

Aline Cruz de Moraes Reis

Síntese e caracterização de complexos de cobre (II) e zinco (II) com dipeptídeos de interesse biológico

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Mestre em Química.

> Orientadora: Judith Felcman Co-orientadora: Bárbara Lúcia de Almeida

Rio de Janeiro Fevereiro de 2010

Aline Cruz de Moraes Reis

Síntese e caracterização de complexos de cobre (II) e zinco (II) com dipeptídeos de interesse biológico

Dissertação apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Mestre em Química. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Judith Felcman Orientadora Departamento de Química – PUC - Rio

Prof. Bárbara Lúcia de Almeida

Co-orientadora UFJF

Prof. Andrea de Moraes Silva IFRJ

> Prof. Annelise Casellato UFRJ

Prof. Nicolás Adrián Rey Departamento de Química - PUC - Rio

Prof. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico - PUC - Rio

Rio de Janeiro, 24 de fevereiro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Aline Cruz de Moraes Reis

Graduou-se em Licenciatura em Química no Instituto Federal de Educação, Ciência e Tecnologia (IFRJ) em 2008. Ingressou no Mestrado em Química Inorgânica na PUC-Rio, com bolsa NOTA 10 da FAPERJ.

Ficha Catalográfica

Reis, Aline Cruz de Moraes

Síntese e caracterização de complexos de cobre (II) e zinco (II) com dipeptídeos de interesse biológico / Aline Cruz de Moraes Reis ; orientadora: Judith Felcman ; co-orientadora: Bárbara Lúcia de Almeida. – 2010.

189 f. : il. (color.) ; 30 cm

Dissertação (Mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, Rio de Janeiro, 2010.

Inclui bibliografia

1. Química – Teses. 2. Doença de Alzheimer. 3.
Complexos. 5. Dipeptídeos. 6. Cobre (II). 7. Zinco (II). I.
Felcman, Judith. II. Almeida, Bárbara Lúcia de. III.
Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Química. IV. Título.

CDD: 540

PUC-Rio - Certificação Digital Nº 0812574/CA

Dedico a Deus, fiel em todas as Suas promessas.

Agradecimentos

Agradeço a Deus, por me permitir realizar mais um sonho e por ter me fortalecido nos momentos mais difíceis.

A meus pais, Sônia e Naldo, ao meu irmão Ronaldo, pelo carinho e incentivo, aos quais dedico minha eterna gratidão.

À professora Judith, pela amizade, pelos ensinamentos, pelo investimento e por acreditar que o projeto daria certo. Muito obrigado!

À professora Bárbara, pela amizade e pela paciência com que me ensinou tantas coisas (que levarei pra sempre comigo). Deus te abençoe!

À minha avó Lea e à Ivonete, pelas constantes orações.

Ao meu amigo, e irmão, Leonardo, por sua valiosa amizade, incentivo, e com quem pude compartilhar importantes discussões de química.

À Luciana, pela amizade, e a quem sempre serei muito grata por me ensinar a simular meus EPR's.

Às colegas: Thaís, Stella, Luciene, Natalie, Vanessa, Cristiane Mauad e Eliane (Lili), com quem partilhei momentos muito agradáveis. Desejo que essa amizade se fortaleça a cada dia.

Ao professor Odivaldo Cambraia (CBPF), pelas medidas de EPR.

À professora Andrea Moraes (IFRJ), pelo incentivo, e por quem me senti grandemente motivada a fazer o mestrado em química inorgânica.

Aos professores da banca - Andrea, Annelise e Nicolás - por terem aceitado o convite para fazerem parte da banca.

Aos funcionários: Jorge (infravermelho e TGA), Caio e Cristiane (CHNS), Rodrigo (abs. atômica), Fátima (secretaria), Ilídia e Zuleide.

Ao departamento de química da PUC-Rio, pela oportunidade.

Ao CNPq e à FAPERJ, pelo apoio financeiro através da bolsa de mestrado.

A todos que, de alguma forma, contribuíram para a realização deste trabalho. Agradeço a Deus pela vida de todos.

Resumo

Reis, Aline Cruz de Moraes; Felcman, Judith. Síntese e caracterização de complexos de cobre (II) e zinco (II) com dipeptídeos de interesse biológico. Rio de Janeiro, 2010. 189p. Dissertação de Mestrado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho descreve a síntese e caracterização de quatro complexos de cobre (II) e quatro complexos de zinco (II), com dipeptídeos, no estado sólido. Os dipeptídeos envolvidos foram: glicil-glicina, glicil-valina, metionil-metionina, metionil-glicina e cisteinil-glicina, cujos aminoácidos fazem parte de algumas proteínas envolvidas em processos de neurodegeneração, mais especificamente na doença de Alzheimer. Embora os mecanismos que desencadeiam esta patologia não estejam ainda totalmente esclarecidos, sabe-se que os íons metálicos, como o cobre (II) e o zinco (II), interagem com o peptídeo β-amilóide. Acredita-se que tais interações favoreçam a formação de agregados protéicos sólidos deste peptídeo, observados nos cérebros de pacientes com essa doença. Dessa forma, a obtenção e o estudo de modelos simples no estado sólido, sintetizados em condições próximas ao meio biológico, podem permitir uma melhor compreensão de possíveis interações de tais metais neste sítio protéico. Os compostos obtidos foram caracterizados utilizando as seguintes técnicas: análise elementar, absorção atômica, espectroscopia de infravermelho, espectroscopia Raman, espectroscopia de ultravioleta-visível, termogravimetria, RPE (para os complexos de cobre) e condutivimetria. Para os complexos de zinco, foram realizados cálculos teóricos mecânico-quânticos para obtenção de parâmetros geométricos e espectros de infravermelho. A análise dos compostos obtidos mostrou que os complexos de cobre e zinco com os dipeptídeos estão coordenados por átomos de oxigênio e Nos complexos de peptídeos contendo enxofre, a coordenação nitrogênio. também ocorre pelo átomo de enxofre (cobre com metionil-metionina e metionilglicina e zinco com cisteinil-glicina). Os compostos obtidos para ambos os metais na proporção metal-ligante (1:1) mostram comportamento diferente dos estudos em solução e aqueles obtidos na proporção metal-ligante (1:2) mostram comportamento similar a complexos de metais com aminoácidos.

Palavras-chave

Doença de Alzheimer; complexos; dipeptídeos; cobre (II); zinco (II).

Abstract

Reis, Aline Cruz de Moraes; Felcman, Judith (Advisor). Sythesis and characterization of copper (II) and zinc (II) complexes with dipeptides of biological interest. Rio de Janeiro, 2010. 189p. MsC. Dissertation – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

This work describes the synthesis and characterization of copper (II) and zinc (II) complexes, with dipeptides in solid state. The dipeptides involved were: glycyl-glycine, glycyl-valine, methionyl-methionine, methionyl-glycine and cysteinyl-glycine, whose aminoacids take part in some proteins involved in neurodegeneration processes, more specifically in Alzheimer's disease. Although the mechanisms that trigger this pathology are still not totally clear, it is known that metallic ions, such as copper (II) and zinc (II) interact with the β -amyloid peptide. It seems that such interactions favor the formation of solid proteic aggregates of this peptide, observed in the brains of patients with Alzheimer's disease. Thus, the obtaining and study of simple models in the solid state, synthesized in similar conditions to the biological medium, may allow a better understanding of the possible interactions of such metals in this proteic site. The compounds obtained were characterized using the following techniques: elemental analysis, atomic absorption, infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, thermogravimetry, EPR (for the copper complexes) and conductivimetry. For the zinc complexes, quantum-mechanical theoretical calculations were performed to obtain geometrical parameters and infrared spectra. The analysis of the compounds showed that the copper and zinc complexes with dipeptides are coordinated through oxygen and nitrogen atoms. In complexes of dipeptides containing sulfur, coordination trough the sulfur atom occurs too (copper with methionyl-methionine and methionyl-glycine and zinc with cysteinyl-glycine). The compounds obtained for both metals at the metalligand ratio (1:1) behave differently from those studied in solution e those obtained in the metal-ligand ratio (1:2) show similar behavior of metal complexes with aminoacids.

Keywords

Alzheimer's disease; complexes; dipeptides; copper (II); zinc (II).

Sumário

1 Introdução	25
1.1 Placas senis	26
1.1.1 O peptídeo β-amilóide e sua origem	26
1.1.2 Emaranhados neurofibrilares: proteína tau	27
1.2 Alguns genes envolvidos na DA	27
1.3 O stresse oxidativo	28
1.4 O papel dos metais na DA	30
1.4.1 O papel do cobre	31
1.4.1.1 O papel da metionina-35	32
1.4.1.2 Interação do cobre na proteína precursora de amilóide	34
1.4.2 O papel do zinco	34
1.4.2.1 Interação do zinco na proteína precursora de amilóide (PPA)	36
1.5 O uso de quelantes metálicos	37
2 Objetivo deste trabalho	38
3 Procedimento Experimental	39
3.1 Materiais e Métodos	39
3.1.1 Reagentes e Solventes	39
3.1.2 Equipamentos e Técnicas Analíticas	40
3.2 Ligantes	42
3.2.1 Nomes oficiais e estruturas	42
3.3 Sínteses	44
3.3.1 Complexos de cobre	44
3.3.2 Complexos de zinco	46
4 Resultados e Discussões	48
4.1 Algumas considerações sobre os modos de coordenação	
de cobre e zinco com dipeptídeos	48
4.2 Dados Experimentais dos Ligantes	51

4.2.1 Infravermelho e Raman	51
4.2.2 Análise Termogravimétrica	52
4.3 Complexos de cobre	53
4.3.1 Geral	53
4.3.2 Análise Termogravimétrica	55
4.3.3 Infravermelho-Análise comparativa dos espectros	58
4.3.4 Ultravioleta-visível	62
4.3.5 Ressonância Paramagnética de Elétrons	63
4.3.6 Propostas de Estruturas	65
4.4 Complexos de zinco	67
4.4.1 Geral	67
4.4.2 Análise Termogravimétrica	69
4.4.3 Infravermelho e Raman - Análise comparativa dos espectros	71
4.4.3.1 Infravermelho	72
4.4.3.2 Raman	74
4.4.4 Propostas de Estruturas	76
4.4.5 Cálculos Teóricos	78
4.4.5.1 Otimização de estrutura e obtenção dos parâmetros	
geométricos	78
4.4.5.2 Atribuições vibracionais	88
Estiramento N-H	88
Estiramento C=O	90
Estiramento C-H	91
Deformação de (CNH): amida II	92
Deformações angulares de (HCH) e (HNH)	93
Estiramentos C-O, C-N, C-C e C-S	96
Grupo Nitrato	98
Vibrações do esqueleto da molécula	100
5 Conclusões	111
6 Referências Bibliográficas	113

Anexos	120
A.1 Análise termogravimétrica	120
A.1.1 Ligantes	120
A.1.2 Complexos de cobre	123
A.1.3 Compexos de zinco	125
A.2 Infravermelho	127
A.2.1 Ligantes	127
A.2.2 Complexos de cobre	132
A.2.3 Complexos de zinco	136
A.2.4 Sais de metais	140
A.2.5 Segunda derivada dos espectos dos complexos de zinco	142
A.2.6 Deconvolução dos espectros dos complexos de zinco	164
A.3 Raman	180
A.3.1 Ligantes	180
A.3.2 Complexos de zinco	182
A.4 Espectros de infravermelho teórico dos complexos de zinco	184
A.5 Ultravioleta-Visível dos complexos de cobre	186
A.6 Ressonância Paramagnética de Elétrons dos complexos	
de cobre	188

Lista de Figuras

Figura 1- Sequência dos aminoácidos no peptídeo Aβ(1-42)	26
Figura 2- Modelo do sítio de coordenação do cobre ao peptídeo Aβ	31
Figura 3- Estruturas da metionina e metionina sulfóxido	32
Figura 4- Estruturas do HNE e Acroleína	33
Figura 5- Estrutura do Clioquinol	37
Figura 6- Estrutura do dipeptídeo Glicil-glicina	42
Figura 7- Estrutura do dipeptídeo Glicil-valina	42
Figura 8- Estrutura do dipeptídeo Cisteinil-glicina	43
Figura 9- Estrutura do dipeptídeo Metionil-glicina	43
Figura 10- Estrutura do dipeptídeo Metionil-metionina	43
Figura 11- Sítios de coordenação do cobre no dipeptídeo	
Glicil-glicina	48
Figura 12- Coordenação bidentada dos dipeptídeos ao cobre	49
Figura 13- Coordenação tridentada dos dipeptídeos ao cobre	49
Figura 14- Dipeptídeo Histidil-glicina	49
Figura 15- Coordenação de dipeptídeos ao zinco no estado sólido	50
Figura 16- Complexo Cu(Met-met) na forma de pó e em solução	54
Figura 17- Espectros de IV: do ligante Gli-val (com a banda de	
combinação $\delta(NH_3^+)$ e $\rho(NH_3^+)$ indicada) e do complexo	
$Cu(Gli-val)_2$ (com bandas de NH_2 indicadas)	59
Figura 18- Desdobramento dos subníveis de energia em um	
campo octaédrico com distorção tetragonal no eixo z	62
Figura 19- Estrutura proposta do complexo Cu(Gli-gli)	65
Figura 20- Estrutura proposta do complexo Cu(Met-met)	66
Figura 21- Estrutura proposta do complexo Cu(Met-gli)	66
Figura 22- Estrutura proposta do complexo Cu(Gli-val) ₂	66
Figura 23- Espectros de Raman sobrepostos do	
complexo Zn(Cis-gli) e do ligante Cis-gli na região (3500-1700) cm ⁻¹	75
Figura 24- Estrutura proposta do complexo Zn(Gli-gli)	76
Figura 25- Estrutura proposta do complexo Zn(Gli-val)	76

Figura 26- Estrutura proposta do complexo Zn(Gli-val) ₂	77
Figura 27- Estrutura proposta do complexo Zn(Cis-gli)	77
Figura 28- Geometria otimizada do complexo Zn(Gli-gli) vista de	
diferentes ângulos	80
Figura 29- Geometria otimizada do complexo Zn(Gli-val) vista de	
diferentes ângulos	82
Figura 30- Geometria otimizada do complexo Zn(Gli-val) ₂ vista de	
diferentes ângulos	84
Figura 31- Geometria otimizada do complexo Zn(Cis-gli) vista de	
diferentes ângulos	86
Figura 32- Espectro experimental e segunda derivada para o	
complexo Zn(Gli-val) ₂ na região (3050-2850) cm ⁻¹	92
Figura 33- Modos vibracionais de deformação angular de -CH ₂	93
Figura 34- Modos vibracionais de deformação angular de -CH $_3$	93
Figura A.1- TGA do ligante Gli-gli	120
Figura A.2- TGA do ligante Met-met	121
Figura A.3- TGA do ligante met-gli	121
Figura A.4- TGA do ligante Gli-val	122
Figura A.5- TGA do ligante Cis-gli	122
Figura A.6- TGA do complexo Cu(Gli-gli)	123
Figura A.7- TGA do complexo Cu(Met-met)	123
Figura A.8- TGA do complexo Cu(Met-gli)	124
Figura A.9- TGA do complexo Cu(Gli-val) ₂	124
Figura A.10- TGA do complexo Zn(Gli-gli)	125
Figura A.11- TGA do complexo Zn(Gli-val)	125
Figura A.12- TGA do complexo Zn(Gli-val) ₂	126
Figura A.13- TGA do complexo Zn(Cis-gli)	126
Figura A.14- IV do ligante Gli-gli na região (4000-450) cm ⁻¹ em	
pastilha de KBr	127
Figura A.15- IV do ligante Gli-gli na região (700-30) cm ⁻¹ em	
pastilha de polietileno	127
Figura A.16- IV do ligante Met-met na região (4000-450) cm ⁻¹ em	
pastilha de KBr	128

Figura A.17- IV do ligante Met-met na região (700-30) cm ⁻¹ em	
pastilha de polietileno	128
Figura A.18- IV do ligante Met-gli na região (4000-450)cm ⁻¹ em	
pastilha de KBr	129
Figura A.19- IV do ligante Met-gli na região (700-30) cm ⁻¹ em	
pastilha de polietileno	129
Figura A.20- IV do ligante Gli-val na região (4000-450) cm ⁻¹ em	
pastilha de KBr	130
Figura A.21- IV do ligante Gli-val na região (700-30) cm ⁻¹ em	
pastilha de polietileno	130
Figura A.22- IV do ligante Cis-gli na região (4000-450) cm ⁻¹ em	
pastilha de KBr	131
Figura A.23- IV do ligante Cis-gli na região (700-30) cm ⁻¹ em	
pastilha de polietileno	131
Figura A.24- IV do complexo Cu(Gli-gli) na região (4000-450) cm ⁻¹	
em pastilha de KBr	132
Figura A.25- IV do complexo Cu(Gli-gli) na região (700-30) cm ⁻¹	
em pastilha de polietileno	132
Figura A.26- IV do complexo Cu(Met-met) na região (4000-450) cm ⁻¹	
em pastilha de KBr	133
Figura A.27- IV do complexo Cu(Met-met) na região (700-30) cm ⁻¹	
em pastilha de polietileno	133
Figura A.28- IV do complexo Cu(Met-gli) na região (4000-450) cm ⁻¹	
em pastilha de KBr	134
Figura A.29- IV do complexo Cu(Met-gli) na região (700-30) cm ⁻¹	
em pastilha de polietileno	134
Figura A.30- IV do complexo Cu(Gli-val) ₂ na região (4000-450)cm ⁻¹	
em pastilha de KBr	135
Figura A.31- IV do complexo Cu(Gli-val) ₂ na região (700-30) cm ⁻¹	
em pastilha de polietileno	135
Figura A.32- IV do complexo Zn(Gli-gli) na região (4000-450) cm ⁻¹	
em pastilha de KBr	136
Figura A.33- IV do complexo Zn(Gli-gli) na região (700-30) cm ⁻¹	

em pastilha de polietileno	136
Figura A.34- IV do complexo Zn(Gli-val) na região (4000-450) cm ⁻¹	
em pastilha de KBr	137
Figura A.35- IV do complexo Zn(Gli-val) na região (700-30) cm ⁻¹	
em pastilha de polietileno	137
Figura A.36- IV do complexo Zn(Gli-val) ₂ na região (4000-450) cm ⁻¹	
em pastilha de KBr	138
Figura A.37- IV do complexo Zn(Gli-val) ₂ na região (700-30) cm ⁻¹	
em pastilha de polietileno	138
Figura A.38- IV do complexo Zn(Cis-gli) na região (4000-450) cm ⁻¹	
em pastilha de KBr	139
Figura A.39- IV do complexo Zn(Cis-gli) na região (700-30) cm ⁻¹	
em pastilha de polietileno	139
Figura A.40- IV do CuCl ₂ na região (700-30) cm ⁻¹ em pastilha de	
polietileno	140
Figura A.41- IV do ZnCl ₂ na região (700-30) cm ⁻¹ em pastilha de	
polietileno	140
Figura A.42- IV do Zn(NO ₃) ₂ na região (4000-450) cm ⁻¹ em	
pastilha de KBr	141
Figura A.43-2ª derivada do IV do Zn(Gli-gli) na região	
(3450-3100)cm ⁻¹	142
Figura A.44- 2ª derivada do IV do Zn(Gli-gli) na região	
(3050-2850) cm ⁻¹	142
Figura A.45- 2ª derivada do IV do Zn(Gli-gli) na região	
(1650-1500) cm ⁻¹	143
Figura A.46- 2ª derivada do IV do Zn(Gli-gli) na região	
(1440-1300) cm ⁻¹	143
Figura A.47- 2ª derivada do IV do Zn(Gli-gli) na região	
(1290-1150) cm ⁻¹	144
Figura A.48- 2ª derivada do IV do Zn(Gli-gli) na região	
(1150-1000) cm ⁻¹	144
Figura A.49- 2ª derivada do IV do Zn(Gli-gli) na região	
(980-830) cm ⁻¹	145

Figura A.50- 2ª derivada do IV do Zn(Gli-gli) na região	
(750-600) cm ⁻¹	145
Figura A.51- 2ª derivada do IV do Zn(Gli-gli) na região	
(450-250) cm ⁻¹	146
Figura A.52- 2ª derivada do IV do Zn(Gli-gli) na região	
(250-30) cm ⁻¹	146
Figura A.53- 2ª derivada do IV do Zn(Gli-val) na região	
(3500-3300) cm ⁻¹	147
Figura A.54- 2ª derivada do IV do Zn(Gli-val) na região	
(3200-3000) cm ⁻¹	147
Figura A.55- 2ª derivada do IV do Zn(Gli-val) na região	
(3050-2800) cm ⁻¹	148
Figura A.56- 2ª derivada do IV do Zn(Gli-val) na região	
(1780-1580) cm ⁻¹	148
Figura A.57-2ª derivada do IV do Zn(Gli-val) na região	
(1530-1400) cm ⁻¹	149
Figura A.58- 2ª derivada do IV do Zn(Gli-val) na região	
(1405-1210) cm ⁻¹	149
Figura A.59- 2ª derivada do IV do Zn(Gli-val) na região	
(1190-1000) cm ⁻¹	150
Figura A.60- 2ª derivada do IV do Zn(Gli-val) na região	
(1050-900) cm ⁻¹	150
Figura A.61- 2ª derivada do IV do Zn(Gli-val) na região	
(900-700) cm ⁻¹	151
Figura A.62- 2ª derivada do IV do Zn(Gli-val) na região	
(700-500) cm ⁻¹	151
Figura A.63- 2ª derivada do IV do Zn(Gli-val) na região	
(600-250) cm ⁻¹	152
Figura A.64- 2ª derivada do IV do Zn(Gli-val) na região	
(250-30) cm ⁻¹	152
Figura A.65- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(3500-3000) cm ⁻¹	153
Figura A.66- 2ª derivada do IV do do Zn(Gli-val) ₂ na região	

(3050-2850) cm ⁻¹	153
Figura A.67- 2ª derivada do IV do Zn(Gli-val)₂ na região	
(1700-1550) cm ⁻¹	154
Figura A.68- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(1550-1400) cm ⁻¹	154
Figura A.69- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(1400-1200) cm ⁻¹	155
Figura A.70- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(1200-1000) cm ⁻¹	155
Figura A.71- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(1000-700) cm ⁻¹	156
Figura A.72- 2ª derivada do IV do do Zn(Gli-val) ₂ na região	
(700-450) cm ⁻¹	156
Figura A.73- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(450-200) cm ⁻¹	157
Figura A.74- 2ª derivada do IV do Zn(Gli-val) ₂ na região	
(200-30)cm ⁻¹	157
Figura A.75- 2ª derivada do IV do Zn(Cis-gli) na região	
(3600-3400) cm ⁻¹	158
Figura A.76- 2ª derivada do IV do Zn(Cis-gli) na região	
(3400-3200) cm ⁻¹	158
Figura A.77- 2ª derivada do IV do Zn(Cis-gli) na região	
(3250-3060) cm ⁻¹	159
Figura A.78- 2ª derivada do IV do Zn(Cis-gli) na região	
(3000-2900) cm ⁻¹	159
Figura A.79- 2ª derivada do IV do Zn(Cis-gli) na região	
(1770-1530) cm ⁻¹	160
Figura A.80- 2ª derivada do IV do Zn(Cis-gli) na região	
(1480-1287) cm ⁻¹	160
Figura A.81- 2ª derivada do IV do Zn(Cis-gli) na região	
(1240-1020) cm ⁻¹	161
Figura A.82- 2ª derivada do IV do Zn(Cis-gli) na região	
(1000-750) cm ⁻¹	161

Figura A.83- 2ª derivada do IV do Zn(Cis-gli) na região	
(800-620) cm ⁻¹	162
Figura A.84- 2ª derivada do IV do Zn(Cis-gli) na região	
(620-450)cm ⁻¹	162
Figura A.85- 2ª derivada do IV do Zn(Cis-gli) na região	
(500-200) cm ⁻¹	163
Figura A.86- 2ª derivada do IV do Zn(Cis-gli) na região	
(200-30) cm ⁻¹	163
Figura A.87- Deconvolução do IV do Zn(Gli-gli) na região	
(4000-2000) cm ⁻¹	164
Figura A.88- Deconvolução do IV do Zn(Gli-gli) na região	
(1860-1460) cm⁻¹	164
Figura A.89- Deconvolução do IV do Zn(Gli-gli) na região	
(1470-1230) cm⁻¹	165
Figura A.90- Deconvolução do IV do Zn(Gli-gli) na região	
(1230-1000) cm ⁻¹	165
Figura A.91- Deconvolução do IV do Zn(Gli-gli) na região	
(1000-700) cm ⁻¹	166
Figura A.92- Deconvolução do IV do Zn(Gli-gli) na região	
(700-450) cm ⁻¹	166
Figura A.93- Deconvolução do IV do Zn(Gli-gli) na região	
(650-300) cm ⁻¹	167
Figura A.94-Deconvolução do IV do Zn(Gli-gli) na região	
(300-30)cm ⁻¹	167
Figura A.95- Deconvolução do IV do Zn(Gli-val) na região	
(4000-2500) cm ⁻¹	168
Figura A.96- Deconvolução do IV do Zn(Gli-val) na região	
(1800-1510)cm ⁻¹	168
Figura A.97- Deconvolução do IV do Zn(Gli-val) na região	
(1500-1330)cm ⁻¹	169
Figura A.98- Deconvolução do IV do Zn(Gli-val) na região	
(1340-900) cm ⁻¹	169
Figura A.99- Deconvolução do IV do Zn(Gli-val) na região	

(900-450) cm ⁻¹	170
Figura A.100- Deconvolução do IV do Zn(Gli-val) na região	
(600-300) cm ⁻¹	170
Figura A.101- Deconvolução do IV do Zn(Gli-val) na região	
(300-30) cm ⁻¹	171
Figura A.102- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(3500-2700) cm ⁻¹	172
Figura A.103- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(1700-1500) cm ⁻¹	172
Figura A.104- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(1500-1200) cm ⁻¹	173
Figura A.105- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(1210-900) cm ⁻¹	173
Figura A.106- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(900-500) cm ⁻¹	174
Figura A.107- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(450-650) cm ⁻¹	174
Figura A.108- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(500-230) cm ⁻¹	175
Figura A.109- Deconvolução do IV do Zn(Gli-val) ₂ na região	
(250-30) cm ⁻¹	175
Figura A.110- Deconvolução do IV do Zn(Cis-gli) na região	
(4000-2500) cm ⁻¹	176
Figura A.111- Deconvolução do IV do Zn(Cis-gli) na região	
(1800-1500)cm ⁻¹	176
Figura A.112- Deconvolução do IV do Zn(Cis-gli) na região	
(1500-1300) cm ⁻¹	177
Figura A.113- Deconvolução do IV do Zn(Cis-gli) na região	
(1310-1000) cm ⁻¹	177
Figura A.114- Deconvolução do IV do Zn(Cis-gli) na região	
(1000-700) cm ⁻¹	178
Figura A.115- Deconvolução do IV do Zn(Cis-gli) na região	
(700-450) cm ⁻¹	178

Figura A.116- Deconvolução do IV do Zn(Cis-gli) na região	
(450-200) cm ⁻¹	179
Figura A.117- Deconvolução do IV do Zn(Cis-gli) na região	
(200-30) cm ⁻¹	179
Figura A.118- Raman do ligante Gli-gli na região (3500-100) cm ⁻¹	180
Figura A.119- Raman do ligante Gli-val na região (3500-100) cm ⁻¹	180
Figura A.120- Raman do ligante Cis-gli na região (3500-100) cm ⁻¹	181
Figura A.121- Raman do complexo Zn(Gli-gli) na região	
(3500-100) cm ⁻¹	182
Figura A.122- Raman do complexo Zn(Gli-val) na região	
(3500-100) cm ⁻¹	182
Figura A.123- Raman do complexo Zn(Gli-val)₂ na região	
(3500-100) cm ⁻¹	183
Figura A.124- Raman do complexo Zn(Cis-gli) na região	
(3500-100) cm ⁻¹	183
Figura A.125- IV teórico do complexo Zn(Gli-gli) na região	
(4000-0) cm ⁻¹	184
Figura A.126- IV teórico do complexo Zn(Gli-val) na região	
(4000-0) cm ⁻¹	184
Figura A.127- IV teórico do complexo Zn(Gli-val) ₂ na região	
(4000-0) cm ⁻¹	185
Figura A.128- IV teórico do complexo Zn(Cis-gli) na região	
(4000-0) cm ⁻¹	185
Figura A.129- UV do complexo Cu(Gli-gli) em solução	
aquosa 10 ⁻³ mol.L ⁻¹	186
Figura A.130- UV do complexo Cu(Met-gli) em solução	
aquosa 10 ⁻³ mol.L ⁻¹	186
Figura A.131- UV do complexo Cu(Met-gli) em solução	
aquosa 10 ⁻³ mol.L ⁻	187
Figura A.132- UV do complexo Cu(Gli-val) ₂ em solução	
aquosa 10 ⁻³ mol.L ⁻¹	187
Figura A.133- RPE do complexo Cu(Gli-gli) no estado sólido	188
Figura A.134- RPE do complexo Cu(Met-met) no estado sólido	188

Figura A.135-RPE do complexo Cu(Met-gli) no estado sólido	189
Figura A.136- RPE do complexo Cu(Gli-val) ₂ no estado sólido	189

Lista de Tabelas

Tabela 1- Principais bandas atribuídas dos ligantes utilizando	
espectroscopia de infravermelho e Raman	51
Tabela 2- Análise termogravimétrica dos ligantes	52
Tabela 3- Análise elementar dos complexos de cobre	54
Tabela 4- Informações gerais sobre os complexos de cobre	54
Tabela 5- Medidas de condutividade dos complexos de cobre	55
Tabela 6- Propostas de fragmentação dos complexos de cobre	57
Tabela 7- Principais bandas atribuídas utilizando espectroscopia	
de infravermelho para os espectros dos complexos de cobre	58
Tabela 8- Atribuição para a região de baixa freqüência nos	
Espectros de infravermelho dos complexos de cobre	61
Tabela 9- Dados do ultravioleta visível dos complexos de cobre	63
Tabela 10- Parâmetros de RPE experimental e simulados	
para os complexos de cobre	64
Tabela 11- Análise elementar dos complexos de zinco	68
Tabela12- Informações gerais sobre os complexos de zinco	69
Tabela 13- Propostas de fragmentação dos complexos de zinco	71
Tabela 14- Principais bandas atribuídas utilizando	
Espectroscopia de infravermelho e Raman para	
os espectros dos complexos de zinco	72
Tabela 15- Deslocamento da banda de amida I nos espectros	
de IV dos complexos de zinco e de seus ligantes	73
Tabela 16- Atribuição para grupo nitrato dos complexos de zinco	74
Tabela 17- Energias mínimas calculadas para os complexos	
de zinco	79
Tabela 18- Comprimentos e ângulos de ligação para o complexo	
Zn(Gli-gli)	81
Tabela 19- Comprimentos e ângulos de ligação para o complexo	
Zn(Gli-val)	83
Tabela 20- Comprimentos e ângulos de ligação para o complexo	

Zn(Gli-val) ₂	85
Tabela 21- Comprimentos e ângulos de ligação para o complexo	
Zn(Cis-gli)	87
Tabela 22- Atribuições de estiramento N-H de amina pela regra de	
Bellamy-Williams em comparação com os valores teórico e	
experimental (cm ⁻¹)	89
Tabela 23- Atribuições de estiramento N-H de amida	
secundária (cm ⁻¹)	89
Tabela 24- Atribuições de estiramento para C=O e C-O (cm ⁻¹)	90
Tabela 25- Atribuições de estiramentos dos grupos C-H	91
Tabela 26- Atribuições de deformação angular de	
(CNH)amida II (cm ⁻¹)	92
Tabela 27- Atribuições de deformação angular dos grupos	
(HCH) (cm ⁻¹)	94
Tabela 28- Atribuições de (HNH) (cm ⁻¹)	95
Tabela 29- Atribuições de estiramentos C-N e C-C (cm ⁻¹)	98
Tabela 30- Atribuições do grupo nitrato	100
Tabela 31- Atribuições de estiramentos metal-ligante	101
Tabela 32- Atribuição vibracional completa do complexo Zn(Gli-gli)	102
Tabela 33- Atribuição vibracional completa do complexo Zn(Glival)	103
Tabela 34- Atribuição vibracional completa do complexo: Zn(Glival)2	105
Tabela 35- Atribuição vibracional completa do complexo Zn(Cis-gli)	109

"Os jovens se cansam e se fatigam, e os moços de exaustos caem, mas os que esperam no Senhor renovam as suas forças, sobem com asas como águias, correm e não se cansam, caminham e não se fatigam."

Isaías 40:30-31