. Once an agent triggers the GF event, it decides for starting the

coordination. It can also spread more GF events or stop the coordination.

This decision depends on the coordination rules. Once the coordination

process is stopped, the feedback loop is closed.

Consequences

· All the self-organizing mechanisms will present a common behavior

and environment structure with concepts of Space and Location.

· Feedback loops can be represented and reused when instantiating

the micro-architecture.

· Ad hoc implementations of self-organizing mechanisms could per-

form better than micro-architecture instantiation if does not use an

object-oriented approach.

· Flexible and adaptable systems with self-organizing mechanisms

can be more easily obtained when coordination and propagation

algorithms are decoupled from their implementations, and these two

are, in turn, decoupled from the self-organizing mechanisms.

· Behaviors are defined as separate interfaces or abstract classes and

their corresponding concrete specific classes.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 50

Implementation Factors

This pattern can be easily developed with object-oriented programming

languages. Middlewares with space virtualization can be used to real-

ize the micro-architecture relationships, structure and dynamics. For

instance, Tuple Spaces based middlewares [Mamei 2004] and MESOF

framework [Gatti 2009], which is an implementation of the architecture

presented in chapter 4, provide space virtualization.

In the literature one can find that there are different ways to implement

statecharts. The most common technique to implement statechart is the

doubly nested switch statements with a ”scalar variable”. The latter is

used as the discriminator in the first level of the switch and event-type

in the second [Douglass 1998, Ali 1999, Rhapsody].

Another approach uses the concept of object composition and delegation

[Niaz 2004] and extends the State Design Pattern [Gamma et al. 1995].

In this case, each state in the statechart diagram becomes a class. Each

transition from that state becomes a method in the corresponding class

and each action becomes a method in the context class that, in our

case, will be the agent behavior. The context class delegates all events

for processing to the current state object. It makes it possible to easily

compose behaviors at run-time and to change the way they are composed.

Although they have shown that this approach reduces source code in

comparison to the first one, with a few more agents there would be an

explosion of small classes since an Agent might have several behaviors.

Moreover, the event cannot be implemented as a method. The event

has to be added to a list that the agent manages and process the event

whenever desired.

Example

An Automated Guided Vehicle (AGV) warehouse transportation sys-

tem that uses multiple computer guided vehicles which move loads in

a warehouse. Another example is routing service applications in over-

lay networks [Babaoglu 2006], which are logical structures built on

top of physical network. And also mobile ad-hoc networks (MANETs)

[Babaoglu 2006] which are a set of wireless mobile devices that self-

organize into a network without relying on a fixed structure or central

control.

Recall that in the AGV warehouse transportation system the AGVs

move loads (e.g. packets, materials) in a warehouse. Each AGV can

only conduct a limited set of local actions, such as move, pick load,

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 51

and drop load. The goal is to efficiently transport incoming loads to

their destination. The AGV problem is dynamic: many lay-outs, loads

arrive at any moment, AGVs move constantly and fail, obstacles and

congestion might appear, etc. AGV movement should result in feedback

to each other and the environment.

Figure 3.8: AGV Structure

Load dispatching means ”assigning” incoming loads to suitable AGVs. A

load is only permanently assigned to an AGV when it has picked up the

load. Until that moment, other AGVs that become better suited should

be able to take over. In the case of routing, for moving toward a pick-up

station and after a load is picked up, the AGV is routed through the

factory.

The dispatching and routing activities require a mechanism that enables

aggregation and calculation of extra information while flowing through

intermediate stations.

Gradient fields allow this [De Wolf 2007a]. The pick up stations generate

gradients while they have loads to be delivered, and propagate them

in the neighborhood. The AGVs also propagate gradients of movement

in the environment. Such gradients can be used for information about

obstacles and congestions.

Figure 3.8 illustrates the AGV structure and Figure 3.9 illustrates the

AGV dynamics, both as an instantiation of this pattern language. Each

station is a Space with one or more Locations. Each AGV is an agent.

The global execution contains a global environment (AGVEnvironment)

where the stations and the AGVs are situated. Each action that the

AGV might take is realized as a coordination strategy (e.g. Move).

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 52

Figure 3.9: AGV Dynamics: Dispatching Property

The GradientField strategy is composed of the three basic strategies:

Diffusion, Evaporation and Aggregation.

Known Uses

All the self-organizing patterns described in next section are widely

used in systems as motion coordination [De Wolf 2007a], data clustering

[De Wolf 2007a, De Wolf 2007], autonomic application servers, biological

computational simulation [Gatti 2009], TOTA [Mamei 2004], and can be

instantiations of the micro-architecture pattern.

(b) DIFFUSION PATTERN

Context

A distributed entity wants to send information (represented by gradients)

to a distant entity that is unaware of neither the entity nor its location.

Problem

How can the information be propagated in order that the distant entities

react to them?

Applicability

When distributed entities need to be coordinated without a central

control and without the knowledge about complete neighboring space.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 53

Forces

Without a central control or knowledge about the environment, distant

entities cannot be coordinated, unless a diffusion mechanism propagates

the information in the environment and guides the entities’ actions.

Solution

The coordinate() method of the concrete coordination strategy will be

executed. The propagateInLocations() method of the propagation strat-

egy implemented by the Diffusion class will be called by the coordinate()

method. It will fire an event stamped with a weight to the location in

the neighborhood of radius one. Each entity on the target locations will

trigger the event and will propagate in the same way (except to the lo-

cations already with the event). When propagating, the weight will be

decreased locally and correspondingly increased in the neighborhood.

Consequences

Gradients are propagated in all directions without taking into account

other gradients already present in different spaces or locations. There is

the risk of some spaces having many gradients and there being too little

in other spaces. For instance, in the AGV problem this pattern will work

properly, because the AGVs will avoid these locations and consequently

avoid congestion. However, in situations where the gradient represents

loads and the goal is to achieve an equal distribution of loads the result

is an inefficient load balancing mechanism.

Implementation Factors

Different radius sizes can be used for this pattern. It mostly depends on

the kind of application being developed and on the access to the available

neighborhood.

Example

An AGV wants to send information about its position when it is moving.

Hence, the other AGVs can avoid congestion. The AGV will call the

coordinate() method of the coordination strategy implemented by the

Move class, which in turn will call the propagateInLocations(). Each

AGV on the target locations will trigger the event and will propagate

in the same way (except to the locations already with the event) but

decreasing the weight locally and correspondingly increasing the weights

in the neighborhood. The AGV might move or stay at the same location

depending on the event weight.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 54

Known Uses

A common use of this pattern is in the problem of calculating global

functions and load balancing [Babaoglu 2006].

(c) EVAPORATION PATTERN

Context

Gradients were propagated in locations in the environment in order

to coordinate (for instance, attract or repel) distributed entities. Once

the coordination is achieved or the goal is satisfied, the gradients must

disappear.

Problem

How can the gradients disappear from their locations?

Applicability

When the application is overwhelmed by information or gradients re-

leased.

Forces

The memory must be released to achieve higher performance and the

information is no longer useful.

Solution

From time to time, the Environment will actively or reactively call the

propagateInLocations() or propagateInSpace() methods of the Evapora-

tion class. Thus, it will apply the evaporation rate in obsolete gradients.

Obsolete gradients can be gradients not being perceived by Agents in a

period of time. The evaporation rate, for instance, can be decreasing the

gradient’s weight until it reaches zero.

Consequences

Gradients cannot be recovered once evaporated.

Implementation Factors

The choice of the Environment actively evaporates gradients, or reac-

tively (in response to a specific event) depending on performance re-

quirements.

Example

The load gradient event fired by the Dispatching Initiation Behavior will

be diffused in the Environment. However, once the pickup gradient event

is fired by the AGV when it is at the Pickup Station and picks the load

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 55

up, the AGVEnvironment triggers this event and calls the propagateIn-

Locations() or propagateInSpace() methods of the Evaporation class in

order to apply this pattern and evaporate all load gradient events prop-

agated in locations. Hence, other AGVs will not look for this load.

Known Uses

The most common uses of this pattern is in stigmergy-based systems and

pheromone path-based applications [De Wolf 2007, Parunak 2005].

(d) AGGREGATION PATTERN

Context

In a feedback loop it might be useful to reinforce information in order to

an emergent property (an information trace) appear as a response of the

reinforcement.

Problem

How to reinforce a positive or negative feedback loop in a self-organizing

system?

Applicability

When Agents are guided by the gradient with higher intensities in order

to produce learning paths.

Forces

If the Agents do not follow the gradient with higher intensities, they

might take too long to reach the coordination goal. The shortest paths

save time, resources and increase performance.

Solution

Each time the same information is deposited in a Location, its intensity

is increased locally. The Evaporation class implements this behavior

through the propagateInLocations() and propagateInSpace() methods

that can be called by Agents or Environment.

Consequences

Shortest paths are produced from the distributed reinforcement learning

process, although not necessarily the shortest path of all; i.e., for space

circumstances a path emerges but might not be the shortest.

Implementation Factors

There are two main factors that impact on the result of this pattern at

the implementation level: the rule for increasing the gradient intensity

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 56

and the neighborhood radius. Also, how the intensity is modeled may

influence the result. It could be a simple or more complex structure.

Example

For each AGV there would be a learning path so that they avoid other

AGVs’ paths (to avoid congestion). Thus, on each call to coordinate()

method of the Move class, the propagateInLocations() method of the

Evaporation class will be executed and will propagate the correspondent

gradient exactly and only to the new Location.

Known Uses

This pattern is commonly used in stigmergy-based systems and

pheromone path-based applications [De Wolf 2007, Parunak 2005]. It is

also used in adaptive routing algorithms for wired and mobile networks

[Babaoglu 2006].

(e) GRADIENT FIELDS PATTERN

Context

A system composed of distributed autonomous entities must be self-

managed, self-configured to achieve a global coordination function.

Problem

How to adaptively orchestrate distributed autonomous entities achieving

a pattern formation?

Applicability

When Agents must be coordinated to achieve macro properties without

any external or internal central control.

Forces

A centralized solution is often a bottleneck and single point of failure

in a very dynamic situation. The solution must be flexible to achieve

robustness.

Solution

This pattern is the composition of the Diffusion, Evaporation and Ag-

gregation patterns. There are two basic ways to achieve the composi-

tion: they can be randomly composed (i) using the three patterns at the

same time in the Environment; or (ii) composing them while propagat-

ing the information. As a result, agents follow the shape of the coordi-

nation combined field. If one wants to compose in a controlled manner

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA



Chapter 3. Notational Support 57

the composition can be achieved using the Template Method pattern

[Gamma et al. 1995]. It will prevent others from replacing all your com-

position implementation and offering them a specific extension point.

Consequences

Usually, following the gradient field is the shortest path toward the

initiator of the field. Although this pattern can be considered greedy

because of the strictly local perspective of the agents.

Implementation Factors

Create a GradientField subclass of the PropagationStrategy which con-

tains the gradient to be propagated. And delegate the order of the basic

propagation strategies to the GradientField class.

Example

Instead of perceiving the individually events in the AGV example (for

instance, the load gradient event), an AGV will perceive an event that

contains the combined gradient and will react in response to it.

Known Uses

This pattern is commonly used in intelligent agents exploring the web,

spatial shape formation, urban traffic management [De Wolf 2007a], etc.

3.4 Chapter Remarks

This chapter presented a UML-based notational support for the engineer-

ing of self-organizing systems. We have presented the Coordinated Statecharts

concept which motivated the UML meta-model customization in order to pro-

vide both structural and behavioral features that help with the addition of

semantics to the proposed modeling abstraction. In order to illustrate the use

of the modeling abstraction, we have presented a pattern language built on

top of self-organizing patterns that already exist in the literature. This pat-

tern language contributes to the state of the art in many ways: (i) providing

a guide to use the patterns, (ii) providing reusable structures and dynamics,

and finally (iii) providing a way of combining basic patterns into a complex

one – the Gradient Fields. With the results reported in this chapter, we believe

that the self-organizing system designer has now available a design abstraction

complemented with a notational support to help with her design task.

DBD
PUC-Rio - Certificação Digital Nº 0621318/CA




