Pontifícia Universidade Católica do Rio de Janeiro

Bruno Francisco Teixeira Simões

Controle Estatístico de Processos Multicanal

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia de Produção do Departamento de Engenharia Industrial da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia de Produção

Orientador: Prof. Eugenio Kahn Epprecht

Rio de Janeiro Maio de 2010

Bruno Francisco Teixeira Simões

Controle Estatístico de Processos Multicanal

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia de Produção da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Eugenio Kahn Epprecht Orientador

Departamento de Engenharia Industrial - PUC-Rio

Prof. Flávio Sanson Fogliatto UFRGS

Prof. Annibal Parracho Sant'Anna UFF

Prof. Antonio Fernando de Castro Vieira Departamento de Engenharia Industrial - PUC-Rio

Prof. Reinaldo Castro Souza Departamento de Engenharia Elétrica – PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de maio de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Bruno Francisco Teixeira Simões

Graduou-se em Estatística pela UERJ (Universidade do Estado do Rio de Janeiro) no início de 2004. Obteve o título de Mestre em Engenharia de Produção (área de concentração: Gerência de Produção) pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) com a dissertação intitulada "Gráfico EWMA com Constante de Amortecimento Adaptativa para Controle Estatístico de Processos" em 2006. Desde então tem atuado na linha de pesquisa de Engenharia da Qualidade, com artigos aceitos em bons periódicos internacionais.

Ficha Catalográfica

Simões, Bruno Francisco Teixeira

Controle estatístico de processos multicanal / Bruno Francisco Teixeira Simões ; orientador: Eugenio Kahn Epprecht. – 2010.

259 f. : il. ; 30 cm

Tese (Doutorado em Engenharia de Produção) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui referências bibliográficas

1. Engenharia Industrial – Teses. 2. Gráficos de controle de grupos. 3. Processos multicanal. 4. Média móvel exponencialmente ponderada. 5. Média.6. Variância. I. Eugenio Kahn Epprecht. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

CDD: 658.5

Para meus pais Ana Maria e José Francisco pelo amor e dedicação

Agradecimentos

O meu eterno agradecimento a Deus, para Ele toda a honra e toda a glória. A minha gratidão pelo dom da vida e caminho abençoado pelo seu infinito amor e a sua misericórdia, me direcionando sempre o melhor e, por me colocar próximo a pessoas altamente capacitadas e de boa vontade, tornando-me hábil a desenvolver o meu potencial.

Aos meus pais, Ana Maria e José Francisco, pelo amor, incentivo, participação e a excelente estrutura familiar, junto aos meus queridos irmãos.

Ao orientador e amigo Professor Doutor Eugenio Kahn Epprecht pela excelente orientação, por acreditar em mim e no meu trabalho, pela lealdade e dedicação, pelo seu incentivo e sua ponderação, tornando sempre possível a boa realização de pesquisas de qualidade e relevância no meio científico.

Aos professores que participaram da Comissão Examinadora desta tese, do exame de qualificação e de proposta de tese, que contribuíram com conselhos preciosos para a elaboração deste trabalho.

Aos funcionários e professores do Departamento de Engenharia Industrial que, no cumprimento do seu dever, sempre me trataram com cordialidade e boa vontade.

À PUC-Rio que, por intermédio do orientador Professor Doutor Eugenio Kahn Epprecht, me forneceu a estrutura acadêmica.

Ao CNPq pelo apoio financeiro concedido, com o qual foi possível a realização dos meus estudos de pós-graduação.

Simões, Bruno Francisco Teixeira; Epprecht, Eugenio Kahn (Orientador). **Controle Estatístico de Processos Multicanal**. Rio de Janeiro, 2010. 259p. Tese de Doutorado – Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Processos Multicanal (PMC) estão presentes nas linhas de produção de muitos segmentos industriais, tais como na indústria alimentícia, farmacêutica, de fabricação de aço e de papel. No entanto, há poucos trabalhos na literatura dedicados ao controle estatístico de processos dessa natureza. O trabalho de Boyd (1950) é o primeiro deles. Neste trabalho são descritos os gráficos de controle de grupos (GCG). Este é o procedimento tradicional, recomendado em textos didáticos de CEP como Pyzdek (1992) e Montgomery (até a 3a edição, de 1997). Posteriormente, Mortell e Runger (1995) elaboram um modelo matemático mais realista para PMC, decompondo a fonte de variação do processo em duas componentes distintas: uma, comum a todos os canais e outra, correspondendo à variação individual de cada canal do processo. Tal modelo foi tão bem aceito na literatura que, desde a sua publicação, tem sido utilizado para o desenvolvimento de esquemas de controle mais eficientes para PMC. Dos esquemas desenvolvidos na versão Shewhart, para o controle estatístico das médias das componentes individuais de variação, devem ser destacados os gráficos de controle de Mortell e Runger (1995), de Runger, Alt e Montgomery (1996) e o GCG de Barbosa Dentre os esquemas mencionados, somente os dois primeiros foram (2008).desenvolvidos tanto em uma versão "de Shewhart" como em uma versão EWMA (Exponentially Weighted Moving Average), visando obter maior sensibilidade a pequenas alterações na média. Esta tese traz novas propostas para PMC bem representados pelo modelo de Mortell e Runger (1995). Propõe-se a análise da eficiência dos gráficos de controle existentes na detecção de aumentos na dispersão de um canal, bem como o desenvolvimento, na versão Shewhart e EWMA, de novos GCG especificamente destinados à sinalização de tais aumentos. Quando não é viável obter mais de uma observação por canal do processo, propõem-se os gráficos: GCG de MR das diferenças em relação ao nível-base (DNB) e GCG EWMA MR DNB. Já para as situações em que é possível obter mais de uma observação por canal, propõem-se: GCG de S² e GCG EWMA de $ln(S^2)$. É importante ressaltar que todos os trabalhos desenvolvidos na literatura (seguindo o modelo de Mortell e Runger, 1995) foram dedicados exclusivamente ao controle estatístico da média das componentes individuais de variação, portanto, esta tese tem caráter inédito. Além das contribuições mencionadas, visando obter maior sensibilidade a alterações de pequena magnitude na média das componentes individuais, propõe-se e analisa-se uma versão EWMA do GCG de Barbosa (2008), o mais eficiente na versão Shewhart. Adicionalmente, para obter esquemas EWMA mais eficientes, são obtidos os projetos ótimos de todos os esquemas EWMA apresentados nesta tese, incluindo os gráficos de controle de EWMA de R_t de Mortell e Runger (1995) e de MEWMA de S² de Runger, Alt e Montgomery (1996). São analisadas as curvas de desempenho de todos os esquemas de controle para uma variedade de situações. Nas análises de desempenho, pode-se observar que os esquemas propostos nesta tese são os mais eficientes.

Palavras-chave

Gráficos de controle de Grupos; Processos Multicanal; Média Móvel Exponencialmente Ponderada; Média; Variância.

Simões, Bruno Francisco Teixeira; Epprecht, Eugenio Kahn (Advisor). **Statistical Control of Multiple Stream Process**. Rio de Janeiro, 2010. 259p. DSc. Thesis – Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

In a multiple stream process (MSP), a same quality variable is measured in several streams in parallel. The first tool proposed for monitoring MSPs was the Group Control Chart (GCC) by Boyd (1950). These schemes are recommended in textbooks and guides as Pyzdek (1992) and Montgomery (until 3rd edition, 1997). Its efficiency is impaired by the presence of cross correlation between streams. A useful model for MSPs (Mortell and Runger, 1995) represents the value of the quality variable in each stream at any time t as the sum of a random variable (or stochastic process) but that is common to all streams, which can be called base level, plus the individual variation of each stream relative to the base level. In the literature, three different Shewhart schemes were developed to control the individual variation of each stream: Mortell e Runger (1995), Runger, Alt and Montgomery (1996) and Barbosa (2008). Only the two first ones were developed both in a Shewhart-type and a EWMA (Exponentially Weighted Moving Average) version. All these schemes were devoted to monitoring the mean of the individual components of the streams; to the best of our knowledge, no previous work considered the case of increases in the variance of a stream. In this thesis four different GCCs for monitoring the inner variability of the individual streams are developed: a GCC of S^2 , the sample variance of each stream (which is not the same as Runger, Alt and Montgomery's statistics); a GCC of EWMA(lnS²); a GCC of the Moving Ranges of the residuals of each stream to the estimated base level, and an EWMA version of it. The last two GCCs cater for the case where, at every sampling time, only individual observations per stream are feasible, which is frequent with a large number of streams. Beyond the mentioned contributions, aiming at more sensitivity to the small shifts in the mean of the individual components, this work proposes a EWMA version of the GCC by Barbosa (2008), the most efficient in the Shewhart version. The ARL performance of every one of these schemes is analyzed, in a variety of situations, including the case of increases in the variance of one stream when the schemes are designed for monitoring the means of individual streams. The results show that the proposed schemes are the fastest in detecting special causes that affect one individual stream.

Keywords

Group Control Chart; Multiple Stream Process; Exponentially weighted moving average; Mean; Variance.

Sumário

 Introdução 1.1. Objetivos da Tese 1.2. Contribuições científicas e originalidade 1.3. Estrutura da Tese 	23 28 29 29
 Fundamentação Teórica e Trabalhos Precedentes O Esquema EWMA Trabalhos Precedentes – Visão Geral Os Gráficos de Controle de Boyd (1950) A proposta de Mortell e Runger (1995) Gráfico de Rt tipo Shewhart Gráfico de controle em estilo EWMA Gráfico de controle de T² das c-1 componentes remanescentes Gráfico de controle MEWMA das c-1 componentes remanescentes A proposta de Barbosa (2008) 	32 33 38 47 52 54 57 58 61 63 66
 A proposta de Barbosa (2008) Controlo Estatístico da Disporsão 	00 74
 3.1. Estudo analítico da Dispersao 3.1. Estudo analítico das medidas de desempenho do GCG das diferenças no caso de aumentos da dispersão de um canal 3.2. Gráficos específicos para o controle da dispersão 3.2.1. GCG versão Shewhart 3.2.1.1. Dados subgrupados: GCG de S² 3.2.2.2. Observações individuais: GCG de EWMA de In(S²) 3.2.2.2. Observações individuais: GCG de EWMA de MR 	76 84 86 87 89 90 94
 4. Análise de Desempenho dos Gráficos tipo Shewhart para o Controle Estatístico da Dispersão 4.1. Eventos de Interesse do GCG das Diferenças 4.2. Medidas de Desempenho 4.3. Procedimentos de Simulação 4.4. Resultados de Desempenho Individual 4.4.1. Controle por Observações Individuais 4.4.2. Controle por Dados Subgrupados 4.5. Resultados de Desempenho Conjunto 4.5.1. Controle por Observações Individuais 4.5.2. Controle por Dados Subgrupados 4.6. Cálculo Probabilístico de Eventos 	97 98 100 105 105 112 119 119 122 126

 Controle Estatístico da Média A estatística EWMA das diferenças 	131 131
5.2. Os limites de controle do GCG de EWMA DNB	132
 Análise de Desempenho dos Gráficos EWMA para o Controle Estatístico da Média Medidas de desempenho 	134 134
6.2. Procedimentos de Simulação6.2.1. Primeira Parte da Corrida de Simulação: Período de	135
Aquecimento da Estatística EWMA	136
6.2.2. Segunda Parte da Corrida: Cálculo do NMA ₁	138
6.3.1. Curvas de isoNMA ₀	141
6.3.2. Projetos ótimos	145
6.4. Resultados de Desempenho	154
6.4.1. Controle por Observações Individuais	154
6.4.2. Controle por Dados Subgrupados	162
0.5. GCG de EWMA DNB. delecção do canal alelado	109
7. Análise de Desempenho dos Gráficos EWMA para o	
Controle Estatístico da Dispersão	175
7.1. Medidas de desempenho 7.2. Procedimentos de Simulação	176
7.2.1. Período de Aquecimento da Estatística EWMA	177
7.2.2. Segunda Parte da Corrida: Cálculo do NMA ₁	179
7.3. Obtenção dos Projetos Ótimos	183
7.3.1. Curvas de isoNMA ₀	183
7.3.2. Projetos otimos	186
7.4. Controle por Observações Individuais	190
7.4.2. Controle por Dados Subgrupados	198
7.5. Resultados de Desempenho Conjunto	205
7.5.1. Controle por Observações Individuais	206
7.5.2. Controle por Dados Subgrupados	210
8. Conclusões e Sugestões para pesquisas futuras	214
8.1. Conclusões	214
8.2. Sugestões para pesquisas futuras	218
9. Referências bibliográficas	220
10. Apêndice A: Contribuições originais da tese	226
11. Apêndice B: Relações entre os parâmetros λ e <i>K</i> de cada gráfico de controle analisado	227
 Apêndice C: Medidas de desempenho dos Gráficos de Controle de EWMA para o controle estatístico da média 	233

13. Apêndice D: Medidas de desempenho individual dos Gráficos de Controle de EWMA para o controle estatístico da dispersão

14. Apêndice E: Medidas de desempenho conjunto dos Gráficos de Controle de EWMA para o controle estatístico da dispersão

242

251

Lista de tabelas e quadros

Quadro 2.1 – Trabalhos na literatura de PMC Tabela 2.1 – Comprimento de corrida significativo para um único	39
canal	49
Tabela 2.2 – Valores de NMA ₀ obtidos para diferentes	
comprimentos de corridas pelo critério de corridas proposto por	
Nelson (1986)	51
Tabela 2.3 – Correlação entre \hat{e}_{ti} e \hat{e}_{tj} (para $i \neq j$)	72
Tabela 2.4 – Diferenças (%) nos cálculo de NMA ₀ e valores de K	
para os valores de NMA ₀ especificados, considerando	
processos compostos por três canais ($c = 3$)	72
Tabela 4.1 – Medidas de Desempenho Individual para o controle	
por observações individuais	106
Tabela 4.2 – Exemplos de valores de SDRL das medidas de	
desempenho individuais dos graficos para o controle por	
Observações individuais	1.1.1
Tabela 4.5 – Valores de Nivi A_1 de Zero-State e Steady-State	112
Tabela 4 4 – Medidas de Desempenho Individual para o controle	112
por amostras de tamanho igual a guatro	113
Tabela 4.5 – Exemplos de valores de SDRL das medidas de	
desempenho individuais dos gráficos para o controle por	
amostras de tamanho igual a quatro	118
Tabela 4.6 – Medidas de Desempenho Conjunto para o controle	
por observações individuais	121
Tabela 4.7 – Medidas de Desempenho Conjunto para o controle	
por amostras de tamanho igual a quatro	124
Tabela 4.8 – Calculo Probabilistico dos Eventos AUO e O-A	129
Tabela 6.1 – Projetos otimos para o GCG de EWMA DNB ($n=1$) Tabela 6.2 – Projetos ótimos para o CCC de EWMA DNB ($n=4$)	147
Tabela 6.2 – Projetos ótimos para o GC de EWMA DND ($n=4$) Tabela 6.3 – Projetos ótimos para o GC de EWMA de P. ($n=1$)	140
Tabela 6.4 – Projetos ótimos para o GC de EWMA de R $_{1}$ (<i>n</i> =1)	149
Tabela 6.5 Projetes étimos para o CC de MEW/MA de $S^2(n-1)$	151
Tabela 0.5 – Projetos otimos para o GC de MEWMA de S $(n=1)$	151
Tabela 6.6 – Projetos otimos para o GC de MEVVMA de S ⁻ ($n=4$)	152
Tabela 6.7 – Medidas de Desempenho para $n=1$ e NMA ₀ =200 (Porto I)	156
(raile i) Tabela 6.8 – Medidas de Desembenho para $n-1$ e NMA ₂ -200	150
(Parte II)	157
Tabela 6.9 – Comparação entre os valores de NMA, de steady-	107
state e zero-state $(n=1)$	161
Tabela 6.10 – Medidas de Desempenho para $n=4$ e NMA ₀ =200	
(Parte I)	163

Tabela 6.11 – Medidas de Desempenho para $n=4$ e NMA ₀ =200	404
(Parte II) Tabola 6.12 Comparação optro os valoros do NIMA, do stoadu	164
Tabela 0.12 – Comparação entre os valores de NiviA ₁ de Steady- state e zero-state ($n=4$)	168
Tabela 6.13 – Valores de NMA ₁ de steady-state do evento A	100
(canal afetado sinaliza) para o GCG de EWMA DNB ($n=1$)	171
Tabela 6.14 – Valores de NMA ₁ de steady-state do evento A	
(canal afetado sinaliza) para o GCG de EWMA DNB (n=4	172
Tabela 7.1 – Projetos ótimos para o GCG de EWMA de MR de	
DNB (<i>n</i> =1)	188
Tabela 7.2 – Projetos ótimos para o GCG de EWMA de In(S ²)	180
(<i>n</i> =4)	109
Tabela 7.3 – Medidas de Desempenho Individual para n=1 e	
NMA ₀ =200 (Parte I)	191
Tabela 7.4 – Medidas de Desempenho Individual para $n=1$ e	
NMA ₀ =200 (Parte II)	192
Tabela 7.5 – Comparação entre os valores de NMA ₁ de steady-	407
state e zero-state (n=1) Tabala Z.O. Madidaa da Daaamaanka kadiidada aana n. 4	197
Tabela 7.6 – Medidas de Desempenho Individual para n=4 e	100
$NMA_0=200$ (Parle I) Tabala 7.7 Madidaa da Daaamaanha Individual para $n=4$ a	199
Tabela 7.7 – Medidas de Desempenho Individual para $n=4$ e	200
Tabela 7.8 – Comparação entre os valores de NMA, de steadu-	200
state e zero-state ($n=4$)	205
Tabela 7.9 – Medidas de Desempenho Conjunto para $n=1$ e	200
$NMA_0=200$ (Parte I)	208
Tabela 7.10 – Medidas de Desempenho Conjunto para $n=1$ e	200
NMA ₀ =200 (Parte II)	209
Tabela 7.11 – Medidas de Desempenho Conjunto para $n=4$ e	
NMA ₀ =200 (Parte I)	212
Tabela 7.12 – Medidas de Desempenho Conjunto para n=4 e	
NMA ₀ =200 (Parte II)	213
Tabela 8.1 – Relação de gráficos de controle analisados nesta	
tese	215
Quadro 10.1 – Lista das Contribuições desta Tese	226
Tabela 11.1 – Relação $\lambda \times K$ para o GCG de EWMA das	
diferenças em relação ao nível-base	228
Tabela 11.2 – Relação $\lambda \times K$ para o Gráfico EWMA de R _t	229
Tabela 11.3 – Relação $\lambda \times K$ para o Gráfico MEWMA de S ²	230
Tabela 11.4 – Relação $\lambda \times K$ para o GCG de EWMA de ln(S ²)	231
Tabela 11.5 – Relação $\lambda \times K$ para o GCG de EWMA de MR das	
diferenças em relação ao nível-base	232
Tabela 12.1 – Medidas de Desempenho para $n=1$ e NMA ₀ =100	234
(Parte I)	-
Tabela 12.2 – Medidas de Desempenho para $n=1$ e NMA ₀ =100	235
(raile II) Tabala 12.2 Madidaa da Dacampanha nara n.1 a	
Tabela 12.3 – Wediuas de Desempenno para $n=1$ e	7 26
Tabela 124 - Medidas de Desembenho para $n-1$ o	200
$NMA_0=370,4$ (Parte II)	237

Tabela 12.5 – Medidas de Desempenho para $n=4$ e NMA ₀ =100	
(Parte I)	238
Tabela 12.6 – Medidas de Desempenho para n=4 e NMA ₀ =100	
(Parte II)	239
Tabela 12.7 – Medidas de Desempenho para n=4 e	
NMA ₀ =370,4 (Parte I)	240
Tabela 12.8 – Medidas de Desempenho para n=4 e	
NMA ₀ =370,4 (Parte II)	241
Tabela 13.1 – Medidas de Desempenho Individual para n=1 e	
NMA ₀ =100 (Parte I)	243
Tabela 13.2 – Medidas de Desempenho Individual para n=1 e	
NMA ₀ =100 (Parte II)	244
Tabela 13.3 – Medidas de Desempenho Individual para n=1 e	
NMA ₀ =370,40 (Parte I)	245
Tabela 13.4 – Medidas de Desempenho Individual para n=1 e	
NMA ₀ =370,40 (Parte II)	246
Tabela 13.5 – Medidas de Desempenho Individual para n=4 e	
NMA ₀ =100 (Parte I)	247
Tabela 13.6 – Medidas de Desempenho Individual para n=4 e	
NMA ₀ =100 (Parte II)	248
Tabela 13.7 – Medidas de Desempenho Individual para n=4 e	
NMA ₀ =370,40 (Parte I)	249
Tabela 13.8 – Medidas de Desempenho Individual para n=4 e	
NMA ₀ =370,40 (Parte II)	250
Tabela 14.1 – Medidas de Desempenho Conjunto para n=1 e	
NMA ₀ =100 (Parte I)	252
Tabela 14.2 – Medidas de Desempenho Conjunto para n=1 e	
NMA ₀ =100 (Parte II)	253
Tabela 14.3 – Medidas de Desempenho Conjunto para n=1 e	
NMA ₀ =370,40 (Parte I)	254
Tabela 14.4 – Medidas de Desempenho Conjunto para n=1 e	
NMA ₀ =370,40 (Parte II)	255
Tabela 14.5 – Medidas de Desempenho Conjunto para n=4 e	
NMA ₀ =100 (Parte I)	256
Tabela 14.6 – Medidas de Desempenho Conjunto para n=4 e	
NMA ₀ =100 (Parte II)	257
Tabela 14.7 – Medidas de Desempenho Conjunto para n=4 e	
NMA ₀ =370,40 (Parte I)	258
Tabela 14.8 – Medidas de Desempenho Conjunto para n=4 e	
NMA ₀ =370,40 (Parte II)	259

Figura 2.1 – Exemplos de processos multicanal	32 48
Figura $4.1 - $ Algoritmo utilizado na simulação para obtenção das	-0
medidas de desembenho individual	103
Figura 4.2 – Algoritmo utilizado na simulação para obtenção das	100
medidas de desempenho conjunto	104
Figura 4.3 – Curva de valores de NMA, para 2 canais e	101
$NMA_{n}=200 (n=1)$	108
Figura 44 – Curva de valores de NMA ⁴ para 3 canais e	100
$NMA_0 = 200 (n=1)$	108
Figura 4.5 – Curva de valores de NMA ₁ para 15 canais e	100
$NMA_0=200 (n=1)$	109
Figura 4.6 – Curva de valores de NMA ₁ para 20 canais e	
$NMA_0=200 (n=1)$	109
Figura 4.7 – Curva de valores de NMA ₁ para 2 canais e	
NMA ₀ =200 (<i>n</i> =4)	115
Figura 4.8 – Curva de valores de NMA1 para 3 canais e	
NMA ₀ =200 (<i>n</i> =4)	115
Figura 4.9 – Curva de valores de NMA1 para 15 canais e	
NMA ₀ =200 (<i>n</i> =4)	116
Figura 4.10 – Curva de valores de NMA ₁ para 20 canais e	
NMA ₀ =200 (<i>n</i> =4)	116
Figura 4.11 – Comparação entre os valores de NMA ₁ individuais	
e conjuntos para 3 canais considerando o valor de NMA ₀ igual a	
200 amostras (<i>n</i> =1)	122
Figura 4.12 – Comparação entre os valores de NMA ₁ individuais	
e conjuntos para 20 canais considerando o valor de NMA ₀ igual a	
200 amostras (<i>n</i> =1)	122
Figura 4.13 – Comparação entre os valores de NMA1 individuais	
e conjuntos para 3 canais considerando o valor de NMA ₀ igual a	
200 amostras (<i>n</i> =4)	125
Figura 4.14 – Comparação entre os valores de NMA ₁ individuais	
e conjuntos para 20 canais considerando o valor de NMA ₀ igual a	
200 amostras (<i>n</i> =4)	125
Figura 6.1 – Algoritmo utilizado na simulação para o período de	
aquecimento da estatística EWMA	138
Figura 6.2 – Algoritmo utilizado na simulação para obtenção das	
medidas de desempenho	140
Figura 6.3 – Curvas de valores de NMA ₀ para GCG EWMA DNB	
(3 canais)	142
Figura 6.4 – Curvas de valores de NMA ₀ para GCG EWMA DNB	
(20 canais)	142
Figura 6.5 – Curvas de valores de NMA ₀ para GC EWMA R_t	
(3 canais)	143

Figura 6.6 – Curvas de valores de NMA ₀ para GC EWMA R_t	1/2
Figura 6.7 – Curvas de valores de NMA ₀ para GC MEWMA S ² (3	143
canais)	144
Figura 6.8 – Curvas de valores de NMA ₀ para GC MEWMA S ²	
(20 canais) Figura 6.0 Curves de valores de NMA para 15 canais	144
Figura 0.9 – Curvas de valores de NiviA ₁ para 15 carrais, NIMA ₂ -200 $\rho \delta = 0.5 (n-1)$	159
Figura 6.10 – Curvas de valores de NMA ₁ para 20 canais.	100
NMA ₀ =200 e $\delta *=0.5$ (<i>n</i> =1)	159
Figura 6.11 – Curvas de valores de NMA1 para 15 canais,	
NMA ₀ =200 e δ*=1,0 (n=1)	160
Figura 6.12 – Curvas de valores de NMA1 para 20 canais,	
NMA ₀ =200 e δ*=1,0 (<i>n</i> =1)	160
Figura 6.13 – Curvas de valores de NMA ₁ para 15 canais,	400
NMA ₀ =200 e $\delta = 0.5$ (<i>n</i> =4)	166
Figura 6.14 – Curvas de valores de NIVIA ₁ para 20 canais,	166
$INIVIA_0=200 \text{ e } 0.5 (1=4)$ Figura 6.15 - Curvas de valores de NIMA, para 15 capais	100
NMA ₂ =200 e $\delta = 1.0$ (n=4)	167
Figura 6.16 – Curvas de valores de NMA ₁ para 20 canais.	107
NMA ₀ =200 e δ *=1,0 (<i>n</i> =4)	167
Figura 7.1 – Algoritmo utilizado na simulação para o período de	
aquecimento individual da estatística EWMA	178
Figura 7.2 – Algoritmo utilizado na simulação para o período de	
aquecimento conjunto da estatística EWMA	179
Figura 7.3 – Algoritmo utilizado na simulação para obtenção das	101
Figura 7.4 – Algoritmo utilizado na simulação para obtenção das	101
medidas de desempenho conjunto	182
Figura 7.5 – Curvas de valores de NMA ₀ para GCG EWMA MR	-
DNB (3 canais)	184
Figura 7.6 – Curvas de valores de NMA ₀ para GCG EWMA MR	
DNB (20 canais)	184
Figura 7.7 – Curvas de valores de NMA ₀ para GCG EWMA $\ln(S^2)$	105
(5 callals, $I=4$) Figure 7.8 – Curves de valores de NMA ₂ para GCG EWMA $\ln(S^2)$	100
(20 canais, $n=4$)	185
Figura 7.9 – Comparação de desempenho entre as versões	
Shewhart e EWMA do GCG de DNB para NMA ₀ =200 (<i>c</i> =15, <i>n</i> =1)	194
Figura 7.10 - Comparação de desempenho entre as versões	
Shewhart e EWMA do GC de R _t para NMA ₀ =200 (c =15, n =1)	195
Figura 7.11 – Comparação de desempenho entre as versões	
Shewhart e EWMA do GC de S ² para NMA ₀ =200 ($c=15$, $n=1$)	195
Figura $7.12 - Comparação de desempenho entre as versõesShewhart e EWMA do GCG de MR de DNR para NMA = 200$	
(c=15, n=1)	196
Figura 7.13 – Comparação de desempenho entre as versões	.00
Shewhart e EWMA do GCG de DNB para NMA ₀ =200 (<i>c</i> =15, <i>n</i> =4)	202

Figura 7.14 – Comparação de desempenho entre as versões	
Shewhart e EWMA do GC de Rt para NMA ₀ =200 (<i>c</i> =15, <i>n</i> =4)	202
Figura 7.15 – Comparação de desempenho entre as versões	
Shewhart e EWMA do GC de S ² para NMA ₀ =200 (c =15, n =4)	203
Figura 7.16 – Comparação de desempenho entre o GCG de S ² e	
o GCG EWMA de $\ln(S^2)$ para NMA ₀ =200 (<i>c</i> =15, <i>n</i> =4)	203

Lista de abreviaturas e símbolos

α	probabilidade do erro tipo l
$lpha_{\it individual}$	probabilidade de alarme falso para cada canal individual
$lpha_{\it global}$	probabilidade de alarme falso global
A	evento "canal afetado sinalizar"
AUO	evento "qualquer canal sinalizar"
A_t	variável aleatória que representa a variação do nível-base do processo. É a parcela de variação que é comum a todos os canais
ARL	Average Run Length
1	vetor coluna de ordem $c \times 1$ de elementos iguais a 1
b_t	valor real do nível-base
\hat{b}_t	valor estimado do nível-base
β	probabilidade do erro tipo II
с	número de canais compondo o sistema
CEP	Controle Estatístico de Processos
CUSUM	Cumulative Sum
DNB	Diferenças em relação ao Nível-Base
δ	deslocamento na média do processo
δ^*	valor de deslocamento na média do processo para o qual se
	obtém o projeto ótimo
d ₂ , d ₃	constantes determinadas pelo número total de canais no
	processo
\mathcal{E}_t	ruído do processo
e_{ijk}	variável aleatória que representa a componente individual de
	cada canal

e_{tij}	ruído aleatório correspondente ao j-ésimo valor da
	componente individual do canal i no instante t
$\hat{e}_{\scriptscriptstyle tij}$	resíduos correspondente ao j-ésimo valor da componente
	individual do canal i no instante t (valor das diferenças em
	relação ao nível-base)
$\hat{e}_{ti.}$	diferenças do canal i (valor médio das diferenças) em
	relação ao nível-base estimado
E(.)	valor esperado
E _t	vetor de dimensão $c \times 1$, representando a variação individual
	de cada canal do processo
EWMA	Exponentially Weighted Moving Average
$F_{W,S}$	função de probabilidade acumulada da amplitude relativa
G	matriz de dimensão $c imes c$, cujas colunas são iguais aos
	autovetores de Σ
\mathbf{G}_1	vetor de dimensão $c \times 1$ formado pela primeira coluna de ${f G}$
\mathbf{G}_2	matriz de dimensão $c \times (c-1)$ formado pelas $c-1$ colunas de
	G
γ	fator de aumento na dispersão do processo
γ*	fator de aumento na dispersão do processo para o qual se
	obtém o projeto ótimo
GC	Gráfico de Controle
GCC	Group Control Chart
GCG	Gráfico de Controle de Grupos
H ₀	hipótese nula
Н	matriz centrada, idempotente
I	matriz identidade
i.i.d.	independente e identicamente distribuído
К	fator de abertura dos limites de controle
K _{mru}	fator de abertura do limite superior de controle do gráfico de
	R _t e de EWMA de R _t de Mortell e Runger (1995)

K _{dnb}	fator de abertura dos limites de controle do gráfico das
	diferenças em relação ao nível-base de Barbosa (2008)
K _{MR}	fator de abertura do limite superior de controle do GCG de
	MR de DNB proposto
K _{Ins}	fator de abertura do limite superior de controle do GCG de
	EWMA de In(S ²) proposto
K _{ZMR}	fator de abertura do limite superior de controle do GCG de
	EWMA de MR DNB proposto
K _{Zdnb}	fator de abertura dos limites de controle do GCG de EWMA
	de DNB proposto
λ	constante de amortecimento do modelo de EWMA
λ*	valor da constante de amortecimento do modelo de EWMA
	que fornece o menor NMA ₁
LSCz	limite superior de controle para o gráfico de controle de
	EWMA
LSC _{Rt}	limite superior de controle para o gráfico de controle de Rt de
	Mortell e Runger (1995)
$LSC_{Z_{R_t}}$	limite superior de controle para o gráfico de controle de
	EWMA de R _t de Mortell e Runger (1995)
LSC _{RAM}	limite superior de controle para o gráfico de controle de S ² de
	Runger, Alt e Montgomery (1996)
LSC _{GCGS²}	limite superior de controle para o GCG de S ² proposto
LSC _{GCGMR}	limite superior de controle para o GCG de MR proposto
$LSC_{GCGZ_{ln}}$	limite superior de controle para o GCG de EWMA de In(S ²)
	proposto
LSC _{GCG ZMR}	limite superior de controle para o GCG de EWMA de MR
	proposto
LSC_{Zdnb}	limite superior de controle para o GCG de EWMA de DNB
	proposto
	L L

LICz	limite inferior de controle para o gráfico de controle de EWMA
LIC _{Zdnb}	limite inferior de controle para o GCG de EWMA de DNB
	proposto
In(S ²)	variância amostral linearizada
μ	média do processo
μ_0	valor-alvo da média do processo
MRt	amplitude móvel no instante t
MR DNB	amplitude móvel das Diferenças em relação ao Nível-Base
MSP	Multiple Stream Process
n	tamanho de amostra por canal
NMA	número médio de amostras até um sinal de descontrole no
	processo
NMA ₀	número médio de amostras até um alarme falso
NMA ₁	número médio de amostras até um alarme verdadeiro, a
	partir do instante de ocorrência da causa especial de
	variação
υ	parâmetro de não-centralidade da distribuição Qui-quadrado
$O \cap \overline{A}$	evento "sinalização apenas por um canal não afetado"
PMC	Processo Multicanal
r	Comprimento Significativo de Corrida
$ ho_{ij}$	coeficiente de correlação entre duas diferenças quaisquer
	$\hat{e}_{ii.}$ e $\hat{e}_{ij.}$
R	amplitude amostral
RL	Run-Length
SDRL	desvio-padrão de <i>Run-Length</i>
S	desvio-padrão amostral
S ²	variância amostral
σ	desvio-padrão do processo
$\sigma_{_0}^2$	variância do processo quando está em controle
σ_1^2	variância do processo quando está fora de controle

$\sigma_{_a}$	desvio-padrão da componente A _t
$\sigma_{_{eti.}}$	desvio-padrão da componente e _{ti.}
$\boldsymbol{\sigma}_{Zt}$	desvio-padrão da estatística EWMA
$\sigma(R_t)$	desvio-padrão da amplitude amostral
$\sigma(Z_{\scriptscriptstyle R_t})$	desvio-padrão da estatística EWMA da amplitude amostral
$\sigma(Z_{\ln_i(t)})$	desvio-padrão da estatística EWMA de In(S ²)
Σ T ²	matriz de covariâncias dos dados observados nos <i>c</i> canais estatística multivariada de Hotelling(1942)
θ	conjunto de parâmetros do projeto do gráfico de controle
U_1	primeira componente principal
U_2	contém as <i>c-1</i> componentes remanescentes
<i>Var</i> (.)	variância
VSSI	Variable Sample Size and Sampling Interval
X _t	vetor das observações de dimensão $c \times 1$ de todos os canais
	no instante t
X _t	amostra retirada do processo no instante t
X_{tj}	amostra retirada do canal j no instante t
X _{tij}	j-ésima medida obtida no canal i no instante t
X_{tjk}	variável aleatória que representa o valor esperado da k-
	ésima observação contida no canal j no instante t
$\overline{\mathbf{X}}$	média amostral da variável x
Z_0	valor inicial da estatística de controle EWMA
Z_t	estatística de controle EWMA no instante t
$Z_{\ln_i(t)}$	estatística de controle EWMA de ln(S ²) do canal i no instante
	t
$Z_{MR_{ii}}$	estatística de controle EWMA de MR DNB do canal i no
	instante t

- $Z_{\overline{e}ii.}$ estatística de controle EWMA das diferenças do canal i no instante t
- $\mathbf{Z}_{t}(\mathbf{X})$ vetor de estatísticas de controle EWMA das observações originais
- $\mathbf{Z}_{t}(\mathbf{U}_{2})$ vetor de estatísticas de controle EWMA das c-1 componentes remanescentes
- Z_{R_t} estatística de controle EWMA de R_t de Mortell e Runger (1995)
- Z_{RAM_t} estatística de controle EWMA de S² de Runger, Alt e Montgomery (1996)
- Z_{t-1} estatística de controle EWMA no instante (t -1)