Análise de Desempenho dos Gráficos EWMA para o Controle Estatístico da Média

Neste capítulo, são obtidos os projetos ótimos e as medidas desempenho dos gráficos de controle de EWMA projetados para o controle da média, descritos no Capítulo 2 desta tese (especificamente o gráfico de controle de EWMA de R_t de Mortell e Runger, 1995 e o gráfico de controle de MEWMA de S² de Runger, Alt e Montgomery, 1996) e do GCG de EWMA das diferenças em relação ao nível-base (DNB) proposto no Capítulo 5.

6.1 Medidas de desempenho

Na avaliação de desempenho dos gráficos de controle EWMA serão obtidos os valores ótimos de NMA₁ de cada um dos gráficos para uma determinada alteração na média do canal afetado do processo.

As medidas de desempenho serão obtidas para o regime de probabilidades de *steady-state* (onde o processo é iniciado em controle e a alteração ocorre algum momento aleatório depois do início).

A decisão de considerar o contexto de *steady-state* é baseada no raciocínio de que, embora o monitoramento possa iniciar-se com o processo fora de controle (o que constitui o regime de probabilidades de *zero-state*), na prática essa situação é, no máximo, transitória, pois, qualquer descontrole sendo detectado (alteração na média devido à presença de causas especiais de variação), o processo será interrompido para averiguação e eliminação da causa especial, portanto qualquer reinício do monitoramento deve ocorrer com o processo em controle.

Contudo, algumas medidas de desempenho de *zero-state* também serão obtidas para comparação com as de *steady-state*. Na comparação entre tais medidas, é esperado que os valores de NMA₁ de *steady-state* sejam menores que os de *zero-state*. Em geral, este é o comportamento observado em gráficos de controle de EWMA.

6.2

Procedimentos de Simulação

O método empregado na obtenção das medidas de desempenho dos gráficos de controle de EWMA é a Simulação de Monte Carlo, devido a obstáculos à modelagem analítica. No caso do GCG de EWMA das diferenças, tal dificuldade vem das correlações cruzadas entre as estatísticas dos diversos canais e a dimensionalidade do problema (modelos analíticos para obtenção de valores para NMA₁ de gráficos EWMA já envolveu Cadeias de Markov com dezenas ou mais de uma centena de estados no caso univariado); no caso dos gráficos EWMA (R_t) de Mortell e Runger (1995) e MEWMA S² de Runger et al. (1996), a dificuldade é o desconhecimento da distribuição da amplitude e da variância amostral quando um dos canais provém de uma distribuição diferente dos demais.

Portanto, o método mais simples, em termos de controle da precisão dos resultados, é o método de simulação de Monte Carlo; a simulação realizada nada mais é do que a representação simplificada da realidade em processos multicanal. Este foi o método aplicado em todos os trabalhos publicados para obtenção das medidas de desempenho em processos multicanal, devido às dificuldades acima comentadas. A simulação dos esquemas de controle de EWMA está programada em Matlab, versão 6.5.

A precisão dos resultados da simulação é obtida com um número grande de corridas, contudo, na adoção desse número devem ser considerados o tempo e o esforço computacional empregados na execução do programa. Nesta tese, a precisão das medidas de desempenho é obtida considerando 10.000 corridas de simulação (contendo 10.000 amostras cada uma delas). Com esse número significativo, garantem-se estimativas dos valores de NMA₀ com um erro-padrão de 1% do desvio-padrão do comprimento de corridas, que é sempre menor ou igual ao NMA₀ (o pior caso é o dos gráficos de Shewhart com NMA grande, em que o SDRL é igual a $\sqrt{NMA(NMA - 1)}$). Claro que, a escolha de um número alto de corridas implica na demora de obtenção dos resultados, por causa do número de amostras que serão geradas aleatoriamente, e dos parâmetros ótimos dos gráficos de controle. Por exemplo, supondo a extração de observações individuais, na análise de um processo composto por 10 canais, caso o NMA₀ seja igual a 100 amostras, serão gerados mais de 10 milhões de números aleatórios.

Na tentativa de se evitar uma explosão combinatória de casos e tabelas, apenas seis quantidades distintas de canais são analisadas: 2, 3, 5, 10, 15 e 20 canais. Os valores de NMA₀ avaliados são de 100, 200 e 370,4 amostras. Para uma análise mais completa, os tamanhos de amostras gerados para cada canal são de uma e quatro unidades.

As análises propostas neste capítulo serão exclusivamente no contexto de alteração na média em somente um canal do processo. As alterações na média consideradas para a análise de eficiência dos gráficos de controle serão de 0,0 (valor próximo ao NMA₀ pré-determinado), 0,5, 1,0, 1,5, 2,0, 3,0, 4,0 e 5,0 desvios-padrão.

6.2.1

Primeira Parte da Corrida de Simulação: Período de Aquecimento da Estatística EWMA

O regime de probabilidades de *steady-state* é o escolhido para obtenção das medidas de desempenho, portanto, para os casos analisados, a alteração na média ocorre algum momento após o início do processo em controle.

No entanto, para obter as medidas de desempenho de *steady-state* devem ser utilizados períodos de aquecimento (*Warm-Ups*) individuais para cada uma das estatísticas EWMA dos gráficos de controle (especificamente são calculadas as estatísticas EWMA de R_t, MEWMA de S² e EWMA DNB). Tal período deve ser suficientemente longo para que o efeito do valor inicial da estatística seja dissipado. Durante o *Warm-up*, o processo simulado deve estar isento de causas especiais de variação. Após o *Warm-up*, ocorre uma alteração na média do canal afetado do processo. Em relação à obtenção das medidas de desempenho de *zerostate*, não há período de aquecimento e as alterações são realizadas logo no início do monitoramento do processo.

O período de aquecimento é utilizado até o sistema atingir o regime permanente de probabilidades (onde o peso residual das observações iniciais é praticamente dissipado), quando o processo ainda está em controle. Para tal período são consideradas 50 corridas de simulação. O número de corridas é suficiente para minimizar o efeito do valor inicial que terá, então, o peso igual $((1 - \lambda)^{50} Z_o)$ sobre o valor das estatísticas EWMA.

Se ocorrer algum sinal durante esse período, a estatística EWMA do gráfico que sinalizou descontrole é reinicializada e o período de aquecimento retorna à primeira corrida. O período de aquecimento só é finalizado (os valores iniciais das estatísticas EWMA são obtidos) quando nenhum sinal ocorrer durante as 50 corridas. Um procedimento semelhante foi usado, por exemplo, por Mahmoud et al. (2009).

No algoritmo de simulação, tais períodos ocorrem independentemente nos gráficos de controle analisados, pois para cada um deles são considerados números aleatórios diferentes. Esse procedimento foi adotado devido à possibilidade de ocorrerem sinalizações em períodos diferentes nos gráficos de controle durante o período de aquecimento.

Em cada instante de amostragem, para cada um dos gráficos de controle de EWMA, são executados os seguintes passos para o período de aquecimento:

1°) Geração de *n* números aleatórios independentes e normalmente distribuídos com média igual a zero ($\mu_0 = 0$) e variância igual a um ($\sigma_0^2 = 1$) para cada um dos canais;

2°) A estatística EWMA é obtida (especificamente são calculadas as estatísticas EWMA de R_t de Mortell e Runger, 1995, MEWMA de S^2 de Runger et al., 1996 e EWMA DNB);

3°) A estatística obtida no 2° passo é comparada aos limites de controle do gráfico. No caso do GCG, uma estatística é obtida para cada um dos c canais do processo e os valores extremos entre as estatísticas obtidas são comparados aos limites de controle;

4°) Se alguma estatística ultrapassar o seu respectivo limite de controle, a estatística é reinicializada e o período de aquecimento do gráfico que sinalizou retorna à primeira corrida (no 1° passo) no mesmo instante de amostragem.

Depois de alcançadas 50 amostras consecutivas sem nenhum sinal de alteração (alarme falso), o último valor da estatística EWMA é guardado, para ser usado como o valor inicial para a fase fora de controle e a segunda parte da corrida é iniciada (Seção 6.2.2), com a alteração na média do canal do processo.

A Figura 6.1 mostra uma representação esquemática do algoritmo descrito utilizado na simulação para obter os valores iniciais da estatística EWMA para cada um dos gráficos de controle analisados.

Figura 6.1 – Algoritmo utilizado na simulação para o período de aquecimento da estatística EWMA

6.2.2

Segunda Parte da Corrida: Cálculo do NMA₁

Após o sistema alcançar o regime permanente de probabilidades (com o processo ainda em controle e os valores iniciais das estatísticas EWMA já obtidos para todos os gráficos), realiza-se uma alteração na média ($\delta > 0$) em somente um dos c canais do processo ($x_{ij} = x_{ij} + \delta\sigma$, $\forall i = 1, 2, \dots, c$ e j = 1, 2, 3, 4 no caso de amostras de tamanho 4, e j = 1 no caso de observações individuais). Sem perda de generalidade, na simulação o canal afetado é o primeiro deles.

O tempo gasto nos períodos de aquecimento (50 amostras) não é contabilizado no cálculo dos valores de NMA₁. O NMA₁ é considerado a partir da

amostra em que ocorrer a alteração na média do processo. É importante lembrar que a estatística é reinicializada, voltando ao período de aquecimento, sempre que existir algum sinal de descontrole.

Nesta fase da corrida de simulação, após o período de aquecimento, todos os gráficos de controle passam a usar as mesmas amostras aleatórias de tamanho *n* para cada um dos canais do processo, de forma a minimizar o efeito das flutuações aleatórias (i.e., minimizar o erro experimental) sobre as medidas de desempenho.

Em cada instante de amostragem, são executados os seguintes passos para o cálculo do NMA₁ (a partir da determinação dos valores iniciais para as estatísticas EWMA):

1°) Geração de *n* números aleatórios independentes e normalmente distribuídos com média igual a zero ($\mu_0 = 0$) e variância igual a um ($\sigma_0^2 = 1$) para cada um dos canais;

2°) A causa especial é simulada no canal afetado i (o primeiro deles, sem perda de generalidade) somando um valor $\delta > 0$ aos valores desse canal. Os outros canais permanecem com a média inalterada, em zero;

3°) As estatísticas dos gráficos de controle são calculadas (individualmente são consideradas as estatísticas EWMA de R_t , MEWMA de S^2 e EWMA das diferenças estimadas \hat{e}_{tij}). A primeira estatística EWMA calculada em cada corrida para cada um dos gráficos de controle (na primeira amostra após o período de aquecimento) é calculada considerando como valor inicial (Z_0) a estatística correspondente obtida no primeiro algoritmo (descrito na Seção 6.2.1);

4°) Comparam-se as estatísticas aos seus respectivos limites de controle, estabelecidos com base no NMA₀ pré-determinado;

5°) Se alguma estatística ultrapassar o seu respectivo limite de controle, o número de ordem da amostra em que aconteceu a sinalização é registrado no vetor de valores de *RL* (vetor de comprimento de corridas) correspondente ao gráfico de controle que sinalizou, então, a estatística EWMA correspondente é reinicializada e a simulação retorna ao período de aquecimento no próximo instante de amostragem. Caso não seja detectada nenhuma alteração na média do processo, retorna-se ao 1° passo, gerando (extraindo) novas amostras até que seja detectada a alteração na média do canal do processo.

Depois de terem sido simulados 10.000 sinais de descontrole no processo, calculam-se os valores de NMA₁ dos gráficos de controle para cada uma das alterações na média consideradas. Uma representação esquemática do algoritmo para a simulação (incluindo o período de aquecimento) pode ser vista na Figura 6.2.

Figura 6.2 – Algoritmo utilizado na simulação para obtenção das medidas de desempenho

6.3 Obtenção dos Projetos Ótimos

6.3.1

Curvas de isoNMA₀

Para facilitar o processo de obtenção dos projetos ótimos dos gráficos de controle, primeiramente são estudadas as relações entre os parâmetros λ (constante de amortecimento) e K (fator de abertura dos limites de controle) de cada um dos esquemas EWMA aqui apresentados. As relações entre os parâmetros descritos são estabelecidas em função do número de canais que compõem o processo e do número de amostras extraídas de cada canal.

Tais relações aparecerão nas curvas de isoNMA₀ (conjunto de pares (λ ,K) que resultam num mesmo valor para o NMA₀ do gráfico de controle). Há expectativa que estas curvas sejam similares as apresentadas por Crowder (1989), que obteve curvas de isoNMA₀ para o gráfico de controle de EWMA de \bar{x} para processos univariados.

É importante ressaltar que não há trabalhos na literatura que descrevam os projetos ótimos dos esquemas EWMA de Mortell e Runger (1995) e MEWMA de Runger, Alt, e Montgomery (1996) para os casos de alteração na média de um canal do processo.

Somente são mostradas as curvas para processos compostos por 3 e 20 canais, para visualização da forma geral de tais curvas. Para os outros casos (processos compostos por 2, 5, 10 ou 15 canais), as curvas de isoNMA₀ (NMA₀ de 100, 200 e 370,4 amostras) distam entre si de forma semelhante à apresentada nas figuras aqui dispostas. Todos os pontos (λ ,K) usados para traçar as curvas, inclusive as que aqui não estão representadas graficamente (2, 5, 10 ou 15 canais), estão tabeladas no Apêndice B.

Figura 6.3 – Curvas de valores de NMA₀ para GCG EWMA DNB (3 canais)

Figura 6.4 – Curvas de valores de NMA₀ para GCG EWMA DNB (20 canais)

Figura 6.5 – Curvas de valores de NMA₀ para GC EWMA R_t (3 canais)

Figura 6.6 – Curvas de valores de NMA₀ para GC EWMA R_t (20 canais)

Figura 6.7 – Curvas de valores de NMA₀ para GC MEWMA S² (3 canais)

Figura 6.8 – Curvas de valores de NMA₀ para GC MEWMA S² (20 canais)

As curvas de isoNMA₀ do GCG de EWMA das diferenças em relação ao nível-base (DNB) estão dispostas nas figuras 6.3 e 6.4, as do gráfico de controle de EWMA de R_t estão dispostas nas figuras 6.5 e 6.6 e as do gráfico de controle de MEWMA de S² estão dispostas nas figuras 6.7 e 6.8.

Nas figuras dispostas, pode ser observado que as curvas de ISONMA₀ seguem o mesmo padrão das curvas apresentadas por Crowder (1989), para o estudo da relação entre os parâmetros λ e *K* dos esquemas de controle de EWMA considerados. As curvas acima mostradas são as mesmas para processos onde são extraídas tanto observações individuais quanto tamanho de amostras maiores, supondo que não há alteração do processo (condição necessária para obter o NMA₀).

6.3.2 Projetos ótimos

Com o levantamento da curvas de isoNMA₀ dos gráficos de controle, o procedimento de otimização fica reduzido simplesmente a uma busca unidimensional dos projetos ótimos, conforme explicado a seguir.

Os parâmetros ótimos dos projetos estatísticos dos gráficos de controle de EWMA em análise são obtidos achando a solução ótima do seguinte problema de otimização:

Min NMA₁
$$(\delta, \theta)$$

sujeito a
NMA $(\delta = 0, \theta) = NMA_0$

onde:

 δ representa a alteração na média do processo, tal que $\mu_1 = \mu_0 + \delta \sigma_0$, para a qual o NMA₁ deve ser minimizado;

 θ representa o conjunto de parâmetros do gráfico de controle $(n, c, K(\lambda))$, onde a notação $K(\lambda)$ foi usada para implicar que K dependerá de λ pela curva de isoNMA₀ correspondente. Assim, sendo *n* e *c* dados, e K determinado por λ , λ torna-se a única variável de decisão.

Embora qualquer outro método de busca unidimensional possa ser utilizado, o método de busca adotado para obter os projetos ótimos foi o de Seção Áurea (*Golden Section Search*), introduzido por Kiefer (1973). Tal algoritmo foi programado em Matlab, versão 6.5.

Para o uso desse algoritmo, suponha que, através de alguma constante de amortecimento (λ) definida no intervalo [0,1], o NMA₁ mínimo possa ser obtido. O método de Busca da Seção Áurea divide este intervalo, eliminando os subintervalos em que não contenham o valor de λ com o qual NMA₁ é mínimo. Então, o novo intervalo, determinado no passo anterior, é divido novamente, eliminando os outros intervalos que não contenham o valor de NMA_1 mínimo. A função do algoritmo é gerar uma seqüência sucessiva de intervalos que possam conter o mínimo, cuja largura tenda a zero (o que determina o mínimo global).

Como se trata de um método numérico, considera-se que o ótimo foi atingido quando o último intervalo de busca torna-se menor do que uma tolerância pré-definida. Observando trabalhos anteriores, o NMA₁ como função de (λ , K) é bastante achatada na vizinhança do ótimo, e considerando o fato de que os resultados de simulação possuem uma flutuação aleatória inerente, a adoção de uma tolerância muito pequena, ao invés de resultar uma determinação muito precisa em torno do ótimo, pode na verdade levar o algoritmo a convergir longe do ótimo. Por essa razão, o algoritmo foi modificado, adotou-se uma largura de 0,005 para o último intervalo e o valor de λ utilizado, para obtenção dos resultados, é o ponto médio desse intervalo (tais valores estão destacados em vermelho nas tabelas 6.1 a 6.6).

			(λ. * .Κ)	(λ.*.K)	λ.*		
С	NMA ₀	δ*	início faixa	final faixa	médio	NMA ₁	SDRL
		0.5	(0.0426: 1.8144)	(0.0476: 1.8622)	0.045	25.0	18.4
	100.0	1.0	(0,0420, 1,0144)	(0,0470,1,0022) (0,1409,2,2572)	0 138	10.7	7.2
	100,0	2.0	(0, 1950; 2, 2110) (0, 2968; 2, 4578)	(0,1,103,2,23,2) (0,3018,2,4611)	0 299	4 2	24
		0.5	(0.0294: 2.0045)	(0.0344: 2.0661)	0.032	32.8	22.6
2	200.0	1.0	(0,1033; 2,4583)	(0.1084; 2.4709)	0.106	13.5	8.4
	,.	2.0	(0.3212; 2.7235)	(0,3262; 2.7255)	0.324	4.9	2.9
		0.5	(0.0244: 2.2097)	(0.0294: 2.2951)	0.027	40.6	26.2
	370,4	1,0	(0,1196; 2,7461)	(0,1246; 2,7567)	0,122	16,0	10,4
		2,0	(0,2755; 2,9178)	(0,2806; 2,9203)	0,278	5,6	3,1
		0,5	(0,0457; 2,2489)	(0,0507; 2,2960)	0,048	24,5	17,4
	100,0	1,0	(0,1459; 2,6510)	(0,1509; 2,6615)	0,148	10,6	6,8
		2,0	(0,2999; 2,8199)	(0,3050; 2,8217)	0,302	4,0	2,1
		0,5	(0,0294; 2,4089)	(0,0344; 2,4689)	0,032	32,5	20,9
3	200,0	1,0	(0,1033; 2,8367)	(0,1084; 2,8467)	0,106	13,0	7,7
		2,0	(0,2605; 3,0363)	(0,2655; 3,0393)	0,263	4,7	2,3
		0,5	(0,0325; 2,7077)	(0,0375; 2,7630)	0,035	40,4	25,9
	370,4	1,0	(0,0801; 2,9954)	(0,0851; 3,0130)	0,083	14,8	8,2
		2,0	(0,2341; 3,2173)	(0,2392; 3,2213)	0,237	5,2	2,5
		0,5	(0,0557; 2,5886)	(0,0608; 2,6138)	0,058	26,1	18,5
	100,0	1,0	(0,1327; 2,8438)	(0,1378; 2,8543)	0,135	10,7	6,5
		2,0	(0,3212; 3,0224)	(0,3262; 3,0242)	0,324	4,0	2,0
		0,5	(0,0325; 2,6877)	(0,0375; 2,7430)	0,035	33,0	20,6
5	200,0	1,0	(0,1084; 3,0500)	(0,1134; 3,0591)	0,111	12,8	7,3
		2,0	(0,2918; 3,2217)	(0,2968; 3,2237)	0,294	4,4	2,2
		0,5	(0,0426; 3,0267)	(0,0476; 3,0594)	0,045	41,2	27,2
	370,4	1,0	(0,1033; 3,2503)	(0,1084; 3,2584)	0,106	14,8	8,3
		2,0	(0,2310; 3,3836)	(0,2361; 3,3866)	0,234	5,0	2,2
		0,5	(0,0639; 2,9054)	(0,0689; 2,9255)	0,066	28,4	20,6
	100,0	1,0	(0,1196; 3,0742)	(0,1246; 3,0842)	0,122	11,3	6,6
		2,0	(0,3212; 3,2453)	(0,3262; 3,2466)	0,324	4,1	2,0
		0,5	(0,0325; 2,9564)	(0,0375; 2,9992)	0,035	35,5	21,8
10	200,0	1,0	(0,0851; 3,2303)	(0,0902; 3,2404)	0,088	13,3	6,8
		2,0	(0,2310; 3,4086)	(0,2361; 3,4116)	0,234	4,6	2,0
		0,5	(0,0294; 3,1627)	(0,0344; 3,2100)	0,032	43,8	25,7
	370,4	1,0	(0,1084; 3,4759)	(0,1134; 3,4824)	0,111	16,0	8,5
		2,0	(0,2574; 3,5872)	(0,2624; 3,5887)	0,260	5,6	2,2
		0,5	(0,0526; 2,9857)	(0,0576; 3,0159)	0,055	29,8	20,6
	100,0	1,0	(0,1196; 3,2013)	(0,1246; 3,2094)	0,122	11,9	6,8
		2,0	(0,3243; 3,3573)	(0,3293; 3,3588)	0,327	4,2	2,1
		0,5	(0,0395; 3,1652)	(0,0445; 3,1970)	0,042	38,0	24,4
15	200,0	1,0	(0,0883; 3,3665)	(0,0933; 3,3782)	0,091	13,7	7,0
		2,0	(0,2999; 3,5450)	(0,2918; 3,7084)	0,302	4,6	2,2
		0,5	(0,0244; 3,2399)	(0,0294; 3,3027)	0,027	46,1	25,6
	370,4	1,0	(0,0952; 3,5678)	(0,1002; 3,5753)	0,098	15,7	8,2
		2,0	(0,2208; 3,7074)	(0,2918; 3,7084)	0,289	5,1	2,4
	100.0	0,5	(0,0325; 2,9203)	(U,U375; 2,9806)	0,035	29,4	19,2
	100,0	1,0	(0,1227; 3,2963)	(0,1277; 3,3043)	0,125	12,5	7,1
		2,0	(0,2333; 3,4350)	(0,3030; 3,4305)	0,302	4,3	2,0
20	200.0	1.0	(0,0323, 3,1327)	(0,0373, 3,2373) (0 1022, 3 707)	0,035	14.4	23,0
20	200,0	2.0	(0,0303; 3,4725)	(0,1035, 3,4797)	0,101	14,4 1 0	7,5 2 2
		2,0	(0,2017; 3,0195)	(0,2000, 3,0210)	0,284	4,0	2,2
	270 4	1.0	(0,0213, 3,2807)	(0,0203, 3,3320)	0,024	47,0	24,3 7 0
	370,4	1,0	(U,U&DI 3,02//)	(U,U9UZ; 3,0354)	0,088	10,0	7,8 2 2
		2,0	(0,2442, 3,777)	(0,2492, 3,7790)	0,247	2,د	2,2

Tabela 6.1 – Projetos ótimos para o GCG de EWMA DNB (n=1)

			(λ*,K _{dpb})	(λ*,K _{dnb})	λ*		
С	NMA ₀	δ*	início faixa	final faixa	médio	NMA ₁	SDRL
		0,5	(0,1358; 2,2446)	(0,1409; 2,2572)	0,138	10,7	7,2
	100,0	1,0	(0,2968; 2,4578)	(0,3018; 2,4611)	0,299	4,2	2,4
		2,0	(0,8572; 2,5750)	(0,8622; 2,5750)	0,860	1,6	0,9
		0,5	(0,1033; 2,4583)	(0,1084; 2,4709)	0,106	13,5	8,4
2	200,0	1,0	(0,3212; 2,7235)	(0,3262; 2,7255)	0,324	4,9	2,9
		2,0	(0,7639; 2,8032)	(0,7690; 2,8034)	0,766	1,8	1,0
		0,5	(0,1196; 2,7461)	(0,1246; 2,7567)	0,122	16,0	10,4
	370,4	1,0	(0,2755; 2,9178)	(0,2806; 2,9203)	0,278	5,6	3,1
		2,0	(0,5573; 2,9857)	(0,5623; 2,9862)	0,560	2,0	0,9
		0,5	(0,1459; 2,6510)	(0,1509; 2,6615)	0,148	10,6	6,8
	100,0	1,0	(0,2999; 2,8199)	(0,3050; 2,8217)	0,302	4,0	2,1
		2,0	(0,7639; 2,9132)	(0,7690; 2,9134)	0,766	1,5	0,7
		0,5	(0,1033; 2,8367)	(0,1084; 2,8467)	0,106	13,0	7,7
3	200,0	1,0	(0,2605; 3,0363)	(0,2655; 3,0393)	0,263	4,7	2,3
		2,0	(0,7376; 3,1250)	(0,7426; 3,1250)	0,740	1,6	0,8
		0,5	(0,0801; 2,9954)	(0,0851; 3,0130)	0,083	14,8	8,2
	370,4	1,0	(0,2341; 3,2173)	(0,2392; 3,2213)	0,237	5,2	2,5
		2,0	(0,7032; 3,3050)	(0,7082; 3,3050)	0,706	1,8	0,9
		0,5	(0,1327; 2,8438)	(0,1378; 2,8543)	0,135	10,7	6,5
	100,0	1,0	(0,3212; 3,0224)	(0,3262; 3,0242)	0,324	4,0	2,0
		2,0	(0,7752; 3,0838)	(0,7802; 3,0840)	0,778	1,4	0,6
_		0,5	(0,1084; 3,0500)	(0,1134; 3,0591)	0,111	12,8	7,3
5	200,0	1,0	(0,2918; 3,2217)	(0,2968; 3,2237)	0,294	4,4	2,2
		2,0	(0,7639; 3,2832)	(0,7690; 3,2834)	0,766	1,5	0,7
-		0,5	(0,1033; 3,2503)	(0,1084; 3,2584)	0,106	14,8	8,3
	370,4	1,0	(0,2310; 3,3836)	(0,2361; 3,3866)	0,234	5,0	2,2
		2,0	(0,7639; 3,4600)	(0,7690; 3,4600)	0,766	1,7	0,8
		0,5	(0,1196; 3,0742)	(0,1246; 3,0842)	0,122	11,3	6,6
	100,0	1,0	(0,3212; 3,2453)	(0,3262; 3,2466)	0,324	4,1	2,0
		2,0	(0,8197; 3,2900)	(0,8247; 3,2900)	0,822	1,4	0,6
10	200.0	0,5	(0,0851; 3,2303)	(0,0902; 3,2404)	0,088	13,3	0,8
10	200,0	1,0	(0,2310; 3,4080)	(0,2301; 3,4110)	0,234	4,0	2,0
		2,0	(0,7039, 5,4762) (0,1094, 2,4750)	(0,7090, 5,4704) (0,1124, 2,4924)	0,700	1,5	0,7
	270 /	1.0	(0,1004, 3,4739) (0,2574, 2,5872)	(0,1134, 3,4024) (0,2624, 3,5887)	0,111	5.6	2,5
	370,4	2.0	(0,2374,3,3872) (0,7902.36400)	(0,2024, 3,3007) (0,7053, 3,6400)	0,200	1.6	0.8
		2,0	(0,7302, 3,0400)	(0,7353, 3,0400) (0,1246; 3,2094)	0,733	11.9	6.8
	100.0	1 0	(0,1130,3,2013) (0,3243,3,3573)	(0,3293:3,3588)	0 327	4 2	2 1
	100,0	2.0	(0,32+3,3,3573) $(0,8522\cdot 3,4000)$	(0,3233,3,3300) $(0.8572 \cdot 3.4000)$	0.855	1.4	0.7
		0.5	(0.0883: 3.3665)	(0.0933: 3.3782)	0.091	13.7	7.0
15	200.0	1.0	(0,2999; 3,5450)	(0.2918; 3.7084)	0.302	4.6	2.2
	,.	2.0	(0.8522; 3.5876)	(0.8572; 3.5879)	0.855	1.6	0.8
		0.5	(0.0952: 3.5678)	(0.1002; 3.5753)	0.098	15.7	8.2
	370.4	1.0	(0.2868: 3.7074)	(0.2918: 3.7084)	0.289	5.1	2.4
	- / -	2,0	(0,7163; 3.7450)	(0,7214; 3,7450)	0,719	1.6	0.7
		0,5	(0,1227; 3,2963)	(0,1277; 3,3043)	0,125	12,5	7,1
	100,0	1,0	(0,2999; 3,4350)	(0,3050; 3,4365)	0,302	4,3	2,0
	-	2,0	(0,7821; 3,4750)	(0,7871; 3,4750)	0,785	1,4	0,6
		0,5	(0,0983; 3,4725)	(0,1033; 3,4797)	0,101	14,4	7,5
20	200,0	1,0	(0,2817; 3,6195)	(0,2868; 3,6210)	0,284	4,8	2,2
	-	2,0	(0,7589; 3,6600)	(0,7639; 3,6600)	0,761	1,6	0,7
		0,5	(0,0851; 3,6277)	(0,0902; 3,6354)	0,088	16,0	7,8
	370,4	1,0	(0,2442; 3,7771)	(0,2492; 3,7796)	0,247	5,2	2,2
		2,0	(0,7690; 3,8150)	(0,7740; 3,8150)	0,772	1,7	0,8

Tabela 6.2 – Projetos ótimos para o GCG de EWMA DNB (n=4)

			() + K)	() + K)	1.+		
С	NMA ₀	δ*	(∧*,ĸ _{mru})	(∧*,ĸ _{mru})	∿* módio	NMA ₁	SDRL
		0.5			0 162	EQ 1	EC E
	100.0	1.0	(0,1394,2,1329) (0,1504,2,1329)	(0,1044,2,1304) (0,1644,2,1504)	0,102	20,1 21.6	10.2
	100,0	2.0	(0,1594,2,1329) (0,1594,2,1329)	(0,1044,2,1504) (0,1644,2,1504)	0,102	5.6	29
		2,0	(0,1394, 2,1329)	(0,1044, 2,1304)	0,102	02 /	22.2
2	200.0	1.0	(0,0100,0,9159) (0,0100,0,9150)	(0,0150, 1,1239) (0,0150, 1,1239)	0,013	20.0	22.6
2	200,0	2.0	(0,0100,0,9130) (0,1284,2,4340)	(0,0130, 1,1239) (0,1334, 2,4568)	0,013	67	1 2
		2,0	(0,1284, 2,4349) (0,0100, 1,2050)	(0,1334, 2,4308) (0,0150, 1,5214)	0,131	120.7	122.0
	370 4	1 0	(0,0100, 1,3050) (0,0100, 1,3050)	(0,0150, 1,5214) (0,0150, 1,5214)	0,013	27.2	27.0
	570,4	2.0	(0,0100, 1,3030) (0,1315, 2,7934)	(0,0130,1,3214) (0,1364,2,8153)	0 134	7.8	27,0 1 Q
		0.5	(0,1313, 2,7334) (0,2127, 2,2079)	(0,1304, 2,8133) (0,2177, 2,2189)	0,134	61.1	60.0
	100.0	1 0	(0,2127, 2,2079) (0,2127, 2,2079)	(0,2177,2,2103) (0,2177,2,2189)	0,215	23.6	21 5
	100,0	2.0	(0,2127, 2,2079) (0,2127, 2,2079)	(0,2177, 2,2189) (0,2177, 2,2189)	0,215	5 /	21,5
		2,0	(0,2127, 2,2079)	(0,2177, 2,2189)	0,213	02.0	<u> </u>
3	200.0	10	(0,0100,0,9050) (0,0100,0,9050)	(0,0150, 1,1139) (0,0150, 1,1139)	0,013	30.6	22.9
5	200,0	2.0	(0,0100,0,0000) (0,0207,06111)	(0,0130, 1,1133) (0,2257, 2,6186)	0,013	67	16
		2,0	(0,2207, 2,0111)	(0,2237, 2,0180)	0,223	122.2	121.2
	270 /	1.0	(0,0100, 1,2950) (0,0100, 1,2950)	(0,0150, 1,5089) (0,0150, 1,5089)	0,013	28.6	27.7
	370,4	2.0	(0,0100, 1,2330) (0,1284, 2,6700)	(0,0130, 1,3083) (0,1334, 2,6885)	0,013	70	21,1 1 Q
		2,0	(0,1284, 2,0700)	(0,1334,2,0883) (0,2427,2,2242)	0,131	67.4	67.1
	100.0	1.0	(0,2307, 2,2130) (0,2207, 2,2150)	(0,2437, 2,2243) (0,2437, 2,2243)	0,241	07,4 27.7	25.6
	100,0	2.0	(0,2387,2,2138) (0,2387,2,2158)	(0,2437, 2,2243) (0,2437, 2,2243)	0,241	4.0	23,0 // 2
		2,0	(0,2387, 2,2138)	(0,2437, 2,2243)	0,241	101.0	4,5
E	200.0	1.0	(0,0100,0,9130)	(0,0150, 1,1105) (0,0150, 1,1165)	0,013	24.7	36,5
5	200,0	2.0	(0,0100,0,9130) (0,1514,2,2021)	(0,0130, 1,1103) (0,1562, 2,4046)	0,015	34,7	20,2 A 0
		2,0	(0,1314, 2,3931)	(0,1303, 2,4040) (0,0150, 1,5000)	0,134	1/0.0	4,0
	270 /	1.0	(0,0100, 1,3100) (0,0100, 1,3100)	(0,0150, 1,5090) (0,0150, 1,5090)	0,013	145,0	22 4
	370,4	2.0	(0,0100, 1,3100) (0,1072, 2,5506)	(0,0130, 1,3090) (0,1122, 2,5680)	0,015	44,0	52,4
		2,0	(0,1075, 2,5500)	(0,1123, 2,5080)	0,110	72 /	72 2
	100.0	1.0	(0,1315,1,9559) (0,1215,1,0250)	(0,1304, 1,9330) (0,1364, 1,0550)	0,134	24.0	72,5
	100,0	2.0	(0,1315,1,9359) (0,1315,1,9359)	(0,1304,1,9338) (0,1364,1,9558)	0,134	7 5	51,5
		2,0	(0,1313, 1,9339)	(0,1504, 1,9558)	0,134	122.2	121.7
10	200.0	1 0	(0,0100,0,0050) (0,0100,0,9050)	(0,0150, 1,1005) (0,0150, 1,1065)	0,013	123,3	37.7
10	200,0	2.0	(0,0100,0,0000) (0,1284,2,3079)	(0,0130, 1,1003) (0,1334, 2,3268)	0 131	9.2	63
		0.5	(0,1204, 2,3073)	(0,1354, 2,3208)	0.013	181.8	176.3
	370 4	1 0	(0,0100, 1,2000) (0,0100, 1,2000)	(0,0150; 1,4505)	0,013	59.2	46.3
	570,4	2.0	(0,0100, 1,2500) (0,1154, 2,5592)	(0,0130, 1,4303) (0,1203, 2,5751)	0,013	11 1	72
		0.5	(0,2418: 2,2053)	(0,1203,2,3731) (0,2468,2,2142)	0.244	80.0	79.0
	100.0	1 0	(0,2410, 2,2033) $(0,0131 \cdot 0,6384)$	(0,2400, 2,2142) (0,0180, 0,7976)	0,244	41 1	35.0
	100,0	2.0	(0,0131,0,0304) (0.2418,2.2053)	(0,0180,0,7570) (0.2468,2.2142)	0.244	87	67
		0.5	(0,2410, 2,2053) (0,0100: 0.8950)	(0,2400,2,2142) (0,0150.1,1039)	0.013	131.2	129.8
15	200.0	1 0	(0,0100,0,0050) (0,0100,0.8950)	(0,0150,1,1039) (0,0150,1,1039)	0.013	53.2	44 7
15	200,0	2.0	(0,0100,0,0000) (0,1073,2,2221)	(0,0130,1,1035) (0,1123,22405)	0 1 1 0	10.7	73
		0.5	(0,0100.12900)	(0,0150: 1,4989)	0.013	204.4	201.9
	370 4	1 0	(0,0100, 1,2000) (0,0100, 1,2000)	(0,0150; 1,4585)	0,013	71 0	57.6
	570,4	2.0	(0,0100,1,2300) (0,1042,25236)	(0,0130, 1,4303) (0,1092, 2,5395)	0,013	12.9	89
		0.5	(0.0100.0.5400)	(0.0150.0.6993)	0.013	96.0	99.2
	100.0	10	(0.0100, 0.5400)	(0,0150,0,0552)	0.013	46.4	40.9
	100,0	2,0	(0 0100, 0,5400)	(0,0150,0,0552)	0 012		79
		0.5	(0.0100, 0,0400)	(0.0150.11115)	0.013	144.2	146 7
20	200.0	10		(0,0150,1,1115)	0,013	,2 61 2	52 2
20	200,0	20	(0,0100,0,9100) (0,1203,0,0760)	(0,0130, 1,1113) (0,1253, 2,2026)	0,013	12 1	92,3 8 E
		2,0	(0,1203, 2,2702)	(0,1233, 2,2330)	0,123	212 5	210 7
	370 /	10	(0,0100, 1,2030)	(0,0150, 1,4904)	0,013	210,5	68 1
	370,4	20	(0,0100, 1,2030)	(0,0100, 1,4904)	0 110	1/ 6	10.2
		2,0	(0,10/3, 2,3341)	(0,1123, 2,3300)	0,110	14,0	10,5

Tabela 6.3 – Projetos ótimos para o GC de EWMA de R_t (*n*=1)

		-	(λ*,K _{mm})	(λ * ,Κ)	λ*		
С	NMA ₀	δ*	início faixa	final faixa	médio		SDRL
		0,50	(0,1594; 2,1329)	(0,1644; 2,1504)	0,162	21,6	19,2
	100,0	1,00	(0,1594; 2,1329)	(0,1644; 2,1504)	0,162	5,6	3,9
		2,00	(0,5276; 2,7593)	(0,5326; 2,7628)	0,530	1,6	0,8
2		0,50	(0,0100; 0,9150)	(0,0150; 1,1239)	0,013	29,9	22,6
	200,0	1,00	(0,1284; 2,4349)	(0,1334; 2,4568)	0,131	6,7	4,3
		2,00	(0,6510; 3,2306)	(0,6560; 3,2336)	0,654	1,8	1,0
		0,50	(0,0100; 1,3050)	(0,0150; 1,5214)	0,013	37,3	27,0
	370,4	1,00	(0,1315; 2,7934)	(0,1364; 2,8153)	0,134	7,8	4,9
		2,00	(0,6200; 3,5300)	(0,6249; 3,5325)	0,623	2,0	1,1
		0,50	(0,2127; 2,2079)	(0,2177; 2,2189)	0,215	23,6	21,5
	100,0	1,00	(0,2127; 2,2079)	(0,2177; 2,2189)	0,215	5,4	3,6
		2,00	(0,6058; 2,6385)	(0,6107; 2,6414)	0,608	1,5	0,8
3		0,50	(0,0100; 0,9050)	(0,0150; 1,1139)	0,013	30,6	22,9
	200,0	1,00	(0,2207; 2,6111)	(0,2257; 2,6186)	0,223	6,7	4,6
		2,00	(0,6801; 3,0130)	(0,6851; 3,0148)	0,683	1,7	0,9
		0,50	(0,0100; 1,2950)	(0,0150; 1,5089)	0,013	38,6	27,7
	370,4	1,00	(0,1284; 2,6700)	(0,1334; 2,6885)	0,131	7,9	4,8
		2,00	(0,6169; 3,2684)	(0,6219; 3,2709)	0,619	1,9	1,0
		0,50	(0,2387; 2,2158)	(0,2437; 2,2243)	0,241	27,7	25,6
	100,0	1,00	(0,2387; 2,2158)	(0,2437; 2,2243)	0,241	4,0	4,3
		2,00	(0,6138; 2,5641)	(0,6188; 2,5656)	0,616	1,5	0,8
5		0,50	(0,0100; 0,9150)	(0,0150; 1,1165)	0,013	34,7	26,2
	200,0	1,00	(0,1514; 2,3931)	(0,1563; 2,4046)	0,154	7,5	4,8
		2,00	(0,6200; 2,8910)	(0,6249; 2,8925)	0,623	1,7	0,9
		0,50	(0,0100; 1,3100)	(0,0150; 1,5090)	0,013	44,6	32,4
	370,4	1,00	(0,1073; 2,5506)	(0,1123; 2,5680)	0,110	8,8	5,3
		2,00	(0,5878; 3,1483)	(0,5927; 3,1510)	0,590	1,9	1,0
	100.0	0,50	(0,1315; 1,9359)	(0,1364; 1,9558)	0,134	34,0	31,5
	100,0	1,00	(0,1315; 1,9359)	(0,1364; 1,9558)	0,134	7,5	5,1
10		2,00	(0,7061; 2,5525)	(0,7111; 2,5544)	0,709	1,0	0,8
10	200.0	0,50	(0,0100; 0,9050)	(0,0150; 1,1065)	0,013	45,9	3/,/
	200,0	2,00	(0,1204, 2,3079)	(0,1334,2,3200) (0,6790,2,9727)	0,151	3,3	0,5
		2,00	(0,0739, 2,8722)	(0,0789, 2,8737)	0,070	50.2	1,0
	270 /	1 00	(0,0100, 1,2900) (0,1154, 2,5592)	(0,0130, 1,4903) (0,1202, 2,5751)	0,013	35,2 11 1	40,5
	370,4	2 00	(0,1134,2,3332) (0,6240,2,1375)	(0,1203,2,3731) (0,6200,3,1300)	0,110	2.0	1 1
		2,00	(0,0243,3,1373) (0,0131.0,6384)	(0,0233, 3,1330)	0,027	2,0 <u>41 1</u>	35.0
	100.0	1 00	(0,0131,0,0364) (0,2418,2,2053)	(0,0180,0,7570) (0.2468.2,2142)	0,010	87	67
	100,0	2.00	(0,2410,2,2000) (0,6399,2,5499)	(0,2400,2,2142) (0.6448.25524)	0.642	1.6	0,9
15		0.50	(0,0399,2,9199) (0,0100,0.8950)	(0,0110,2,0021) (0,0150.1,1039)	0.013	53.2	44.7
10	200.0	1.00	(0,1073; 2,2221)	(0.1123; 2.2405)	0.110	10.7	7.3
	,.	2.00	(0.5406; 2.8294)	(0.5456: 2.8324)	0.543	1.9	1.0
		0.50	(0.0100; 1.2900)	(0.0150: 1.4989)	0.013	71.0	57.6
	370.4	1.00	(0.1042: 2.5236)	(0.1092: 2.5395)	0.107	12.9	8.9
	/ •	2.00	(0,6008: 3.1353)	(0,6058; 3.1373)	0,603	2.0	1.1
		0,50	(0,0100; 0,5400)	(0,0150; 0,6992)	0,013	46,4	40,9
	100,0	1,00	(0,0100; 0,5400)	(0,0150; 0,6992)	0,013	12,1	7,9
	-	2,00	(0,6541; 2,5570)	(0,6590; 2,5595)	0,657	1,7	0,9
20		0,50	(0,0100; 0,9100)	(0,0150; 1,1115)	0,013	61,2	52,3
	200,0	1,00	(0,1203; 2,2762)	(0,1253; 2,2936)	0,123	12,1	8,5
	-	2,00	(0,5196; 2,8217)	(0,5245; 2,8247)	0,522	1,9	1,0
		0,50	(0,0100; 1,2850)	(0,0150; 1,4964)	0,013	81,5	68,1
	370,4	1,00	(0,1073; 2,5341)	(0,1123; 2,5506)	0,110	14,6	10,3
		2,00	(0,3881; 3,0005)	(0,3931; 3,0045)	0,391	2,1	1,1

Tabela 6.4 – Projetos ótimos para o GC de EWMA de R_t (*n*=4)

			() * K)	() * K)	λ*		
С	NMA ₀	δ*	início faiva	final faiva	médio	NMA ₁	SDRL
		0.5	(0.0230: 2.3384)	(0.0280: 2.6319)	0.026	24.9	17.7
	100.0	1.0	(0.1203: 4.8482)	(0.1253: 4.9089)	0.123	10.7	6.9
	,	2.0	(0.3280: 6.1200)	(0.3330; 6.1324)	0.331	4.2	2.5
		0.5	(0.0311, 4.0780)	(0.0360: 4.3466)	0.034	32.8	22.7
2	200.0	1.0	(0.0832: 5.7634)	(0.0881: 5.8629)	0.086	13.5	8.1
		2.0	(0.2859: 7.3361)	(0.2908: 7.3516)	0.288	5.0	2.8
		0,5	(0,0280; 5,1779)	(0,0330; 5,4835)	0,031	41,0	26,7
	370,4	1,0	(0,0782; 6,9430)	(0,0832; 7,0402)	0,081	15,8	9,1
		2,0	(0,2307; 8,3331)	(0,2357; 8,3555)	0,233	5,6	2,9
		0,5	(0,0652; 6,1913)	(0,0701; 6,3733)	0,068	25,0	18,9
	100,0	1,0	(0,1284; 7,3964)	(0,1334; 7,4571)	0,131	10,5	6,6
		2,0	(0,3621; 8,7739)	(0,3671; 8,7878)	0,365	4,0	2,3
		0,5	(0,0422; 7,0245)	(0,0472; 7,2384)	0,045	32,4	22,2
3	200,0	1,0	(0,1104; 8,7868)	(0,1154; 8,8475)	0,113	12,9	7,8
		2,0	(0,2759; 10,0136)	(0,2809; 10,0335)	0,278	4,6	2,4
		0,5	(0,0311; 7,8810)	(0,0360; 8,1870)	0,034	40,4	25,5
	370,4	1,0	(0,0943; 10,0023)	(0,0993; 10,0744)	0,097	14,9	8,6
	-	2,0	(0,2418; 11,2289)	(0,2468; 11,2478)	0,244	5,2	2,6
		0,5	(0,0521; 9,2466)	(0,0571; 9,4705)	0,055	25,8	18,2
	100,0	1,0	(0,1253; 11,2348)	(0,1303; 11,3104)	0,128	11,0	6,6
		2,0	(0,3380; 12,7339)	(0,3429; 12,7488)	0,341	4,2	2,3
		0,5	(0,0341; 10,2835)	(0,0391; 10,6716)	0,037	33,8	22,0
5	200,0	1,0	(0,0974; 12,6853)	(0,1023; 12,7656)	0,100	13,3	7,5
5		2,0	(0,3150; 14,3977)	(0,3200; 14,4119)	0,318	4,8	2,6
		0,5	(0,0360; 12,2064)	(0,0410; 12,5397)	0,039	41,6	26,8
	370,4	1,0	(0,0943; 14,3058)	(0,0993; 14,3879)	0,097	15,5	8,6
		2,0	(0,2468; 15,7246)	(0,2518; 15,7442)	0,249	5,3	2,5
		0,5	(0,0472; 16,2455)	(0,0521; 16,6288)	0,050	28,3	19,8
	100,0	1,0	(0,1334; 19,3673)	(0,1383; 19,4668)	0,136	12,6	7,9
		2,0	(0,2989; 20,9355)	(0,3039; 20,9527)	0,301	4,7	2,4
		0,5	(0,0341; 17,9938)	(0,0391; 18,5261)	0,037	38,2	24,7
10	200,0	1,0	(0,1104; 21,3384)	(0,1154; 21,4189)	0,113	15,3	9,0
		2,0	(0,2177; 22,6118)	(0,2226; 22,6377)	0,220	5,4	2,5
	1	0,5	(0,0341; 20,4322)	(0,0391; 20,8426)	0,037	48,7	31,4
	370,4	1,0	(0,0862; 22,8936)	(0,0912; 23,0007)	0,089	17,8	9,7
		2,0	(0,2418; 24,5982)	(0,2468; 24,6236)	0,244	6,0	2,8
		0,5	(0,0571; 23,6985)	(0,0621; 24,0363)	0,060	30,8	22,7
	100,0	1,0	(0,0571; 23,6985)	(0,0621; 24,0363)	0,060	13,7	7,2
		2,0	(0,2759; 28,2295)	(0,2809; 28,2544)	0,278	5,2	2,6
		0,5	(0,0341; 24,8395)	(0,0391; 25,4265)	0,037	41,1	27,1
15	200,0	1,0	(0,1073; 28,7890)	(0,1123; 28,8836)	0,110	16,9	10,0
		2,0	(0,2387; 30,4099)	(0,2437; 30,4497)	0,241	5,9	2,8
		0,5	(0,0311; 27,3895)	(0,0360; 27,8969)	0,034	53,3	33,9
	370,4	1,0	(0,0862; 30,5948)	(0,0912; 30,7305)	0,089	19,6	10,7
		2,0	(0,1866; 32,1017)	(0,1916; 32,1495)	0,189	6,5	2,8
		0,5	(0,0521; 29,6604)	(0,0571; 30,1479)	0,055	32,2	24,0
	100,0	1,0	(0,0521; 29,6604)	(0,0571; 30,1479)	0,055	14,7	7,7
		2,0	(0,2648; 35,1035)	(0,2698; 35,1383)	0,267	5,6	2,9
		0,5	(0,0311; 31,0164)	(0,0360; 31,7875)	0,034	44,0	28,5
20	200,0	1,0	(0,0862; 35,2362)	(0,0912; 35,3463)	0,089	18,2	10,2
		2,0	(0,2648; 37,7739)	(0,2692; 37,7988)	0,267	6,6	3,4
		0,5	(0,0311; 34,2806)	(0,0360; 34,7930)	0,034	57,0	37,1
	370,4	1,0	(0,0732; 37,3063)	(0,0782; 37,4704)	0,076	21,0	10,9
		2,0	(0,2127; 39,7261)	(0,2177; 39,7560)	0,215	7,1	3,3

Tabela 6.5 – Projetos ótimos para o GC de MEWMA de S² (n=1)

			(λ*,K _{ram})	(λ*,K _{ram})	λ*		
С	NMA ₀	δ*	início faixa	final faixa	médio	NIVIA ₁	SDRL
		0,50	(0,1203; 4,8482)	(0,1253; 4,9089)	0,123	10,7	6,9
	100,0	1,00	(0,3280; 6,1200)	(0,3330; 6,1324)	0,331	4,2	2,5
		2,00	(0,7061; 6,6112)	(0,7111; 6,6122)	0,709	1,6	0,8
2		0,50	(0,0832; 5,7634)	(0,0881; 5,8629)	0,086	13,5	8,1
	200,0	1,00	(0,2859; 7,3361)	(0,2908; 7,3516)	0,288	5,0	2,8
		2,00	(0,6950; 7,8385)	(0,7000; 7,8400)	0,698	1,8	0,9
		0,50	(0,0782; 6,9430)	(0,0832; 7,0402)	0,081	15,8	9,1
	370,4	1,00	(0,2307; 8,3331)	(0,2357; 8,3555)	0,233	5,6	2,9
		2,00	(0,6399; 8,9570)	(0,6448; 8,9584)	0,642	1,9	1,0
		0,50	(0,1284; 7,3964)	(0,1334; 7,4571)	0,131	10,5	6,6
	100,0	1,00	(0,3621; 8,7739)	(0,3671; 8,7878)	0,365	4,0	2,3
		2,00	(0,7663; 9,1865)	(0,7713; 9,1885)	0,769	1,5	0,7
3		0,50	(0,1104; 8,7868)	(0,1154; 8,8475)	0,113	12,9	7,8
	200,0	1,00	(0,2759; 10,0136)	(0,2809; 10,0335)	0,278	4,6	2,4
		2,00	(0,7694; 10,5789)	(0,7743; 10,5799)	0,772	1,6	0,8
		0,50	(0,0943; 10,0023)	(0,0993; 10,0744)	0,097	14,9	8,6
	370,4	1,00	(0,2418; 11,2289)	(0,2468; 11,2478)	0,244	5,2	2,6
		2,00	(0,6851; 11,7983)	(0,6900; 11,8005)	0,688	1,8	0,9
		0,50	(0,1253; 11,2348)	(0,1303; 11,3104)	0,128	11,0	6,6
	100,0	1,00	(0,3380; 12,7339)	(0,3429; 12,7488)	0,341	4,2	2,3
		2,00	(0,8215; 13,2621)	(0,8264; 13,2626)	0,824	1,5	0,7
5		0,50	(0,0974; 12,6853)	(0,1023; 12,7656)	0,100	13,3	7,5
	200,0	1,00	(0,3150; 14,3977)	(0,3200; 14,4119)	0,318	4,8	2,6
		2,00	(0,7452; 14,8181)	(0,7502; 14,8201)	0,748	1,6	0,8
		0,50	(0,0943; 14,3058)	(0,0993; 14,3879)	0,097	15,5	8,6
	370,4	1,00	(0,2468; 15,7246)	(0,2518; 15,7442)	0,249	5,3	2,5
		2,00	(0,6950; 16,2190)	(0,7000; 16,2200)	0,698	1,8	0,8
		0,50	(0,1334; 19,3673)	(0,1383; 19,4668)	0,136	12,6	7,9
	100,0	1,00	(0,2989; 20,9355)	(0,3039; 20,9527)	0,301	4,7	2,4
		2,00	(0,7985; 21,6495)	(0,8035; 21,6503)	0,801	1,7	0,9
10		0,50	(0,1104; 21,3384)	(0,1154; 21,4189)	0,113	15,3	9,0
	200,0	1,00	(0,2177; 22,6118)	(0,2226; 22,6377)	0,220	5,4	2,5
		2,00	(0,7222; 23,5622)	(0,7272; 23,5627)	0,725	1,9	0,9
		0,50	(0,0862; 22,8936)	(0,0912; 23,0007)	0,089	17,8	9,7
	370,4	1,00	(0,2418; 24,5982)	(0,2468; 24,6236)	0,244	6,0	2,8
		2,00	(0,6900; 25,2180)	(0,6950; 25,2190)	0,693	2,0	1,0
		0,50	(0,0571; 23,6985)	(0,0621; 24,0363)	0,060	13,7	7,2
	100,0	1,00	(0,2759; 28,2295)	(0,2809; 28,2544)	0,278	5,2	2,6
		2,00	(0,7402; 29,1141)	(0,7452; 29,1158)	0,743	1,9	0,9
15		0,50	(0,1073; 28,7890)	(0,1123; 28,8836)	0,110	16,9	10,0
	200,0	1,00	(0,2387; 30,4099)	(0,2437; 30,4497)	0,241	5,9	2,8
		2,00	(0,6739; 31,2522)	(0,6789; 31,2537)	0,676	2,1	1,0
		0,50	(0,0862; 30,5948)	(0,0912; 30,7305)	0,089	19,6	10,7
	370,4	1,00	(0,1866; 32,1017)	(0,1916; 32,1495)	0,189	6,5	2,8
		2,00	(0,6219; 33,1264)	(0,6268; 33,1301)	0,624	2,2	1,0
		0,50	(0,0521; 29,6604)	(0,0571; 30,1479)	0,055	14,7	7,7
	100,0	1,00	(0,2648; 35,1035)	(0,2698; 35,1383)	0,267	5,6	2,9
		2,00	(0,6950; 36,1480)	(0,7000;. 36,1500)	0,698	2,0	1,0
20		0,50	(0,0862; 35,2362)	(0,0912; 35,3463)	0,089	18,2	10,2
	200,0	1,00	(0,2648; 37,7739)	(0,2692; 37,7988)	0,267	6,6	3,4
		2,00	(0,6541; 38,5270)	(0,6590; 38,5295)	0,657	2,2	1,1
		0,50	(0,0732; 37,3063)	(0,0782; 37,4704)	0,076	21,0	10,9
	370,4	1,00	(0,2127; 39,7261)	(0,2177; 39,7560)	0,215	7,1	3,3
		2,00	(0,5667; 40,5617)	(0,5717; 40,5644)	0,569	2,4	1,0

Tabela 6.6 – Projetos ótimos para o GC de MEWMA de S² (n=4)

152

Os intervalos finais com os projetos ótimos do GCG de EWMA de DNB estão nas tabelas 6.1 (observações individuais) e 6.2 (amostra de tamanho 4), os do GC de EWMA de R_t estão nas tabelas 6.3 (observações individuais) e 6.4 (amostra de tamanho 4), e os do GC de MEWMA de S^2 estão nas tabelas 6.5 (observações individuais) e 6.6 (amostra de tamanho 4).

Nesta tese são obtidos somente os projetos ótimos para alterações de magnitude igual a 0,5, 1,0 e 2,0 na média das componentes individuais do processo, considerando que o propósito da utilização de um esquema EWMA está no ganho de rapidez (valores menores de NMA₁) na detecção de pequenas alterações no processo. Já acima de 3,0 desvios-padrão, sabe-se que os gráficos de controle de Shewhart já conseguem bom desempenho, não necessitando a aplicação de esquemas de controle de EWMA para melhora de desempenho. Vale lembrar que aqui está sendo considerado apenas o caso de tais alterações ocorrerem somente em um canal do processo.

Cada um dos projetos ótimos listados está acompanhado pelo valor de NMA₁ mínimo obtido e de SDRL. Como pode ser observado, o desvio-padrão do comprimento de corrida é sempre menor que o NMA₁ calculado (na maioria dos casos o SDRL é a metade do NMA₁ obtido), o que mostra boa precisão nos resultados da simulação (erro-padrão menor que 1% do NMA₁), validando o número de 10.0000 corridas (cada uma contendo 10.000 amostras) utilizado para obtenção dos projetos ótimos e das medidas de desempenho.

É importante lembrar que, os valores de δ igual a 1,0 e 2,0 para observações individuais são os mesmos valores de δ igual a 0,5 e 1,0 para amostras de tamanho igual a 4. Portanto, os projetos ótimos e as medidas de desempenho para tais alterações não precisam ser novamente obtidos por simulação. Como $\sigma_{eti.} = \sigma/\sqrt{n}$, uma alteração de $\delta\sigma$ unidades equivale a uma alteração de $\sqrt{n}\delta\sigma_{eti.}$. O uso desse artifício ajuda na redução de tempo e do esforço computacional empregado no processamento dos resultados finais, além de obter maior homogeneidade das condições simuladas para analisar o efeito do tamanho das amostras sobre os gráficos de controle de EWMA projetados contra alterações na média.

Nas tabelas anteriormente expostas, é observado que, em processos com extração de amostras de tamanho 4 de cada um dos canais, as constantes de

amortecimento dos esquemas EWMA, para alterações de magnitude igual a 2 desvios-padrão, assumem valores relativamente altos (λ >0,5 na maioria dos casos). Em relação às alterações de pequena magnitude na média das componentes individuais, verifica-se que as constantes de amortecimento assumem valores pequenos (λ <0,08 na maioria dos casos para processos com extração de observações individuais e λ <0,15 na maioria dos casos para processos com extração de amostras de tamanho 4), o que garante maior rapidez contra tais alterações, em termos de redução nos valores de NMA₁.

6.4

Resultados de Desempenho

Esta seção é dedicada aos resultados de desempenho dos gráficos de controle EWMA apresentados, utilizando-se dos resultados dos projetos ótimos obtidos (tabelas 6.1 a 6.6), contra alterações na média do canal afetado.

Os resultados são apresentados nesta seção somente para NMA₀ igual 200 amostras, devido ao grande número de dados obtidos para cada uma das tabelas. Os valores de NMA₁ para os valores de NMA₀ igual a 100 e 370,4 amostras podem ser encontrados no Apêndice C desta tese, e as conclusões em termos relativos (desempenho relativo dos diferentes gráficos, efeito de *n* sobre o desempenho) praticamente não diferem das conclusões para o NMA₀ de 200 amostras.

Os resultados obtidos para o controle por observações individuais serão expostos primeiro, seguidos pelos resultados obtidos para o controle por dados subgrupados (amostras de tamanho igual a 4), conforme mostrado a seguir.

6.4.1

Controle por Observações Individuais

As tabelas 6.7 e 6.8 mostram os resultados de desempenho dos gráficos de controle de EWMA apresentados nos Capítulo 2 e 5 para o controle por observações individuais.

Os resultados para um mesmo NMA₀ de 200 amostras foram divididos em duas tabelas por causa do número de casos analisados (foram obtidos 3 projetos ótimos para cada gráfico de controle, o que resulta em 9 projetos ótimos por número de canais). Ao todo, nas duas tabelas, são analisados 54 projetos ótimos para cada NMA₀.

Os valores destacados em vermelho são os valores mínimos de NMA₁ obtidos para cada um dos gráficos de controle de EWMA analisados, considerando cada combinação de NMA₀, número de canais (*c*), tamanho de amostra (*n*) e alteração na média (δ).

Os valores de NMA₁ dispostos nas tabelas são obtidos para o regime de probabilidade de *steady-state*. É conhecido na literatura que os valores de NMA₁ de steady-state são freqüentemente menores que os de zero-state (veja a Tabela 6.9). Por tal motivo, os valores de NMA₁ para γ =1 não coincidem com o valor de NMA₀ pré-especificado (de *zero-state*).

							NMA de st	teady-state			
С	ESQUEMA	δ*	(λ* <i>,</i> K)				8	5			
			_	0	0,5	1	1,5	2	3	4	5
		0,5	(0,0320; 2,0380)	185,5	32,8	14,6	9,4	6,9	4,6	3,5	2,9
		1,0	(0,1060; 2,4650)	191,3	37,9	13,5	7,8	5,4	3,5	2,6	2,2
	PROPUSIO	2,0	(0,3240; 2,7246)	200,1	60,4	17,4	8,1	4,9	2,8	2,0	1,6
		0,5	(0,0130; 1,0410)	213,7	92,4	29,9	14,3	8,7	4,7	3,2	2,5
2		1,0	(0,0130; 1,0410)	213,7	92,4	29,9	14,3	8,7	4,7	3,2	2,5
	M&K (1995)	2,0	(0,1310; 2,4464)	197,6	101,2	30,7	12,4	6,7	3,3	2,2	1,7
		0,5	(0,0340; 4,2360)	185,9	32,8	14,5	9,2	6,8	4,5	3,5	2,8
		1,0	(0,0860; 5,8200)	194,4	36,7	13,5	8,0	5,7	3,7	2,8	2,3
	K,A&IVI (1996)	2,0	(0,2880; 7,3428)	199,1	57,3	16,5	7,9	5,0	2,8	2,1	1,7
	GCG EWMA DNB PROPOSTO EWMA R _t	0,5	(0,0320; 2,4420)	185,1	32,5	14,5	9,3	6,9	4,6	3,5	2,9
		1,0	(0,1060; 2,8420)	189,9	37,7	13,0	7,5	5,3	3,4	2,6	2,1
		2,0	(0,2630; 3,0378)	201,5	55,5	15,5	7,4	4,7	2,7	2,0	1,6
		0,5	(0,0130; 1,0310)	211,0	93,0	30,6	14,5	8,8	4,7	3,2	2,5
3		1,0	(0,0130; 1,0310)	211,0	93,0	30,6	14,5	8,8	4,7	3,2	2,5
	IVI&K (1995)	2,0	(0,2230; 2,6145)	198,9	111,6	36,0	13,4	6,7	3,0	2,0	1,5
		0,5	(0,0450; 7,1450)	184,7	32,4	13,7	8,6	6,3	4,2	3,2	2,6
		1,0	(0,1130; 8,8186)	188,5	37,9	12,9	7,4	5,2	3,3	2,5	2,1
	K,AQIVI (1990)	2,0	(0,2780; 10,0220)	198,8	57,0	15,8	7,4	4,6	2,7	2,0	1,6
		0,5	(0,0350; 2,7150)	178,3	33,0	14,3	9,2	6,8	4,5	3 <i>,</i> 5	2,8
		1,0	(0,1110; 3,0548)	191,7	40,7	12,8	7,2	5,1	3,3	2,5	2,0
	PROPOSIO	2,0	(0,2940; 3,2226)	195,3	67,8	16,9	7,3	4,4	2,6	1,9	1,5
		0,5	(0,0130; 1,0365)	211,1	101,9	34,7	16,3	9,6	4,9	3,3	2,5
5		1,0	(0,0130; 1,0365)	211,1	101,9	34,7	16,3	9,6	4,9	3,3	2,5
		2,0	(0,1540; 2,3992)	203,3	121,5	40,8	14,9	7,5	3,3	2,2	1,7
	ΝΛΕΙΔΛΝΛΛ	0,5	(0,0370; 10,5060)	181,3	33,8	14,7	9,3	6,9	4,6	3,5	2,9
		1,0	(0,1000; 12,7300)	191,2	40,2	13,3	7,7	5,4	3,5	2,7	2,2
	R,A&M (1996)	2,0	(0,3180; 14,4063)	198,7	72,1	18,8	8,1	4,8	2.7	1.9	1,6

Tabela 6.7 – Medidas de Desempenho para *n*=1 e *NMA*₀=200 (Parte I)

							NMA de st	teady-state			
С	ESQUEMA	δ*	(λ* <i>,</i> K)				č	5			
				0	0,5	1	1,5	2	3	4	5
		0,5	(0,0350; 2,9775)	174,5	35,5	15,1	9,5	7,1	4,7	3,6	2,9
		1,0	(0,0880; 3,2360)	190,9	41,7	13,3	7,7	5,5	3,6	2,7	2,2
	PROPOSIO	2,0	(0,2340; 3,4104)	195,9	73,3	16,2	7,3	4,6	2,7	2,0	1,7
		0,5	(0,0130; 1,0265)	213,5	123,3	45,9	20,5	11,5	5,4	3,4	2,5
10		1,0	(0,0130; 1,0265)	213,5	123,3	45,9	20,5	11,5	5,4	3,4	2,5
	IVIAR (1995)	2,0	(0,1310; 2,3178)	202,2	137,0	53,6	19,8	9,3	3,7	2,3	1,7
		0,5	(0,0370; 18,2990)	178,2	38,2	16,4	10,4	7,7	5,1	3,9	3,1
		1,0	(0,1130; 21,3806)	189,4	49,6	15,3	8,4	5,8	3,7	2,8	2,2
	K,AQIVI (1990)	2,0	(0,2200; 22,6240)	195,1	70,6	18,6	8,5	5,4	3,1	2,3	1,9
		0,5	(0,0420; 3,1820)	178,6	38,0	15,1	9,4	6,9	4,6	3,5	2,9
	PROPOSTO	1,0	(0,0910; 3,3725)	187,4	46,0	13,7	7,9	5,6	3,6	2,7	2,2
		2,0	(0,3020; 3,5455)	196,9	96,6	21,2	8,0	4,6	2,6	1,9	1,5
		0,5	(0,0130; 1,0210)	207,0	131,2	53,2	23,8	13,0	5,7	3,5	2,5
15		1,0	(0,0130; 1,0210)	207,0	131,2	53,2	23,8	13,0	5,7	3,5	2,5
	IVI&K (1995)	2,0	(0,1100; 2,2320)	196,8	144,1	61,6	23,5	10,7	4,1	2,4	1,8
	NAE)A/NAA	0,5	(0,0370; 25,1760)	170,3	41,1	17,6	11,2	8,2	5,4	4,1	3,4
		1,0	(0,1100; 28,8400)	191,1	55,1	16,9	9,2	6,4	4,0	3,0	2,4
	K,AQIVI (1990)	2,0	(0,2410; 30,4280)	194,5	85,2	23,5	9,9	5,9	3,3	2,4	1,9
		0,5	(0,0350; 3,2150)	172,5	39,0	16,1	10,1	7,5	5,0	3,8	3,1
		1,0	(0,1010; 3,4764)	186,6	51,5	14,4	8,0	5,6	3,6	2,7	2,2
	PROPOSIO	2,0	(0,2840; 3,6202)	200,8	101,8	21,5	8,2	4,8	2,7	2,0	1,6
		0,5	(0,0130; 1,0315)	210,5	144,2	61,2	27,0	14,3	6,0	3,6	2,6
20		1,0	(0,0130; 1,0315)	210,5	144,2	61,2	27,0	14,3	6,0	3,6	2,6
	INIØK (1992)	2,0	(0,1230; 2,2855)	200,2	153,4	73,4	27,9	12,1	4,3	2,4	1,7
	NAE14/NA A	0,5	(0,0340; 31,4700)	171,5	44,0	19,2	12,2	8,9	5,9	4,5	3,6
		1,0	(0,0890; 35,2830)	188,5	56,3	18, 2	10,2	7,1	4,5	3,3	2,7
	R,A&M (1996)	2,0	(0,2670; 37,7850)	198,3	98,5	29,2	11,6	6,6	3,5	2,5	2,0

Tabela 6.8 – Medidas de Desempenho para n=1 e $NMA_0=200$ (Parte II)

Pode ser observado na Tabela 6.7 que, em processos compostos por até 5 canais, o desempenho do GCG de EWMA das diferenças em relação ao nível-base (DNB) é bem semelhante ao desempenho apresentado pelo gráfico de controle de MEWMA de S^2 de Runger et al. (1996).

Os casos de processos compostos por poucos canais são muito particulares. Por exemplo, quando o processo é composto por apenas dois canais, as diferenças em relação ao nível-base são perfeitamente correlacionadas (correlação igual a -1,0), i.e., quando um canal sinaliza descontrole, o outro canal também sinalizará. Neste caso específico, é previsível que os gráficos de controle mais eficientes apresentem o mesmo desempenho (já que EWMA de R_t é igual ao dobro do módulo das diferenças em relação ao nível-base e $S^2 = R_t^2/2$, portanto todas as estatísticas fornecem a mesma informação). Este é um caso extremo.

Já na Tabela 6.8, verifica-se que o GCG de EWMA DNB é mais eficiente que o gráfico de controle de MEWMA de S² contra alterações de pequena magnitude, em processos compostos por mais de 10 canais. Por exemplo, no caso de processos compostos por 20 canais para $\delta^*=0,5$, observa-se uma melhora de desempenho de 11,56% do GCG de EWMA DNB em relação ao gráfico de controle de MEWMA de S² para uma alteração na média de magnitude igual a 0,5. O gráfico de controle de EWMA de R_t de Mortell e Runger (1995) apresenta desempenho bem inferior aos dos outros dois gráficos analisados.

As figuras 6.9 a 6.12 apresentam as curvas de desempenho (NMA₁ versus δ) dos gráficos de controle de EWMA (curvas de valores de NMA₁ são mostradas em função da magnitude de alteração na média do canal afetado) para o monitoramento de observações individuais. Neste capítulo estão sendo mostradas graficamente somente as medidas de desempenho para NMA₀ igual a 200 amostras em detrimento das curvas dos outros valores de NMA₀ (100 e 370.4 amostras), para não sobrecarregar o leitor com gráficos desnecessários, com informação redundante. Tais curvas são bem parecidas. As curvas dos outros valores de NMA₀ distam entre si de forma bem semelhante.

Figura 6.9 – Curvas de valores de NMA₁ para 15 canais, *NMA*₀=200 e δ^* =0,5 (*n*=1)

Figura 6.10 – Curvas de valores de NMA₁ para 20 canais, *NMA*₀=200 e $\delta^*=0.5$ (*n*=1)

Figura 6.11 – Curvas de valores de NMA₁ para 15 canais, NMA₀=200 e $\delta^*=1,0$ (n=1)

Figura 6.12 – Curvas de valores de NMA₁ para 20 canais, NMA₀=200 e $\delta^*=1,0$ (n=1)

Nota-se que há uma superposição das curvas de valores de NMA₁ somente para alterações de magnitude maior que 3 desvios-padrão. Para tais alterações, os esquemas de controle de Shewhart já detectariam as alterações na média, apresentando bom desempenho, em termos de valores menores de NMA₁. Em relação às alterações de pequenas magnitudes, observa-se que o GCG de EWMA DNB fornece o melhor desempenho entre os esquemas analisados (a curva está abaixo das outras). Observa-se que, para o monitoramento de processos compostos por um número maior de canais (c>10), o mais eficiente, dentre os esquemas de controle de EWMA analisados contra pequenas alterações no processo, é o GCG de EWMA DNB. No caso de processos compostos por poucos canais, o gráfico de controle de MEWMA de S² e o GCG de EWMA DNB apresentam desempenho bem semelhante.

	FCOUFNA	۶.	() ж К) regime de		NMA ₁ s							
C	ESQUEMA	0*	(A *,K)	probabilidades -	0	0,5	1	1,5	2	3	4	5
	GCG EWMA DNB		10 2620. 2 0270)	Steady-State	201,5	55,5	15,5	7,4	4,7	2,7	2,0	1,6
	PROPOSTO		(0,2030, 3,0378)	Zero-State	203,0	57,5	15,9	7,5	4,7	2,8	2,1	1,7
	EWMA R _t	20	(0.2220-2.6145)	Steady-State	198,9	111,6	36,0	13,4	6,7	3,0	2,0	1,5
3	M&R (1995)	2,0	(0,2230, 2,0143)	Zero-State	203,6	114,5	36,6	13,6	6,8	3,0	2,0	1,5
	MEWMA		(0.2790, 10.0220)	Steady-State	198,8	57,0	15,8	7,4	4,6	2,7	2,0	1,6
	R,A&M (1996)		(0,2780; 10,0220)	Zero-State	202,5	58,3	16,3	7,6	4,7	2,8	2,1	1,7
	GCG EWMA DNB		(0.2010-2.2226)	Steady-State	195,3	67,8	16,9	7,3	4,4	2,6	1,9	1,5
	PROPOSTO		(0,2940, 3,2220)	Zero-State	197,1	70,1	17,5	7,5	4,6	2,6	1,9	1,6
	EWMA R _t	20	(0 15/0. 2 3992)	Steady-State	203,3	121,5	40,8	14,9	7,5	3,3	2,2	1,7
5	M&R (1995)	2,0	(0,1340, 2,3332)	Zero-State	203,9	122,2	41,2	15,1	7,5	3,3	2,1	1,6
	MEWMA		(0.3180-14.4063)	Steady-State	198,7	72,1	18,8	8,1	4,8	2,7	1,9	1,6
	R,A&M (1996)		(0,5180, 14,4005)	Zero-State	203,1	72,8	19,5	8,4	5,0	2,8	2,1	1,7
	GCG EWMA DNB		(0.2840-3.6202)	Steady-State	200,8	101,8	21,5	8,2	4,8	2,7	2,0	1,6
	PROPOSTO		(0,2840, 3,0202)	Zero-State	203,3	105,4	22,2	8,3	4,9	2,7	2,0	1,6
	EWMA R _t	2.0	(0 1230 2 2855)	Steady-State	200,2	153,4	73,4	27,9	12,1	4,3	2,4	1,7
20	20 M&R (1995)	2,0	(0,1230, 2,2033)	Zero-State	198,3	153,9	74,4	28,6	12,2	4,2	2,4	1,7
	MEWMA		(0.2670, 27.7850)	Steady-State	198,3	98,5	29,2	11,6	6,6	3,5	2,5	2,0
	R,A&M (1996)		(0,2670; 37,7850)	Zero-State	199,3	101,4	30,4	12,2	7,0	3,9	2,8	2,2

Tabela 6.9 – Comparação entre os valores de NMA₁ de steady-state e zero-state (n=1)

Vale lembrar que, ao controlar processos compostos por poucos canais, a escolha do instrumento para o controle do parâmetro do processo é aberta ao operador responsável. Embora, nestes casos, tanto o GCG de EWMA DNB quando o gráfico de controle de MEWMA de S² ofereça boa proteção contra alterações na média do processo, em termos de detecção mais rápida, o controle pode ser realizado, ainda, através de um único gráfico de controle para a plotagem dos valores médios dos canais do processo.

Na Tabela 6.9, comparando as medidas de desempenho obtidas em regime de probabilidades de *zero-state* e *steady-state*, pode ser observado que os valores de NMA₁ de *steady-state* são freqüentemente menores que os de *zero-state*.

6.4.2 Controle por Dados Subgrupados

As tabelas 6.10 e 6.11 mostram os resultados de desempenho dos mesmos gráficos de controle apresentados na seção anterior, aplicados ao monitoramento de processos multicanal com extração de amostras de tamanho igual a 4 de cada um dos canais.

Os valores mínimos de NMA₁ obtidos de cada um dos gráficos de controle de EWMA analisados estão destacados em vermelho, para cada combinação de NMA₀, número de canais (*c*), tamanho de amostra (*n*) e alteração na média (δ).

Nas tabelas 6.10 e 6.11 pode ser observado que, em processos compostos por até 3 canais, o desempenho do GCG de EWMA das diferenças em relação ao nível-base (DNB) é bem semelhante ao desempenho do gráfico de controle de MEWMA de S^2 de Runger et al. (1996).

							NMA de s	teady-state			
С	ESQUEMA	δ*	(λ* <i>,</i> K)				i	5			
			-	0	0,5	1	1,5	2	3	4	5
		0,5	(0,1060; 2,4650)	191,3	13,5	5,4	3,5	2,6	1,8	1,5	1,2
		1,0	(0,3240; 2,7246)	200,1	17,4	4,9	2,8	2,0	1,4	1,1	1,0
	PROPUSIO	2,0	(0,7660; 2,8033)	197,2	38,4	8,0	3,1	1,8	1,1	1,0	1,0
		0,5	(0,0130; 1,0410)	213,7	29,9	8,7	4,7	3,2	2,0	1,6	1,3
2		1,0	(0,1310; 2,4464)	197,6	30,7	6,7	3,3	2,2	1,4	1,1	1,0
	M&K (1995)	2,0	(0,6540; 3,2324)	200,6	46,9	8,9	3,2	1,8	1,1	1,0	1,0
	D.4534/0.4.0	0,5	(0,0860; 5,8200)	194,4	13,5	5,7	3,7	2,8	1,9	1,6	1,3
		1,0	(0,2880; 7,3428)	199,1	16,5	5,0	2,8	2,1	1,4	1,1	1,0
	K,A&IVI (1996)	2,0	(0,6980; 7,8394)	197,7	34,2	7,1	2,9	1,8	1,1	1,0	1,0
	GCG EWMA DNB	0,5	(0,1060; 2,8420)	189,9	13,0	5,3	3,4	2,6	1,8	1,5	1,2
	GCG EWMA DNB PROPOSTO	1,0	(0,2630; 3,0378)	201,5	15,5	4,7	2,7	2,0	1,4	1,1	1,0
	PROPOSIO	2,0	(0,7400; 3,1250)	196,1	40,1	7,3	2,7	1,6	1,0	1,0	1,0
		0,5	(0,0130; 1,0310)	211,0	30,6	8,8	4,7	3,2	2,1	1,6	1,4
3		1,0	(0,2230; 2,6145)	198,9	36,0	6,7	3,0	2,0	1,3	1,0	1,0
	IVIQK (1995)	2,0	(0,6830; 3,0141)	197,4	52,1	9,3	3,1	1,7	1,1	1,0	1,0
		0,5	(0,1130; 8,8186)	188,5	12,9	5,2	3,3	2,5	1,8	1,4	1,2
	D A 9.M (1006)	1,0	(0,2780; 10,0220)	198,8	15,8	4,6	2,7	2,0	1,4	1,1	1,0
	K,AQIVI (1990)	2,0	(0,7720; 10,5794)	197,1	41,4	7,7	2,8	1,6	1,0	1,0	1,0
		0,5	(0,1110; 3,0548)	191,7	12,8	5,1	3,3	2,5	1,8	1,4	1,1
		1,0	(0,2940; 3,2226)	195,3	16,9	4,4	2,6	1,9	1,3	1,0	1,0
	PROPOSIO	2,0	(0,7660; 3,2833)	200,3	48,2	7,6	2,6	1,5	1,0	1,0	1,0
	FWMA R	0,5	(0,0130; 1,0365)	211,1	34,7	9,6	4,9	3,3	2,1	1,6	1,3
5		1,0	(0,1540; 2,3992)	203,3	40,8	7,5	3,3	2,2	1,4	1,1	1,0
	1000 (2552)	2,0	(0,6230; 2,8919)	206,9	61,3	10,2	3,2	1,7	1,1	1,0	1,0
		0,5	(0,1000; 12,7300)	191,2	13,3	5,4	3,5	2,7	1,9	1,5	1,2
	R A & M (1996)	1,0	(0,3180; 14,4063)	198,7	18,8	4,8	2,7	1,9	1,3	1,0	1,0
	N,AQINI (1990)	2,0	(0,7480; 14,8192)	197,0	47,2	8,1	2,9	1,6	1,0	1,0	1,0

Tabela 6.10 – Medidas de Desempenho para *n*=4 e *NMA*₀=200 (Parte I)

							NMA de st	teady-state			
С	ESQUEMA	δ*	(λ*,K)				č	δ			
				0	0,5	1	1,5	2	3	4	5
		0,5	(0,0880; 3,2360)	190,9	13,3	5,5	3,6	2,7	1,9	1,5	1,2
		1,0	(0,2340; 3,4104)	195,9	16,2	4,6	2,7	2,0	1,4	1,1	1,0
	PROPOSIO	2,0	(0,7660; 3,4783)	197,9	63,2	8,5	2,7	1,5	1,0	1,0	1,0
		0,5	(0,0130; 1,0265)	213,5	45,9	11,5	5,4	3,4	2,1	1,6	1,3
10		1,0	(0,1310; 2,3178)	202,2	53,6	9,3	3,7	2,3	1,4	1,1	1,0
	M&K (1995)	2,0	(0,6760; 2,8728)	198,2	83,7	13,6	3,7	1,8	1,1	1,0	1,0
		0,5	(0,1130; 21,3806)	189,4	15,3	5,8	3,7	2,8	1,9	1,6	1,3
		1,0	(0,2200; 22,6240)	195,1	18,6	5,4	3,1	2,3	1,6	1,2	1,0
	R,AQIVI (1990)	2,0	(0,7250; 23,5625)	200,2	62,3	10,8	3,4	1,9	1,1	1,0	1,0
		0,5	(0,0910; 3,3725)	187,4	13,7	5,6	3,6	2,7	1,9	1,6	1,3
	PROPOSTO	1,0	(0,3020; 3,5455)	196,9	21,2	4,6	2,6	1,9	1,3	1,0	1,0
		2,0	(0,8550; 3,5877)	202,5	87,2	11,7	3,1	1,6	1,0	1,0	1,0
	EW/MA B	0,5	(0,0130; 1,0210)	207,0	53,2	13,0	5,7	3,5	2,0	1,5	1,3
15		1,0	(0,1100; 2,2320)	196,8	61,6	10,7	4,1	2,4	1,4	1,1	1,0
	Mak (1995)	2,0	(0,5430; 2,8308)	198,4	90,2	14,7	3,8	1,9	1,1	1,0	1,0
		0,5	(0,1100; 28,8400)	191,1	16,9	6,4	4,0	3,0	2,1	1,7	1,4
		1,0	(0,2410; 30,4280)	194,5	23,5	5,9	3,3	2,4	1,6	1,2	1,0
	R,AQIVI (1990)	2,0	(0,6760; 31,2528)	196,4	68,4	12,1	3,8	2,1	1,2	1,0	1,0
		0,5	(0,1010; 3,4764)	186,6	14,4	5,6	3,6	2,7	1,9	1,5	1,2
		1,0	(0,2840; 3,6202)	200,8	21,5	4,8	2,7	2,0	1,3	1,0	1,0
	PROPOSIO	2,0	(0,7610; 3,6600)	197,7	80,0	9,8	2,8	1,6	1,0	1,0	1,0
		0,5	(0,0130; 1,0315)	210,5	61,2	14,3	6,0	3,6	2,0	1,5	1,3
20		1,0	(0,1230; 2,2855)	200,2	73,4	12,1	4,3	2,4	1,4	1,1	1,0
	MIGK (1995)	2,0	(0,5220; 2,8232)	198,6	98,6	16,7	4,1	1,9	1,1	1,0	1,0
		0,5	(0,0890; 35,2830)	188,5	18,2	7,1	4,5	3,3	2,3	1,8	1,6
		1,0	(0,2670; 37,7850)	198,3	29,2	6,6	3,5	2,5	1,7	1,2	1,0
R,A&M (1996)	2,0	(0,6570; 38,5285)	200,6	75,9	13,8	4,2	2,2	1,2	1,0	1,0	

Tabela 6.11 – Medidas de Desempenho para *n*=4 e *NMA*₀=200 (Parte II)

Com poucos canais, os valores de NMA₁ dos gráficos de controle de EWMA DNB e o de MEWMA de S^2 são praticamente iguais, comportamento semelhante ao observado no controle por observações individuais.

No entanto, quando há mais de 10 canais, a Tabela 6.8 mostra que o GCG de EWMA DNB é bem mais eficiente que o gráfico de controle de MEWMA de S² contra alterações de pequena magnitude. Por exemplo, no caso de processos compostos por 20 canais para $\delta^*=0.5$, observa-se uma melhora de desempenho de 20,72% do GCG de EWMA DNB em relação ao gráfico de controle de MEWMA de S² para uma alteração na média de magnitude igual a 0,5.

Tal como já observado anteriormente, no controle de observações individuais, o gráfico de controle de EWMA de R_t de Mortell e Runger (1995) é pouco eficiente contra pequenas alterações na média das componentes individuais processo (os valores de NMA₁ são bem maiores que os demais gráficos).

Contudo, quando o gráfico de controle de EWMA de R_t é otimizado para δ =2, o gráfico consegue obter medidas de desempenho tão boas quanto os dois outros gráficos de controle (GCG EWMA DNB e GC MEWMA S²) para uma seqüência de alterações na média maiores que 2 σ . No entanto, deve-se lembrar que os gráficos de Shewhart já são eficientes para alterações maiores que 3 σ na média do processo.

Observa-se ainda que os valores de NMA₁ aumentam com o número de canais. Tal comportamento pode ser também observado no controle por observações individuais, e pode ser explicado pela necessidade de limites de controle mais espaçados, para não aumentar a probabilidade conjunta de alarme falso.

As figuras 6.13 a 6.16 apresentam as curvas de desempenho (NMA₁ versus δ) dos gráficos de controle de EWMA para o monitoramento de dados subgrupados. Tal como já mencionado na seção anterior, estão sendo mostradas somente as curvas de desempenho para o NMA₀ de 200 amostras. As curvas não apresentadas (para os valores de NMA₀ igual a 100 e 370,4 amostras) apresentam comportamento bem semelhante às aqui expostas.

Pode ser observado nos gráficos apresentados que o GCG de EWMA DNB fornece o melhor desempenho dentre os esquemas analisados (a curva está abaixo das outras) quando são controlados processos compostos por um número maior de canais. Em relação à superposição das curvas, quando há alterações maiores que 3σ , os mesmos gráficos de controle na versão Shewhart já apresentam bom desempenho contra tais alterações, em termos de valores de NMA₁ mais baixos.

Com um número maior de canais (c>10), o mais eficiente, dentre os esquemas de controle de EWMA analisados contra pequenas alterações no processo, continua sendo o GCG de EWMA DNB, tal como observado no controle por observações individuais. Em relação a processos compostos por poucos canais, tanto o gráfico de controle de MEWMA de S² quanto o GCG de EWMA DNB são eficientes.

Figura 6.13 – Curvas de valores de NMA₁ para 15 canais, NMA₀=200 e $\delta^*=0.5$ (n=4)

Figura 6.14 – Curvas de valores de NMA₁ para 20 canais, NMA₀=200 e $\delta^*=0.5$ (n=4)

Figura 6.15 – Curvas de valores de NMA₁ para 15 canais, NMA₀=200 e $\delta^*=1,0$ (n=4)

Figura 6.16 – Curvas de valores de NMA₁ para 20 canais, NMA₀=200 e $\delta^*=1,0$ (n=4)

Tal como observado anteriormente no controle por observações individuais, ao comparar as medidas de desempenho obtidas em regime de probabilidades de *zero-state* e *steady-state*, expostas na Tabela 6.12, pode se observar que os valores de NMA₁ de *steady-state* são freqüentemente menores que os de *zero-state*.

с	ESQUEMA	δ*	(λ≠,K)	regime de				NM 8	IA ₁ 5			
				probabilidades -	0	0,5	1	1,5	2	3	4	5
	GCG EWMA DNB		(0.7400-2.1250)	Steady-State	196,1	40,1	7,3	2,7	1,6	1,0	1,0	1,0
	PROPOSTO		(0,7400, 3,1230)	Zero-State	199,8	40,0	7,4	2,8	1,6	1,0	1,0	1,0
	EWMA R _t	20	(0.6920-2.0141)	Steady-State	197,4	52,1	9,3	3,1	1,7	1,1	1,0	1,0
3	M&R (1995)	2,0	(0,0850, 5,0141)	Zero-State	203,0	52,4	9,3	3,1	1,7	1,1	1,0	1,0
	MEWMA		(0 7720-10 5704)	Steady-State	197,1	41,4	7,7	2,8	1,6	1,0	1,0	1,0
	R,A&M (1996)		(0,7720, 10,3794)	Zero-State	199,3	41,8	7,7	2,9	1,6	1,0	1,0	1,0
	GCG EWMA DNB		(0.7660-2.2822)	Steady-State	200,3	48,2	7,6	2,6	1,5	1,0	1,0	1,0
	PROPOSTO		(0,7000, 3,2633)	Zero-State	198,4	49,0	7,6	2,7	1,5	1,0	1,0	1,0
	EWMA R _t	20	(0 6220: 2 8010)	Steady-State	206,9	61,3	10,2	3,2	1,7	1,1	1,0	1,0
5	M&R (1995)	2,0	(0,6230; 2,8919)	Zero-State	203,5	61,6	10,2	3,2	1,7	1,0	1,0	1,0
	MEWMA		(0 7/20-1/ 2102)	Steady-State	197,0	47,2	8,1	2,9	1,6	1,0	1,0	1,0
	R,A&M (1996)		(0,7400, 14,0192)	Zero-State	197,4	47,8	8,2	3,0	1,7	1,0	1,0	1,0
	GCG EWMA DNB		(0.7610:3.6600)	Steady-State	197,7	80,0	9,8	2,8	1,6	1,0	1,0	1,0
	PROPOSTO		(0,7010, 3,0000)	Zero-State	199,0	81,6	9,8	2,8	1,5	1,0	1,0	1,0
	EWMA R _t 2.0	(0 5220. 2 8222)	Steady-State	198,6	98,6	16,7	4,1	1,9	1,1	1,0	1,0	
20 M&R (1995)	M&R (1995)	2,0	(0,3220, 2,8232)	Zero-State	201,6	100,8	16,6	4,0	1,9	1,1	1,0	1,0
	MEWMA		(0 6570- 28 5285)	Steady-State	200,6	75,9	13,8	4,2	2,2	1,2	1,0	1,0
R,A&M (1996)			(0,0370, 30,3203)	Zero-State	200,2	76,3	14,1	4,3	2,3	1,2	1,0	1,0

Tabela 6.12 - Comparação entre os valores de NMA1 de steady-state e zero-state (n=4)

Um importante resultado a mencionar é a melhoria de desempenho contra pequenas alterações na média (reduções dos valores de NMA₁ para as mesmas alterações no processo) resultante da incorporação de esquemas EWMA aos gráficos de controle descritos no capítulo 2 (especificamente foram analisados: o gráfico de controle de R_t de Mortell e Runger, 1995, o gráfico de controle de S² de Runger et al., 1996 e o GCG das diferenças em relação ao nível-base de Barbosa, 2008). Os gráficos de controle de Shewhart mencionados foram analisados anteriormente por Barbosa (2008) para alterações na média das componentes individuais.

Embora o aumento analisado do tamanho da amostra (para n=4 em vez de observações individuais) afete o desempenho dos gráficos para o controle da média (os valores de NMA₁ são bem menores), o GCG de EWMA das diferenças em relação ao nível-base proposto nesta tese continua a fornecer o melhor desempenho contra pequenas alterações no processo.

Como o GCG de EWMA proposto forneceu os melhores resultados, uma última análise que ainda pode ser realizada para tal gráfico de controle é verificar o tempo consumido (amostras consumidas) para detecção do canal afetado, excluindo a possibilidade de sinalização dos canais não afetados.

GCG de EWMA DNB: detecção do canal afetado

Nesta seção será considerada apenas a análise de desempenho em relação ao tempo (consumo de amostras) necessário para o GCG de EWMA das diferenças em relação ao nível-base detectar alterações no canal afetado (análise do alarme verdadeiro), independentemente de outros canais não afetados sinalizarem ou não. Ou seja, nesta seção para o GCG de EWMA proposto é analisado somente o evento A (canal afetado sinalizar) com os valores de NMA₁ desse evento que são comparados aos valores de NMA₁ do evento $A \cup O$ (qualquer canal afetado sinalizar).

Esta análise não pode ser realizada para os outros gráficos de controle (EWMA de R_t e MEWMA de S^2) devido à natureza das estatísticas de controle utilizadas por tais esquemas (nos outros gráficos de controle há dificuldade na distinção entre o canal afetado e os canais não afetados).

A distribuição de valores de RL (comprimentos de corridas) dos esquemas de controle de EWMA não é conhecida e as probabilidades de sinalização de descontrole não são constantes porque as observações não são independentes. Então, não há como obter o NMA₁ pela inversa da probabilidade de sinal de descontrole. A distribuição de valores de RL, para os esquemas EWMA univariados, é obtida por Cadeias de Markov ou equações integrais. Contudo, como já mencionado no início deste capítulo, no caso de processos multicanal, o método utilizado para obter os valores de NMA₁ é a simulação.

Para obter os valores de NMA₁ do evento A (canal afetado sinalizar) no procedimento de simulação verifica-se somente a estatística EWMA correspondente ao canal afetado (nesse caso não há máximo e mínimo), a qual será comparada diretamente aos limites de controle previamente calculados para o GCG, com base nos c canais que compõem o processo (os limites são mais largos que o gráfico de controle de EWMA univariado, para compensar o efeito de o processo ser constituído por c canais).

As medidas de desempenho obtidas para o evento A podem ser observadas na Tabela 6.13 (para o controle de observações individuais) e na Tabela 6.14 (para o controle de dados subgrupados com amostras de tamanho igual a 4 unidades). As medidas de desempenho são obtidas utilizando-se de alguns dos projetos ótimos apresentados nas tabelas 6.1 e 6.2, para melhor comparação com as medidas anteriormente obtidas.

Na análise desse evento (canal afetado sinalizar) deve-se levar em consideração que os NMA`s de *steady-state* para $\delta=0$ (quando não há alteração no processo) não são semelhantes aos apresentados pelo evento $A \cup O$ (qualquer canal sinalizar). Seguindo o método de Bonferroni para comparações múltiplas, a probabilidade individual da ocorrência de alarmes falsos considerada neste GCG (considerando que o processo é composto por c canais) deve ser obtida dividindo a probabilidade global de ocorrência de alarmes falsos (inverso do NMA₀ prédeterminado) pelo número de canais que compõem o processo.

с	NMA _o	δ*	(λ*,K _{dnb})	NMA₁ de steady-state δ							
		0,5	(0,0480; 2,2710)	29,3	12,3	7,6	5,6	3,7	2,9	2,4	
3		1,0	(0,1480; 2,6556)	37,6	11,6	6,5	4,5	2,9	2,2	1,8	
		2,0	(0,3020; 2,8207)	56,5	14,4	6,7	4,2	2,5	1,8	1,5	
		0,5	(0,0580; 2,6000)	32,0	12,1	7,5	5,5	3,6	2,8	2,3	
5	100	1,0	(0,1350; 2,8485)	39,6	11,6	6,5	4,5	2,9	2,2	1,8	
	_	2,0	(0,3240; 3,0234)	72,4	15,6	6,7	4,1	2,4	1,7	1,4	
		0,5	(0,0660; 2,9140)	36,9	12,5	7,6	5,5	3,6	2,8	2,3	
10		1,0	(0,1220; 3,0790)	46,1	12,3	6,7	4,7	3,0	2,3	1,9	
		2,0	(0,3240; 3,2460)	102,8	17,7	7,1	4,2	2,4	1,8	1,4	
3		0,5	(0,0350; 2,9775)	37,0	15,4	9,7	7,1	4,7	3,6	3,0	
		1,0	(0,0880; 3,2360)	46,4	13,8	7,7	5,4	3,5	2,6	2,1	
		2,0	(0,2340; 3,4104)	81,1	17,7	7,8	4,8	2,8	2,0	1,7	
	- ·	0,5	(0,0350; 2,7150)	37,9	15,1	9,5	7,0	4,6	3,5	2,9	
5	200	1,0	(0,1110; 3,0548)	49,2	13,4	7,4	5,1	3,3	2,5	2,0	
		2,0	(0,2940; 3,2226)	102,8	18,7	7,6	4,5	2,6	1,9	1,5	
		0,5	(0,0350; 2,9775)	40,7	15,8	9,8	7,2	4,8	3,6	3,0	
10		1,0	(0,0880; 3,2360)	50,6	14,0	7,9	5,5	3,6	2,7	2,2	
		2,0	(0,2340; 3,4104)	108,6	17,5	7,5	4,7	2,7	2,0	1,7	
3		0,5	(0,0350; 2,7350)	44,4	17,1	10,6	7,7	5,1	3,9	3,1	
		1,0	(0,0830; 3,0055)	53,5	15,6	8,9	6,2	4,0	3,0	2,4	
		2,0	(0,2370; 3,2196)	108,4	20,7	8,6	5,3	3,1	2,2	1,8	
		0,5	(0,0450; 3,0425)	46,3	16,2	9,8	7,1	4,6	3,5	2,9	
5	370,4	1,0	(0,1060; 3,2546)	62,9	15,5	8,3	5,7	3,6	2,7	2,2	
		2,0	(0,2340; 3,3854)	122,6	19,9	8,1	5,0	2,9	2,1	1,7	
		0,5	(0,0320; 3,1880)	47,7	17,9	11,0	8,1	5,3	4,0	3,3	
10		1,0	(0,1110; 3,4793)	73,8	15,8	8,3	5,6	3,5	2,7	2,2	
		2,0	(0,2600; 3,5880)	178,4	22,8	8,4	5,0	2,8	2,1	1,7	

Tabela 6.13 – Valores de NMA ₁ c	le steady-state do evento A	(canal afetado sinaliza) para o	GCG de EWMA DNB (<i>n</i> =1)

* Valores de NMA₁ do GCG EWMA DNB proposto exclusivamente para o canal afetado

172

	NMA _o	δ*	(λ*,K _{dnb})	NMA ₁ de steady-state							
С				δ							
				0,5	1	1,5	2	3	4	5	
		0,5	(0,0480; 2,2710)	11,5	4,5	2,9	2,2	1,5	1,2	1,0	
3		1,0	(0,1480; 2,6556)	14,3	4,2	2,5	1,8	1,2	1,0	1,0	
		2,0	(0,3020; 2,8207)	36,2	6,3	2,5	1,5	1,0	1,0	1,0	
	-	0,5	(0,0580; 2,6000)	11,6	4,5	2,9	2,2	1,6	1,2	1,0	
5	100	1,0	(0,1350; 2,8485)	15,5	4,1	2,3	1,7	1,2	1,0	1,0	
		2,0	(0,3240; 3,0234)	43,6	6,4	2,3	1,4	1,0	1,0	1,0	
	-	0,5	(0,0660; 2,9140)	12,4	4,7	3,0	2,3	1,7	1,3	1,1	
10		1,0	(0,1220; 3,0790)	17,9	4,2	2,4	1,8	1,2	1,0	1,0	
		2,0	(0,3240; 3,2460)	66,5	7,7	2,4	1,4	1,0	1,0	1,0	
		0,5	(0,0350; 2,9775)	13,6	5,4	3,5	2,6	1,8	1,5	1,2	
3		1,0	(0,0880; 3,2360)	17,6	4,8	2,8	2,0	1,4	1,1	1,0	
		2,0	(0,2340; 3,4104)	54,7	8,1	2,9	1,7	1,1	1,0	1,0	
		0,5	(0,0350; 2,7150)	13,6	5,2	3,3	2,5	1,8	1,4	1,:	
5	200	1,0	(0,1110; 3,0548)	18,7	4,5	2,6	1,9	1,3	1,0	1,0	
		2,0	(0,2940; 3,2226)	66,6	8,1	2,6	1,5	1,0	1,0	1,0	
	• •	0,5	(0,0350; 2,9775)	14,1	5,6	3,6	2,7	1,9	1,6	1,3	
10		1,0	(0,0880; 3,2360)	17,6	4,6	2,7	2,0	1,4	1,1	1,0	
		2,0	(0,2340; 3,4104)	93,5	8,7	2,7	1,5	1,0	1,0	1,0	
		0,5	(0,0350; 2,7350)	17,1	7,7	5,1	3,9	2,7	2,1	1,8	
3		1,0	(0,0830; 3,0055)	20,7	5,3	3,1	2,2	1,5	1,2	1,0	
		2,0	(0,2370; 3,2196)	78,1	9,6	3,2	1,8	1,1	1,0	1,0	
		0,5	(0,0450; 3,0425)	16,1	7,1	4,7	3,5	2,5	2,0	1,	
5	370,4	1,0	(0,1060; 3,2546)	19,5	5,0	2,9	2,1	1,5	1,1	1,0	
		2,0	(0,2340; 3,3854)	102,9	10,3	3,0	1,6	1,0	1,0	1,0	
	• •	0,5	(0,0320; 3,1880)	17,7	8,0	5,3	4,0	2,8	2,2	1,9	
10		1,0	(0,1110; 3,4793)	22,8	5,0	2,8	2,1	1,4	1,1	1,0	
		2.0	(0.2600: 3.5880)	152.2	12.1	3.1	1.6	1.0	1.0	1.0	

Tabela 6.14 – Valores de NMA₁ de *steady-state* do evento A (canal afetado sinaliza) para o GCG de EWMA DNB (*n*=4)

* Valores de NMA₁ do GCG EWMA DNB proposto exclusivamente para o canal afetado

Analisando a Tabela 6.13 em comparação às tabelas 6.7 e 6.8 e a Tabela 6.14 em comparação às tabelas 6.10 e 6.11, observa-se que os valores de NMA₁ estão bem próximos (diferença pequena entre os valores de NMA₁) para as alterações maiores que $0,5\sigma$.

Como os eventos $A \in O$ (qualquer canal diferente do afetado sinalizar) não são independentes (podem ocorrer juntos), não é possível inferir, pelas medidas apresentadas, o tempo até sinalizar alterações por um ou mais canais não afetados, contudo, como o número de amostras até a sinalização pelo canal afetado (NMA₁ do evento A) é praticamente o mesmo para a sinalização em que qualquer canal (NMA₁ do evento do evento $A \cup O$), pode-se dizer que a probabilidade de canais não afetados sinalizarem sem que o canal afetado sinalize é muito pequena.

Se, ao contrário, o NMA₁ do evento $A \cup O$ fosse bem menor que o NMA₁ do evento A, este comportamento seria um indicio de uma probabilidade não desprezível de sinalização prematura por parte dos canais não afetados, o que poderia levar à interrupção do processo (e do seu monitoramento) para inspeção antes da sinalização do canal verdadeiro. No entanto, nas tabelas apresentadas pode se verificar que tais medidas estão bem próximas, o que elimina a necessidade de preocupação com o evento "sinalização apenas por algum canal não afetado" ($O \cap \overline{A}$). Na ocorrência desse evento, deve-se interpretá-lo como alarme falso ou verdadeiro, dependendo da conduta adotada na inspeção do processo. Uma discussão mais detalhada a respeito encontra-se em Barbosa (2008).

Quando o tamanho de amostra aumenta (de n=1 para n=4), a diferença apresentada entre os valores de NMA₁ dos dois eventos é ainda menor do que a obtida para o controle por observações individuais.

No entanto, pode ser observado que este comportamento não é o mesmo apresentado para δ =0,5, onde há uma diferença bem maior em relação aos valores de NMA₁ obtidos pelos dois eventos (A e $A \cup O$). Uma possível explicação para tal comportamento, apresentado contra pequenas alterações na média, pode ser vinculada ao efeito do processo ter saído do estado de controle e de a alteração ser muito próxima a δ =0, o que pode tornar os valores de NMA₁ dessa alteração um pouco maiores. Por outro lado, nenhum dos esquemas de controle analisados é eficiente para detectar tais alterações. Outro aspecto interessante sobre a análise do evento A, é que os valores de NMA₁ (acima de δ =0,5) variam muito pouco em função do número de canais presentes no sistema. Tal comportamento demonstra que a capacidade de detecção do canal afetado pelo GCG EWMA proposto não muda com o aumento do número de canais.

Depois de realizadas todas as análises de desempenho dos gráficos de controle de EWMA apresentados contra alterações na média das componentes individuais de variação (incluindo o que está sendo proposto nesta tese), pode ser observado que, dentre os gráficos de controle analisados, o mais eficiente é o GCG de EWMA das diferenças em relação ao nível-base proposto.

No próximo capítulo, esta tese voltará a tratar do desempenho destes gráficos de controle, avaliando, agora, a sua eficiência na sinalização de alterações na *dispersão* das componentes individuais. Os projetos ótimos dos gráficos de controle de EWMA obtidos (contra alterações na média) serão utilizados para obter as medidas de desempenho contra alterações na dispersão, uma vez que tais esquemas, embora possuam sensibilidade a tais alterações, são projetados para sinalizar alterações na média.