Resultados e discussão

Nesta seção, serão apresentados os resultados obtidos a partir das técnicas de análise elementar, análise termogravimétrica e ponto de fusão, ensaio qualitativo para cloreto e espectroscopias no infravermelho e Raman e suas correlações aos resultados obtidos a partir do procedimento DFT: B3LYP/SDD, bem como a discussão dos mesmos para os compostos [Pt(Cl)(Pen)(NH₃)₂]·2H₂O·HCl (PtPen) e [Pt(Cl)(GS)(NH₃)₂]·2H₂O·HCl (PtGlut), obtidos a partir da cisplatina e penicilamina e cisplatina e glutationa, respectivamente.

5.1. Análise Elementar

Os resultados obtidos a partir da análise elementar CHN e do ICPOES dos compostos estudados se encontram na tabela 1:

	% Encontrado				
Composto	(% Calculado)				
	C H N Pt				
PtPen	12,12	4,17	8,36	39,0	
	(12,40)	(4,37)	(8,66)	(40,2)	
PtGlut	18,06	4,06	10,46	30,0	
	(18,66)	(4,20)	(10,88)	(30,3)	

Tabela 1: Dados de análise elementar

Pôde-se observar boa concordância entre os resultados calculados e os encontrados. A partir destes dados, foram determinadas as seguintes fórmulas moleculares para os compostos sintetizados como mostrado na tabela 2:

Composto	Fórmula empírica	Massa molar (g.mol⁻¹)
PtGlut	$PtC_{10}N_5O_6H_{23}Cl_2S.2H_2O$	643.5
PtPen	$PtC_5N_3O_2H_{17}CI_2S.2H_2O$	485.4

Tabela 2: Fórmula empírica e massa molar para os compostos sintetizados

Como observado na tabela 2, a análise conduziu à proposta de que havia água na estrutura dos compostos, que foi confirmada a partir das informações obtidas a partir da análise termogravimétrica.

5.2. Faixa de decomposição

Os resultados referentes às faixas de decomposição para os compostos sintetizados constam na tabela 3.

Tabela 3: Faixa de decomposição para os compostos sintetizados

Composto	Faixa de decomposição
PtGlut	215 - 220° C
PtPen	236 - 245°C

Ambos se decompuseram a uma temperatura superior ao ponto de fusão dos respectivos ligantes, que é de 192-195°C para a glutationa e 196-199°C para a penicilamina, e inferior à decomposição da cisplatina, que ocorreu entre 255- 258°C, fato que indica uma maior estabilidade térmica para os compostos formados a partir desses ligantes.

5.3. Análise Termogravimétrica

A tabela 4 mostra a faixa de temperatura em que ocorreram as perdas de massa para cada composto estudado. Os respectivos termogramas são apresentados nas figuras 16 e 17(Anexo 1).

Tabela 4: Dados obtidos a partir da curva de decomposição térmica dos compostos

Composto	Faixa de temperatura (°C)	Perda de massa (%)	Massa experimental (g) (calculada)	Provável fragmento perdido
	20-160	7,34	35,6 (36)	2H ₂ O
PtPen	160-380	28,5	143,2 (150,5)	C ₅ H ₁₁ NO ₂ Cl
PtGlut	20-330	34.5	222 (219,5)	2H ₂ O, HCI, COOH, C ₄ H ₈ NO ₂
	330-760	19	122.2 (127)	$C_5H_7N_2O_2$

A partir da observação da curva de decomposição para o composto PtPen, foi possível notar um perda inicial a partir de 20°C que foi atribuída à presença de água, o que confirmou o resultado previsto pela análise elementar. Como a faixa de temperatura em que ocorreu essa perda está entre 20 -160°C, sugere-se que seja água de hidratação.

Com a análise da curva referente ao composto PtGlut, foi possível verificar que houve perda de massa entre 20-330°C, não sendo notado platô, nesse intervalo, que possibilitasse determinar, com maior detalhe, as possíveis perdas de massa, sendo, portanto, uma perda única.

Ambos os termogramas mostraram perdas a partir de 380°C para o composto PtPen e 760°C para o composto PtGlut. Entretanto, não pode ser observada estabilização das curvas a partir das respectivas temperaturas, sendo feita, portanto, atribuições apenas para as duas primeiras perdas.

5.4. Ensaio analítico qualitativo para testar a presença de cloreto

Com o ensaio realizado para testar a presença de Cl⁻, foi evidenciada imediatamente após a adição da solução de nitrato de prata, turbidez em ambos os sistemas e, logo depois, um precipitado branco caseoso, devido à formação de cloreto de prata ($K_{ps} = 1,5.10^{-10} \text{ a } 25^{\circ}\text{C}$)²⁹, confirmando a presença do ânion. Com o ensaio positivo, pôde-se verificar que havia cloreto não coordenado que, provavelmente, está formando cloridrato com os grupos aminas protonados. Essa hipótese é razoável tendo em vista a solubilidade parcial dos compostos e o fato de as sínteses terem sido feitas em meio ácido.

5.5. Infravermelho e Raman

A inspeção dos espectros experimentais de infravermelho e Raman dos compostos agui discutidos forneceu. de imediato. evidências do desaparecimento da banda que corresponde ao estiramento S-H, localizada em 2571 cm⁻¹(IV) e 2579 cm⁻¹ (R) para o ligante penicilamina e 2522 cm⁻¹ (IV) e 2532 (R) cm⁻¹ para a glutationa.³⁰⁻³² Isso sugeriu a desprotonação deste grupo e posterior coordenação do enxofre à platina. A presenca de banda de estiramento Pt-S em 358 cm⁻¹ (IV) para o composto PtPen e 368 cm⁻¹ (IV) para o composto PtGlut indicaram a coordenação pelo enxofre.

Tal afinidade é bastante plausível de acordo com o conceito de ácidos e bases duro e macios. Tal princípio, pautado nos trabalhos de Pearson, fornece predições qualitativas de estabilidade e tendências de ligação significativas, apesar da sua simplicidade.³³

Considerando o mesmo, pode-se dizer que o íon metálico Pt²⁺ e o enxofre do grupo ⁻SR, por serem ambos relativamente grandes e bem polarizáveis, contam com uma significativa afinidade química, predominantemente covalente, devido à relativa facilidade de interação (sobreposição) de suas nuvens, fato ligado à polarizabilidade.

A presença de duas bandas de estiramento Pt-N em 412 cm⁻¹ (IV) e 519 cm⁻¹ (IV) para o composto PtPen e em 412 cm⁻¹ (IV) e 506 cm⁻¹ (IV) para o

composto PtGlut são indícios de que os dois grupos aminos (NH₃) se mantiveram coordenados à Pt²⁺ na forma cis. Entretanto, verifica-se, a partir desses espectros, bandas correspondentes ao estiramento Pt-Cl em e 310 cm⁻¹ e 315 cm^{-1 34}, respectivamente para PtPen e PtGlut. Isso indicou que há a participação de cloreto na esfera de coordenação.

Os espectros de infravermelho e Raman para ambos os compostos indicaram a presença de grupo carboxila (COOH), sendo o estiramento carbonílico (C=O) observado em 1717 cm⁻¹ (IV) e 1716 cm⁻¹ (R) para o PtPen e um ombro próximo a 1721 cm⁻¹ (IV) e 1707 cm⁻¹ (R) para o composto PtGlut . Isso sugeriu a não participação do grupo na coordenação à Pt²⁺.

5.6. Propostas de Estrutura

As figuras 11 e 12 mostram as prováveis estruturas dos complexos obtidos a partir da reação entre a cisplatina e a penicilamina e daquele com a glutationa, como descrito anteriormente. Tais estruturas foram propostas após a análise dos dados referentes à análise elementar, análise termogravimétrica e espectroscopia no infravermelho e Raman.

$$\begin{bmatrix} HO & H_3 \\ C \\ C \\ NH_3 & C \\ C \\ H_3 & NH_3 \\ H_3 & NH_3 \end{bmatrix} . 2H_2O$$

Figura 11: Estrutura proposta para o composto PtPen - [Pt(NH₃)₂(Cl) Pen)].2H₂O.HCl

Figura 12: Estrutura proposta para o composto PtGlut - [Pt(NH₃)₂(Cl)(GS)].2H₂O.HCl

Para ambas as estruturas, foi sugerido que cada um dos respectivos ligantes atuou de forma monodentada, havendo a saída de um cloreto da esfera de coordenação primária, que formou um cloridrato com as aminas protonadas e substituição do mesmo pelo enxofre do grupo tiol desprotonado.

5.7. Determinação estrutural e parâmetros geométricos

A determinação estrutural e geométrica para os complexos estudados foram, evidentemente, baseadas nas estruturas propostas para cada um dos compostos. Entretanto, não foram consideradas nos cálculos as moléculas de água de hidratação, por não fazerem parte da esfera de coordenação interna do complexo.³⁵

Neste trabalho, a determinação estrutural e geométrica foi realizada a partir da utilização do procedimento mecânico-quântico fundamentado na Teoria do Funcional da Densidade (DFT), utilizando o método B3LYP e o conjunto de bases SDD, sendo os cálculos efetuados com o programa Gaussian 03.³⁶ Para esse conjunto de bases, foi usado o fator de escala 0,9613.³⁷

Tal conjunto de bases fornece bons resultados para metais de massas relativamente altas,³⁸ como é o caso da platina, que se encontra na terceira linha da série dos metais de transição. Tais elementos possuem muitos elétrons no cerne, que é a região interna à camada de valência. Os orbitais a que pertencem tais elétrons, apesar de serem relativamente inertes diante de uma transformação química, influenciam os orbitais de valência, que participam

diretamente do processo químico, devido a efeitos relativísticos.³⁹ Estes surgem a partir do aumento de massa dos elétrons quando eles têm um percentual significativo da velocidade da luz. Esse contínuo movimento de cargas gera campos magnéticos que interferem, por exemplo, no comprimento de ligações químicas.⁴⁰

Dessa forma, o conjunto de bases SDD contempla a influência dos elétrons do cerne através do termo de Energia Potencial dos Elétrons Internos Efetivos.⁴¹

Cada um dos compostos apresentou, na estrutura otimizada, uma geometria próxima à quadrático-plana, que está de acordo com o esperado para muitos compostos com centro metálico de configuração d⁸, como é o caso de Pt^{2+ 42}, conforme mostrado nas figuras 13 e 14.

Os parâmetros geométricos para cada um deles seguem nas tabelas 5, 6, 7 e 8.

Tabela 5: Distâncias interatômicas calculadas para o esqueleto estrutural do composto PtPen - [Pt(NH₃)₂(Cl)(Pen)]- a partir do procedimento DFT:B3LYP/SDD comparados com valores obtidos por cristalografia de raios-X

	Distância Interstâmica (Å)
	Distancia Interatomica (A)
	Calculada (Experimental)
CI(25) - Pt(21)	2.412 (2,323)
S(9) - Pt(21)	2.399 (2,246)
N(22) - Pt(21)	2.165 (2,047)
N(26) - Pt(21)	2.101 (2,047)
C(7) - S(9)	1.939
N(1) - Cl(31)	2.902
H(4) - Cl(31)	1.731

Tabela 6: Distâncias interatômicas calculadas para o esqueleto estrutural do PtGlut -[Pt(NH₃)₂(Cl)(GS)]- a partir do procedimento DFT:B3LYP/SDD comparados com valores obtidos por cristalografia de raios-X

	Distância	
	Interatômica (Å)	
Cl(43) - Pt(33)	2.397 (2,323)	
S(13) – Pt(33)	2.393 (2.246)	
N(34) - Pt(21)	2.115 (2.047)	
N(37) - Pt(33)	2.150 (2,047)	
C(10) - S(13)	1.911	
N(26) - CI(48)	2.977	
H(28) - CI(48)	1.944	

Foi possível a comparação das distâncias interatômicas calculadas com aquelas obtidas por cristalografia de raios-X para complexos entre metionina e histidina e Pt2+.43 Os valores experimentais são mostrados nas tabelas acima entre parênteses. Pôde-se observar para ambos uma maior diferença para a distância da ligação Pt-S e Pt-N, sendo a maior delas de 6,8% para a ligação Pt-S do composto PtPen.

Tabela 7: Ângulos de ligação calculados para o esqueleto estrutural do PtPen -[Pt(NH₃)₂(Cl)(Pen)]- a partir do procedimento DFT:B3LYP/SDD

	Ângulos de Ligação (°)
CI(25)-Pt(21)-S(9)	97.724
S(9) –Pt(21) –N(26)	81.427
CI(25) – Pt(21) – N(22)	82.717
N(22) –Pt(21) –N(26)	98.470
C(7) –S(9) – Pt(21)	109.059

Tabela 8: Ângulos de ligação calculados para o esqueleto estrutural do PtGlut - [Pt(NH₃)₂(Cl)(GS)]- a partir do procedimento DFT:B3LYP/SDD

	Ângulos de Ligação (°)
CI(43)-Pt(33)-S(13)	96.607
S(13) –Pt(33) –N(34)	84.987
Cl(43) – Pt(33) –N(37)	83.414
N(37) –Pt(33) –N(34)	94.983
C(10) –S(13) – Pt(33)	110.90

•Carbono •Cloro •Enxofre •Hidrogênio •Nitrogênio

•Oxigênio •Platina

Figura 13: Esqueleto estrutural do complexo PtPen-[Pt(NH₃)₂(Cl)(Pen)].HCl

Figura 14: Esqueleto estrutural do complexo PtGlut-[Pt(NH₃)₂(Cl)(GS)].HCl

Foi observado que os ângulos de ligação CI-Pt-S assumem valores pouco maiores que 90°, que seria esperado para uma estrutura quadrático-plana perfeita. Isso deve refletir o fato de CI⁻ e ⁻SR possuírem carga negativa e, portanto, para uma estrutura estável, ambas as cargas, que se repelem, devem estar afastadas. Esse afastamento, evidentemente, afeta os outros ângulos.

As energias obtidas para a formação dos complexos estão mostradas na tabela 9:

Tabela 9: Energias mínimas em l	Hartree e em Joule	calculadas para	os compostos
---------------------------------	--------------------	-----------------	--------------

Composto	E (Hartree)	E (J.mol ⁻¹)
PtGlut	-2558.02267825	-974.300
PtPen	-1953.48582742	-744.044

Se for tomada como base a comparação entre as energias dos compostos acima, pode ser dito que o primeiro é o mais estável por possuir a menor energia.

5.7.1. Atribuições vibracionais

A partir das frequências vibracionais obtidas pelos cálculos teóricos, foram feitas as comparações com aquelas experimentais provenientes da espectroscopia no infravermelho e Raman. Nos espectros experimentais, algumas bandas ficaram mal definidas e/ou sobrepostas. A fim de complementálas, foram usadas a segunda derivada espectral e a deconvolução de bandas dos espectros de infravermelho dos mesmos cujas curvas se encontram em anexo.

A simbologia utilizada foi a mesma adotada por Nakamoto,³⁴ que são as seguintes:

v: estiramento; δ : deformação; ρ_r : oscilação pendular (rocking); ρ_t : giro alternado (twisting); ρ_w : balanceio (wagg)

5.7.1.1. Estiramentos OH

A partir da inspeção dos espectros do infravermelho e Raman de ambos os complexos, que se encontram em anexo, foram observadas bandas largas nas regiões de altas frequências. Esse fato caracterizou a presença de água de hidratação em ambos os complexos, conforme são sugeridos nas suas estruturas.

Com a análise do espectro de infravermelho experimental do composto PtPen, foi possível a observação de uma banda próxima a 3409 cm⁻¹, que é atribuída ao estiramento OH do grupo carboxila. Tal banda foi correlacionada àquela que aparece em 3465 cm⁻¹,⁴⁴ que foi obtida a partir dos cálculos teóricos realizados pelo procedimento DFT: B3LYP/SDD.

No que se refere ao composto PtGlut, a inspeção do espectro de infravermelho mostrou apenas uma banda bem larga, como comentado. Entretanto, o espectro Raman apontou uma frequência próxima a 3494 cm⁻¹ que foi correlacionada, a partir dos cálculos teóricos, à frequência em 3541 cm⁻¹ desse grupamento.

Como bandas de estiramento OH de moléculas de água ocorrem próximas àquelas do grupo carboxila, é possível dizer que as bandas mostradas nos espectros experimentais observadas nessa região poderiam também estar associadas às da molécula de água.³⁴

5.7.1.2. Estiramentos NH

Cada um dos complexos estudados possui dois grupos amino (NH₃), que se encontram coordenados ao íon metálico. Dessa forma, poderia ser esperado um total de dois estiramentos assimétricos e dois simétricos, para este grupo.

As atribuições feitas com base nos cálculos teóricos para o composto PtPen mostraram quatro estiramentos para o modo assimétrico e dois para o simétrico, tendo sido observado o mesmo comportamento para o composto PtGlut. Nos espectros experimentais no infravermelho destes compostos, a maioria das bandas previstas não foi observada por estarem pouco definidas. Entretanto, as mesmas foram bem evidenciadas no espectro Raman, ficando com boa concordância com as frequências previstas pelos cálculos teóricos, conforme pode ser visto nas tabelas 10 e 11.

Tabela 10: Atribuição vibracional para os modos de estiramento NH₃ do composto PtPen

DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Experimental	Segunda derivada IV Experimental	Freq. Experimental Raman	Atribuição Aproximada
3459	-	3360	-	v _{as} (NH ₃)
3439	-	-	3319	v _{as} (NH ₃)
3407	-	-	3220	v _{as} (NH ₃)
3379	3191	-	-	v _{as} (NH ₃)
3261	-	-	3124	v _s (NH ₃)
3236	3109	-	-	v _s (NH ₃)

DFT IV	Freq.	Segunda	Freq.	Atribuição
Calc.*Fator de	IV	derivada IV	Experimental	Annovimada
escala (0,9613)	Exp.	Experimental	Raman	Aproximada
3452	-	-	3469	$v_{as}(NH_2)_{amino}$
3424	-	3416	-	$v_{as}(NH_2)_{amino}$
3403	-	-	3403	v _{as} (NH ₃)
3348	-	-	3382	v _{as} (NH ₃)
3255	-	-	3324	v₅(NH₃)
3211	-	-	3298	v _s (NH ₃)

Tabela 11: Atribuição vibracional para os modos de estiramento NH₃ do composto PtGlut

Para ambos os compostos, foi sugerida a presença do grupo NH₃⁺. Para o composto PtPen, foi observado que o modo assimétrico ocorre próximo a 3260 cm⁻¹ e o simétrico próximo a 3170 cm⁻¹.³² Bandas referentes a este grupo foram observadas nos espectros experimentais de infravermelho e Raman e, de forma análoga, ficaram com boa concordância com relação aos resultados teóricos, como visto na tabela 12.

Tabela 12: Atribuição vibracional para os modos de estiramento NH_3^+ do composto PtPen

DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Exp.	Segunda derivada IV Experimental	Freq. Experimental Raman	Atribuição Aproximada
3423	-	-	3267	v_{as} (NH ₃ ⁺)
3314	-	3160	3171	v _s (NH ₃ ⁺)

Quanto ao composto PtGlut, três bandas referentes aos estiramentos NH do grupo NH₃⁺ foram observadas a partir dos cálculos teóricos e correlacionadas ao dados experimentais. Da mesma forma, bandas de estiramento NH do grupo amida foram bem correlacionadas com os dados experimentais obtidos a partir das espectroscopias no infravermelho e Raman, como é visto na tabela 13:

DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Experimental	Segunda derivada IV Experimental	Freq. Experimental Raman	Atribuição Aproximada
3285	-	-	3342	∨(NH) _{NH3+}
3205	-	-	3283	∨(NH) _{amida}
3142	3140	3140	3154	∨(NH) _{amida}
2873	-	-	2847	<i>∨</i> (NH) _{NH3+}
2465	-	-	-	<i>∨</i> (NH) _{NH3+}

Tabela 13: Atribuição vibracional para os modos de estiramento NH_3^+ e NH_{amida} do composto PtGlut

Ao longo da observação dos valores tabelados é possível notar alguns desvios entre os números de onda calculados pelo procedimento mecânicoquântico DFT corrigidos pelo fator de escala e aqueles observados experimentalmente. Essa diferença deve-se, basicamente, ao fato de o espectro calculado pelo procedimento DFT ser feito para uma molécula na fase gasosa (espectro harmônico) isenta, portanto, de perturbações inerentes ao estado sólido, que fornece um espectro anarmônico.³⁵

5.7.1.3. Estiramentos CH

Para o composto PtPen há a presença de dois grupos metílicos e um CH, sendo observadas, nos espectros experimentais, algumas bandas que foram relacionadas àquelas mostradas pelos cálculos teóricos como registrado na tabela 14.

DFT IV		Segunda	Freq.	Atribuição
Calc.*Fator de	Fieq. IV	derivada IV	Experimental	Atribulçau
escala (0,9613)	Exp.	Experimental	Raman	Aproximada
3033	-	3031	-	v _{as} (CH ₃)
2921	2926	2915	2931	v _s (CH ₃)
2916	2862	2846	-	v _s (CH ₃)
2905	-	-	2805	v(CH)

Tabela 14: Atribuição vibracional para os modos de estiramento CH₃ e CH do composto PtPen

O composto PtGlut apresenta quatro grupos metilênicos, podendo-se, portanto, esperar, para cada grupo, um estiramento simétrico e outro assimétrico, totalizando oito estiramentos. Além disso, o mesmo tem dois grupamentos CH. Entretanto, nem todas estas puderam ser observadas pelos espectros Raman ou infravermelho do composto.

Foram evidenciadas, a partir dos espectros experimentais, algumas bandas com boa correspondência àquelas fornecidas pelos cálculos teóricos conforme pode ser visto na tabela 15.

Tabela 15: Atribuição vibracional para os modos de estiramento CH_2 e CH do composto PtGlut

DFT IV		Segunda	Freq.	Atribuição
Calc.*Fator de escala	Fieq. IV	derivada IV	Experimental	Ambulçau
(0,9613)	Exp.	Experimental		Aproximada
3072	-	3100	-	v _{as} (CH ₂)
3026	3051	3051	3045	v _{as} (CH ₂)
2995	-	2988	-	v _s (CH ₂)
2969	-	-	-	v _s (CH ₂)
2933	-	-	2933	v _s (CH ₂)
2900	-	2918	-	v(CH)

5.7.1.4. Estiramentos C=O

Ambos os espectros experimentais dos complexos mostraram bandas referentes ao estiramento C=O, que ocorrem entre 1750 - 1700 cm⁻¹.^{30,31,32} Entretanto, as mesmas ficaram significativamente distantes daquelas evidenciadas pelos cálculos teóricos, sendo possível dizer que o procedimento DFT: B3LYP/SDD não fez uma boa descrição para este estiramento, como pode ser visto na tabela 16.

Tabela 16: Atribuição vibracional para os modos de estiramento C=O para os compostos PtGlut e PtPen

	DFT IV		Segunda	Freq.	Atribuição
Composto	Calc.*Fator de	Fleq. IV	derivada	Exp.	Ambulçau
	escala (0,9613)	∟лр.	IV Exp.	Raman	Арголіпаца
PtPen	1638	1717	1718	1716	v(C=O)
PtGlut	1692	1721	1720	1707	v(C=O

5.7.1.5. Deformações NH₃ e NH₃⁺

As deformações assimétricas e simétricas do grupo NH₃ ocorrem, respectivamente, próximas a 1600 cm⁻¹ e 1300 cm⁻¹.³⁴ Nos espectros do composto PtPen, a primeira deformação aparece em 1602 cm⁻¹ (IV) e 1596cm⁻¹ (R), estando na mesma região que aquela de NH₃⁺. O modo simétrico de NH₃ aparece em 1303cm⁻¹ e o de NH₃⁺ em 1429 cm⁻¹ (IV- 2^a derivada). Já para o composto PtGlut, a banda referente ao modo assimétrico de NH₃ apareceu acoplada àquela de estiramento C=O do grupo amida, de acordo com os cálculos teóricos. Entretanto, a banda referente ao modo simétrico de NH₃ foi evidente, aparecendo em 1302 cm⁻¹(IV) e 1305 cm⁻¹(R).

5.7.1.6. Amida I e amida II

Amidas secundárias, que estão presentes no composto PtGlut, bem como todas as amidas, mostram uma banda de estiramento C=O, que é denominada amida I entre 1680 e 1630 cm⁻¹.^{30,32} Nesse composto, a mesma é atribuída na próxima a 1642cm⁻¹(IV) e 1655cm⁻¹(R). Entretanto, a banda correspondente à amida II, causada primariamente por deformações NH,³² são atribuídas sem nenhuma coincidência com outras bandas, aparecendo em 1534cm⁻¹(IV).

5.7.1.7. Deformações CH₃

As deformações assimétricas aparecem próximas à região compreendida entre 1470 e 1430cm⁻¹ enquanto as simétricas entre 1395 e 1365cm⁻¹. ^{30,31} Para o composto PtPen, a primeira banda apareceu em 1456cm⁻¹ (IV) e 1461 (R) enquanto a outra em 1402 cm⁻¹ (IV-2^a derivada) e 1398 cm⁻¹ (R) e 1385 cm⁻¹ (IV) e 1365cm⁻¹(R). Estando todas com boa correspondência com os dados fornecidos pelos cálculos teóricos.

5.7.1.8. Variações angulares HCH

As variações angulares do tipo tesoura (scissoring), balanceio (wagging), oscilação pendular (rocking) e giro alternado (twisting) para o grupo CH₂ foram claramente observadas nos espectros e mantiveram boa concordância com os resultados teóricos, como mostra a tabela 17.

DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Exp.	Segunda derivada IV Exp.	Freq. Exp. Raman	Atribuição Aproximada
1448	1402	1395	1415	$\delta(CH_2)_{sciss}$
1353;1289	-	1351;1289	-	ρ _w (CH ₂)
1304;1159	1302;1149	1143	1305	$\rho_t(CH_2)$
912;879	894	889	892	$\rho_r(CH_2)$

Tabela 17: Atribuição vibracional para os modos de variações angulares HCH do PtGlut

5.7.1.9. Estiramentos Pt-N, Pt-S e Pt-Cl

Duas bandas de estiramento Pt-N foram observadas, para ambos os compostos, a partir dos dados colhidos dos cálculos teóricos. A banda de maior freqüência (próxima a 510 cm⁻¹(IV)), é correspondente àquela observada na cisplatina.³⁴ Outra banda, de menor freqüência, ficou bem evidente com a análise dos dados teóricos e foi localizada próxima a 410 cm⁻¹, conforme consta na tabela 18.

Tabela 18: Atribuição vibracional para os modos de estiramento PtN dos compostos PtGlut e PtPen

Composto	DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Exp.	Segunda derivada IV Exp.	Freq. Exp. Raman	Atribuição Aproximada
PtPen	460;396	519;412	517;412	516	vPtN
PtGlut	450;410	504;412	504	506	

No que se referem aos estiramentos PtS e PtCl, os mesmos mostraram boa correspondência entre os dados teóricos e os experimentais, como é visto na tabela 19. Tabela 19: Atribuição vibracional para os modos de estiramento PtS e PtCl dos compostos PtGlut e PtPen

Composto	DFT IV Calc.*Fator de escala (0,9613)	Freq. IV Exp.	Segunda derivada IV Exp.	Freq. Exp. Raman	Atribuição Aproximada
	382	358	356	-	vPtS
PtPen	303	310	310	-	vPtCl
	318	368	368	-	vPtS
PtGlut	314	315	315	-	vPtCl

5.7.1.10.

Principais atribuições para os compostos estudados

As principais atribuições feitas a partir dos esqueletos estruturais de ambos os compostos se encontram nas tabelas 20 e 21.

Tabela 20: Principais atribuições para o composto PtPen

Freq. Teórica (IV)	DFT IV Freq. Teórica x Fator de escala (0,9613)	Freq. Experimental (IV)	Deconv de bandas (IV)	Seg. derivada Espectral (IV)	Freq. Experimental Raman	Atribuição aproximada
						v (OH)
3605	3465	3409	3409	-	-	(carbox.)
3598	3459	-	-	3360	-	v _{as} (NH ₃)
3577	3439	-	-	-	3319	v_{as} (NH ₃)
3561	3423	-	-	-	3267	v_{as} (NH ₃ ⁺)
3544	3407	-	-	-	3220	v _{as} (NH ₃)
3515	3379	3191	3191	-	-	v _{as} (NH ₃)
3447	3314	-	-	3160	3171	$v_{s} (NH_{3}^{+})$
3393	3261	-	-	-	3124	v _s (NH ₃)
3366	3236	3109	3109	-	-	v _s (NH ₃)
3155	3033	-	-	3031	-	v _{as} (CH ₃)
3146	3024	-	-	-	-	v _{as} (CH ₃)
3136	3015	-	-	-	-	v _{as} (CH ₃)
3129	3008	2968	2967	2956	2980	v _{as} (CH ₃)
3039	2921	2926	2925	2915	2931	v _s (CH ₃)
3033	2916	2862	2862	2846	-	v _s (CH ₃)
3023	2905	-	-	-	2805	v (CH)
1717	1651	-	-	-	-	δ_{d} (NH ₃)
1710	1644	-	-	-	-	$v (C=O) + \delta_d (NH_3)$
1704	1638	1717	1717	1718	1716	ν (C=O) + δ _d (NH ₃)
1687	1621	1602	1603	-	1596	δ _d (NH ₃)
1680	1614	1602	1603	-	1596	δ _d (NH ₃)
1660	1596	1602	1603	-	1596	$\delta_{d}(NH_{3}^{+})$
1585	1524	-	-	-	-	$\delta_{d}(NH_{3}^{+})$
1541	1481	-	1490	1490	-	δ _d (CH ₃)
1532	1473	-	-	-	-	$\delta_{d}(CH_{3})$
1524	1465	-	-	-	-	δ _d (CH ₃)
1513	1454	1456	1456	1449	1461	$\delta_{d}(CH_{3})$
1468	1411	-	1425	1429	-	$\delta_{s}(NH_{3}^{+})$

1458	1402	-	-	1402	1398	δ _s (CH ₃)
1441	1385	1385	1384	1382	1365	δ _s (CH ₃)
						[δ (COH) +
1201	1337	1346	13/7	1330	_	v (CO)]
1391	1337	1340	1347	1339	-	соон
						$\delta_{s}(NH_{3})$ +
1340	1288	-	-	1303	-	ρ _{↑↓} (CH)
						$\delta_{s}(NH_{3}) +$
1323	1272	-	-	-	-	$ ho_{\uparrow\downarrow}$ (CH)
						δ _s (NH ₃) +
						[δ (COH) +
1298	1248	1248	1248	-	-	v (CO)]
	.2.0	1210				соон
1260	1211	-	-	1225	-	$\delta_{s}(NH_{3})$
1070						v (CC) +
1252	1204	1193	1193	-	1204	$\rho_r (NH_3')$
1100	4447			4474		$\rho_r (CH_3) +$
1193	1147	-	-	11/1	-	
1189	1143	-	-	1130	-	$\rho_r (NH_3)$
						V (CO)]
1170	1125	1116	1115	1100	1125	
1170	1125	1110	1115	1109	1125	$p_r(\mathbf{N} \square_3)$
						v (CO) +
1126	1082	-	_	-	-	$0_{-}(NH_{2}^{+})$
						0_{r} (NH ₂ ⁺) +
1104	1061	1046	1046	1035	1044	$\rho_{\rm r}$ (CH ₃)
1056	1015	1008	1007	1002	1011	$\rho_{\rm r}$ (CH ₃)
						v (CN) +
1024	984	-	-	980	-	$\rho_{r}(CH_{3})$
980	942	-	-	956	-	$\rho_r (CH_3)$
	_					ρ_{r} (CH ₃) +
961	924	931	932	923	931	$\rho_{\rm r} (\rm NH_3^+)$
877	843	850	850	847	-	$\rho_r (NH_3)$
						$\rho_r (NH_3) +$
0.00	000	0.05	005	0.4.0	005	v (CC) +
863	830	825	825	819	835	δ(CCC)
819	787	782	782	778	789	ρ _r (NH ₃)
						v (CC) +
804	773	-	-	-	-	<i>ρ</i> (CH)
764	734	752	752	733	756	ρ _r (NH ₃)
719	691	-	-	691	709	ρ _r (NH ₃)
						ρ _{↑↓} (OH) +
712	684	685	685	679	-	v (CS)
						ρ _{↑↓} (OH) +
647	641	641	641	635	-	δ(CCC)

609	606	606	607	599	-	ρ _{↑↓} (OH)
548	551	551	553	549	-	ρ _{↑↓} (OH)
492	475	475	475	475	-	δ(CCO)
479	460	519	519	517	516	v (PtN)
						δ(CCC) +
435	418	-	-	420	-	ρ _{↑↓} (OH) +
412	396	412	412	-	392	v (PtN)
410	394	392	392	390	-	$\rho_t (NH_3^+)$
397	382	358	357	356	-	v (PtS)
						$\rho_{t}(NH_{3}^{+}) +$
381	366	368	364	366	-	δ(CCC)
331	318	-	-	318	-	$\rho_t (CH_3)$
045	000	040	040	040		
315	303	310	310	310	-	$\rho_t(CH_3)$
0.05			~~~			$\rho_t (CH_3) + $
305	293	298	297	296	-	$\rho_t (NH_3')$
300	288	281	280	280	-	δ(NCC)
259	249	253	253	251	-	$\rho_t(CH_3)$
248	238	-	-	240	-	$\rho_t(CH_3)$
237	228	230	230	229	-	δ(SPtN)
207	199	201	201	199	-	δ(CIPtN)
190	183	181	182	177	-	$\rho_t (NH_3)$
168	161	163	160	159	-	δ(NPtN)
158	152	151	151	150	-	δ(NPtN)
134	129	137	136	135	-	δ(CIPtS)
125	120	130	130	129	-	$\rho_t (NH_3)$
121	116	111	110	109	-	$\rho_t (NH_3)$
102	98	105	106	103	-	Torção
94	90	98	98	97	-	Torção
84	81	73	74	73	-	Torção
63	61	61	62	60	-	Torção
55	53	-	-	48	-	Torção
41	39	38	38	36	-	Torção
25	24	-	-	33	-	Torção

Freq. Teórica (IV)	DFT IV Freq. Teórica x Fator de escala (0.9613)	Freq. Experimental (IV)	Deconv. de bandas (IV)	Seg. derivada Espectral (IV)	Freq. Experimental Raman	Atribuição aproximada
3684	3541	-	-	-	3494	v(OH) _{carboxila}
3591	3452	-	-	-	3469	v _{as} (NH₂) _{amino}
3570	3432	-	-	3416	-	Vas(NH₂)amino
3540	3403	-	-	-	3403	V _{as} (NH₃) _{amino}
3502	3366	-	-	-	3382	V _{as} (NH₃) _{amino}
3485	3350	-	-	-	3364	v(OH) _{carboxila}
3417	3285	-	-	-	3342	<i>v</i> (NH) _{NH3+}
3394	3263	-	-	-	3324	v₅(NH₃) _{amino}
3361	3231	-	-	-	3298	v₅(NH₃) _{amino}
3334	3205	-	-	-	3283	∨(NH) _{amida}
3269	3142	3140	3140	-	3154	∨(NH) _{amida}
3196	3072	-	-	3100	-	v _{as} (CH ₂)
3148	3026	3051	3051	-	3045	v _{as} (CH ₂)
3116	2995	-	-	2988	-	v _s (CH ₂)
3116	2995	-	-	2988	-	v _{as} (CH ₂) + v _s (CH ₂)
3089	2969	-	-	-	-	v _s (CH ₂)
3081	2962	-	-	2963	-	v _s (CH ₂)
3073	2954	-	-		-	v(CH)
3051	2933	-	-	-	2933	v _s (CH ₂)
3038	2920	-	-	2918	-	v(CH)
2989	2873	-	-	2847	-	<i>v</i> (NH) _{NH3+}
2564	2465	-	-	-	-	<i>∨</i> (NH) _{NH3+}
						v(C=O) _{carboxila}
1760	1692	1721	1721	1720	1707	+ δ(COH) _{carboxila}
1746	1678	-	-	1698	-	$v(C=O)_{carboxila}$ + $\delta_{a}(NH_{3}^{+})$

Tabela 21: Principais atribuições para o composto PtGlut

						v(C=O) _{carboxila}
1736	1669	-	-	-	-	+ $\delta_{a}(NH_{3}^{+})$
1733	1666	16/2	1642	1635	1655	v(C=O) _{carboxila}
1755	1000	1042	1042	1035	1000	+ $\delta_{a}(NH_{3}^{+})$
1700	1634	-	-	-	-	$\delta_{d}(NH_{3})$
1689	1624	-	-	-	-	$\delta_{d}(\mathrm{NH_{3}^{+}})$
1686	1621	1642	1642	1635	1655	$\delta_d(NH_3)$
1648	1584	1642	1642	1635	1655	v(C=O) _(Amida I)
1628	1565	1534	1534	1535	-	Amida II
1609	1546	1524	1524	1524		Amida II +
1000	1340	1004	1554	1554	-	$\delta_{s}(NH_{3}^{+})$
1591	1529	-	-	-	-	$\delta_{s}(NH_{3}^{+})$
1576	1515	-	-	-	-	Amida II
1511	1453	-	-	-	-	δ(CH ₂) _{sciss}
1506	1448	1402	1402	1395	1415	$\delta(CH_2)_{sciss}$
1496	1438	-	1383	1382	-	$\delta(CH_2)_{sciss}$
1407	1353	-	-	1351	-	$\rho_w(CH_2)$
1398	1344	-	-	1331	-	ρ _{↑↓} (CH)
1302	1338	_	_	_	_	ρ _w (CH ₂) +
1002	1000					$ ho_{\uparrow\downarrow}(CH)$
1380	1327	_	_	_	_	ρ _w (CH ₂) +
1000	1021					$ ho_{\uparrow\downarrow}(CH)$
						δ _s (NH ₃) +
1366	1313	-	-	-	-	$\rho_w(CH_2)$ +
						$ ho_{\uparrow\downarrow}(CH)$
						δ _s (NH ₃) +
1363	1310	-	-	-	-	$\rho_w(CH_2)$ +
1000						$ ho_{\uparrow\downarrow}(CH)$
1356	1304					$\rho_t(CH_2)$ +
1000	1001	1302	1302	-	1305	$ ho_{\uparrow\downarrow}(CH)$
						ρ _w (CH ₂) +
1348	1295	-	-	-	-	$ ho_{\uparrow\downarrow}(CH)$
						ρ _w (CH ₂) +
1341	1289	-	-	1289	-	$ ho_{\uparrow\downarrow}(CH)$
						ρ _w (CH ₂) +

1327	1276	-	-	-	-	$ ho_{\uparrow\downarrow}(ext{CH})$
						ρ _t (CH ₂) +
1204	1054				4050	$ ho_w(CH_2)+ ho_w(CH_2)$
1304	1254	-	-	-	1252	$\rho_r(\mathrm{NH_3}^+)$
1299	1249	-	-	-	-	ρ _w (CH ₂)
1284	1234	1227	1227	-	-	δ _s (NH ₃)
1262	1213	-	-	1207	-	ρ _t (CH ₂)
						$\rho_r(NH_3^+) +$
1249	1201	-	-	-	-	$\rho_t(CH_2)$
						$\rho_r(NH_3^+) +$
1246	1198	-	-	-	1190	$ ho_{\uparrow\downarrow}(CH)$
						[δ(COH) +
						v(CO)] _{carboxila}
1212	1165	1121	1121	1119	1116	+
						$\rho_t(CH_2)$
1206	1159	1149	1149	1143	-	ρ _t (CH ₂)
						$\rho_t(CH_2)$ +
1204	1157	-	-	-	-	$\rho_t(NH_2)_{NH3+}$
		_	_	_	_	$\rho_t(CH_2)$ +
1191	1144					$\rho_t(NH_2)_{NH3+}$
						[δ(COH) +
1154	1109	-	-	1032	1024	v(CO)] _{carboxila}
						+ <i>v</i> (CN)
1148	1104	1019	1019	1003	-	δ(COH) +
						v(CN)
1128	1084					δ(COH) +
		1072	1072	1062	1080	v(CN)
						δ(COH) +
1102	1059	-	-	-	-	v(CC)
						δ(COH) +
1096	1054	-	-	-	-	<i>v</i> (CN)
						$\rho_r(CH_2)$ +
1077	1035	-	-	-	-	δ(COH)
1048	1007	-	-	-	-	$\rho_r(CH_2)$
1041	1001	-	-	-	-	$\rho_r(NH_3^+) +$

						$\rho_r(CH_2)$
1026	986	986	986	975	-	v(CC)
986	948	926	926	917	910	$\rho_t(CH_2)$
949	912	894	894	889	892	$\rho_r(CH_2)$
914	879	-	-	-	-	$\rho_r(CH_2)$
900	865	871	871	864	851	$ ho_{\uparrow\downarrow}(OH)$ +
300	000	071	071	004	001	$\rho_r(NH_3)$
886	855	-	-	-	-	$ ho_{\uparrow\downarrow}(NH)$
869	835	-	-	832	-	$\rho_t(NH_3)$
858	825	-	-	-	-	$ ho_{\uparrow\downarrow}(NH)$
848	815	811	811	803	796	$\rho_t(NH_3)$
835	803	_	_	_	_	$\rho_t(NH_3) +$
000	000					$ ho_{\uparrow\downarrow}(NH)$
819	787	781	781	-	-	<i>v</i> (CC) +
						$\rho_t(NH_3)$
808	777	-	_	775	772	<i>v</i> (CC) +
						$\rho_t(NH_3)$
						ρ _r (NH ₃)
777	747	617	617	747	-	
765	735	724	724	-	-	$\rho_r(CH_2)$
716	688	682	-	688	-	v(CS)
689	662	-	-	-	666	$ ho_{\uparrow\downarrow}(OH)$
686	659	-	-	-	-	δ(COH)
661	635	636	635	634	-	δ(COH)
574	552	550	550	548	595	δ(CCO)
523	503	504	327	520	-	$\rho_r(CH_2) +$
020	000	001	021	020		δ(COH)
510	490	-	494	491	-	$\rho_t(\mathrm{NH_3}^+)$
487	468	471	471	470	-	$\rho_t(\mathrm{NH_3}^+)$
468	450	504	504	-	506	v(Pt-N)
467	449	295	295	291	-	$\rho_r(CH_2)$
465	447	-	-	-	-	$ ho_{\uparrow\downarrow}(OH)$
						δ(N-C-C) +
444	427	430	430	429	-	δ(N-C-O) +
						δ(C-C-C)
427	410	412	412	-	-	v(Pt-N)

						δ(N-C-C) +
422	406	6		397	-	δ(N-C-O) +
						δ(C-C-C)
						δ(N-C-C) +
387	372	381	381	-	-	δ(N-C-O) +
						δ(C-C-C)
345	332	331	331	-	-	δ(C-C-C)
331	318	368	368	368	-	v(Pt-S)
	314	315	315	_	_	v(Pt-Cl) +
327	514	515	515	_	_	v(Pt-S)
317	305	_	_	_	_	v(Pt-Cl) +
517	505					δ(C-C-C)
305	293	295	295	-	-	δ(N-C-O)
299	287	273	274	269		δ(C-C-C)
272	261	260	260	263	-	δ(C-C-C)
256	246	256	256	255		δ(C-C-C)
227	218	227	227	226	-	$\rho_t(NH_3)$
223	214	-	-	-	-	δ(C-C-C)
214	206	205	205	204	-	δ(CI-Pt-N)
206	198	-	-	-	-	Torção
199	191	193	193	192	-	Torção
194	186	-	-	-	-	Torção
185	178	178	178	176	-	Torção
173	166	164	165	160	-	Torção
154	148	-	-	-	-	Torção
149	143	143	142	142	-	Torção
135	130	-	-	-	-	Torção
130	125	-	-	119	-	$\rho_r(NH_3)$
126	121	-	-	114	-	Torção
123	118	111	111	108	-	Torção
107	103	101	101	100	-	Torção
102	98	-	-	-	-	Torção
89	86	-	-	-	-	Torção
84	81	83	84	83	-	Torção
75	72	75	76	73	-	Torção
73	70	-	-	69	-	Torção
L	l	1	l		1	1

63	61	61	60	59	-	Torção
59	57	51	51	53	-	Torção
46	44	-	-	48	-	Torção
37	36	39	39	37	-	Torção
26	25	-	-	33	-	Torção
21	20	-	-	-	-	Torção
16	15	-	-	-	-	Torção