

Diego Orlando

Dinâmica Não-Linear, Instabilidade e Controle de Sistemas Estruturais com Interação Modal

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

> Orientadores: Paulo Batista Gonçalves Giuseppe Rega Stefano Lenci

Rio de Janeiro, maio de 2010

Diego Orlando

Dinâmica Não-Linear, Instabilidade e Controle de Sistemas Estruturais com Interação Modal

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Paulo Batista Gonçalves Presidente/Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. Carlos Eduardo Nigro Mazzilli USP - SP

> > > Prof. Marcelo Amorim Savi COPPE/UFRJ

> > > > Prof. Raul Rosas e Silva PUC-Rio

Prof. Deane de Mesquita Roehl PUC-Rio

Prof. José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 07 de maio de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Diego Orlando

Graduou-se em Engenharia Civil pela Universidade de Passo Fundo (UPF), em janeiro de 2004. Ingressou no mestrado em Engenharia Civil da PUC-Rio em março de 2004, atuando na área de Instabilidade e Dinâmica das Estruturas. Em 2006, continuando na mesma linha de pesquisa, iniciou o curso de doutorado na PUC-Rio.

Ficha Catalográfica

Orlando, Diego

Dinâmica não-linear, instabilidade e controle de sistemas estruturais com interação modal / Diego Orlando ; orientadores: Paulo Batista Gonçalves, Giuseppe Rega, Stefano Lenci. – 2010. 300 f. : il. (color.); 30 cm

Tese (Doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, Rio de Janeiro, 2010. Inclui bibliografia

1. Engenharia civil – Teses. 2. Acoplamento modal. 3. Sensibilidade a imperfeições. 4. Integridade dinâmica. 5. Modos não-lineares. I. Gonçalves, Paulo Batista. II. Rega, Giuseppe. III. Lenci, Stefano. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título.

Dedico este trabalho como minha mais saudosa homenagem aos meus pais, Wilson Orlando e Melânia Maria Orlando, por todo amor e carinho. Ao meu irmão Thiago Orlando, pelo amor e amizade.

Agradecimentos

Agradeço a vida, e àqueles que passam fazendo-a valer à pena.

Ao professor Paulo Batista Gonçalves pelas conversas, pelo constante auxílio, pela paciência e por sua amizade.

Aos professores Giuseppe Rega e Stefano Lenci, pessoas sensacionais, com qual tive o prazer de conviver e aprender muito.

Aos professores que participaram da comissão examinadora.

As pessoas que me estenderam as mãos quando mais precisei no período que passei na Itália, Irmãs Adelaide e Adriana obrigado.

Juntamente uni-se a Família Thompson, que não somente me estenderam as mãos, mas também abriram sua casa. Jack, Rosa, Olivia e Hannah, hoje, vocês fazem parte de minha família.

Aos grandes amigos Henrique Marek, Eduardo Mattos, Erblai Mattos Junior, Cleiton Batista Silvério, André Guimarães e Osmar Cervieri, que mesmo longe sempre me incentivaram e apoiaram.

Aos amigos Patrício e Juliana Pires, Walter Menezes, Thiago Pecin, André Müller, Frederico e Renata Alves, Eduardo Pasquetti, Magnus Meira, Joabson Alves, Julio e Gisele Holtz, Patrícia Cunha, Fernando Ramires e Alexandre Del Savio obrigado pelo incentivo e apoio.

Aos amigos e companheiros da sala 609, em especial José Silvestre, João Pantoja, Christiano Teixera, João Krause, Paul Antezana e Jean Aguilera.

Aos professores, engenheiros e amigos Zacarias Chamberlain e Gilnei Artur Drehmer pelo constante apoio e incentivo.

Aos demais professores do departamento de Engenharia Civil da PUC-Rio.

A Cnpq e a Capes pelo apoio financeiro, sem os quais este trabalho não poderia ser realizado.

Por fim, a todos aqueles que contribuíram na realização desta Tese.

Resumo

Orlando, Diego; Gonçalves, Paulo Batista; Rega, Giuseppe; Lenci, Stefano. Dinâmica Não-Linear, Instabilidade e Controle de Sistemas Estruturais com Interação Modal. Rio de Janeiro, 2010. 300p. Tese de Doutorado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo desta tese de doutorado é estudar a influência do acoplamento de modos de flambagem no comportamento estático e particularmente no comportamento dinâmico não-linear de elementos estruturais suscetíveis a flambagem. Para isto, usam-se dois modelos discretos conhecidos por seu complexo comportamento não-linear: o modelo de Augusti e um modelo de torre estaiada com dois graus de liberdade. Inicialmente estuda-se a estabilidade dos dois modelos perfeitos, incluindo a obtenção de todos os caminhos de equilíbrio pré- e pós-críticos e o efeito das imperfeições na capacidade de carga da estrutura e na estabilidade dos diversos caminhos de equilíbrio. O objetivo desta análise é entender como as diversas soluções pós-críticas instáveis e as imperfeições influenciam a geometria da superfície de energia potencial, o contorno do vale potencial pré-crítico e a integridade da estrutura frente a inevitáveis perturbações externas. A seguir estuda-se o comportamento dos modelos em vibração livre. Após a identificação das freqüências naturais, dos modos lineares de vibração e das ressonâncias internas, estuda-se, com o objetivo de entender a dinâmica dos modelos, usando as ferramentas da mecânica Hamiltoniana, a geometria da região segura que circunda a posição de equilíbrio pré-crítica, cuja estabilidade se deseja preservar, e as variedades invariantes dos pontos de sela que definem esta região. Ainda, no contexto da análise das vibrações livres, determinam-se todos os modos não-lineares de vibração, sua estabilidade e sua relação freqüência-amplitude. Estes modos não-lineares estáveis e instáveis, que surgem em virtude do acoplamento modal e das simetrias dos modelos, controlam e explicam a sua dinâmica sob vibração forçada. Com base nesses resultados, estuda-se o comportamento dos modelos sob uma excitação de base, através de um estudo sistemático de bifurcações globais e locais, e a integridade das soluções estáveis através da evolução e estratificação das bacias de atração e das medidas de integridade dinâmica. Finalmente estuda-se como aumentar a segurança da estrutura através do controle das bifurcações globais homoclínicas e heteroclínicas. A presente tese revela um conjunto de comportamentos que são típicos dos dois modelos e que podem ser entendidos como fenômenos característicos de estruturas que exibem acoplamento modal. Assim, a principal contribuição deste trabalho reside na identificação de algumas características e aspectos particulares dessa classe de estruturas, assunto inédito na literatura.

Palavras-chave

Acoplamento modal, sensibilidade a imperfeições, integridade dinâmica e modos não-lineares.

Abstract

Orlando, Diego; Gonçalves, Paulo Batista; Rega, Giuseppe; Lenci, Stefano. Nonlinear Dynamics, Instability and Control of Structural Systems with Modal Interaction. Rio de Janeiro, 2010. 300p. Tese de Doutorado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this thesis is to study the influence of coupled buckling modes on the static and particularly on the nonlinear dynamic behavior of structural components liable to buckling. For this, two discrete two degrees of freedom models known for their complex nonlinear behavior are selected: the well-known Augusti's model and a simplified model of cable-stayed tower. Initially, the stability analysis of the perfect models is conducted, including the identification of all pre- and post-critical equilibrium paths, and the effect of imperfections on the load capacity of the structure and stability of the various equilibrium paths. The purpose of this analysis is to understand how the various unstable post-critical solutions and imperfections influence the geometry of the potential energy surface, the contour of the pre-buckling potential well and the integrity of the structure under the inevitable external disturbances. Then the behavior of the models in free vibration is investigated, including the identification of the natural frequencies, linear vibration modes and possible internal resonance. To understand the dynamics of the models, the geometry of the safe region surrounding the pre-buckling equilibrium position and the invariant manifolds of saddle points that define this region are obtained using the tools of Hamiltonian mechanics. Also, as part of the free vibrations analysis, all stable and unstable nonlinear vibration modes and their frequency-amplitude relations are obtained. These nonlinear stable and unstable modes, which arise due to modal coupling and the symmetries of the models, control and explain the dynamics of the model under forced vibration. Based on these results, we study the behavior of the models subjected to a base excitation through a systematic study of the global and local bifurcations, and the integrity of stable solutions through the evolution and stratification of the basins of attraction and dynamic integrity measures. Finally, we study how to increase the safety of the structure through the control of global homoclinic and heteroclinic bifurcations. This thesis identifies a number of behaviors that are typical of the two models and can be understood as characteristic phenomena of structures exhibiting modal coupling. Thus the main contribution of this work is to identify certain characteristics and particular aspects of this class of structures, a first contribution to this research area.

Keywords

Modal coupling, imperfection sensitivity, dynamic integrity and nonlinear modes.

Sumário

1 Introdução	35
1.1. Objetivo	40
1.2. Organização do Trabalho	41
2 Formulação do Problema	43
2.1. Modelo de Augusti	43
2.1.1. Energia Cinética	45
2.1.2. Energia Potencial Total	46
2.1.3. Amortecimento	47
2.1.4. Função de Lagrange	48
2.1.5. Equações de Movimento	49
2.2. Modelo de Torre Estaiada	49
2.2.1. Energia Cinética	50
2.2.2. Energia Potencial Total	51
2.2.3. Amortecimento	52
2.2.4. Função de Lagrange	52
2.2.5. Equações de Movimento	53
3 Análise Estática	54
3.1. Modelo de Augusti	54
3.1.1. Modelo Perfeito	54
3.1.1.1. Caminhos Pós-Críticos	56
3.1.1.2. Superfícies de Energia	57
3.1.2. Influência da Rigidez Relativa das Molas	58
3.1.2.1. Caminhos Pós-Críticos	59
3.1.2.2. Superfícies de Energia	60
3.1.3. Modelo com Imperfeição Geométrica	61
3.1.3.1. Caminhos Não-Lineares de Equilíbrio	62
3.1.3.2. Superfícies de Energia	65
3.2. Modelo de Torre Estaiada	66
3.2.1. Modelo Perfeito	66

3.2.1.1. Caminhos Pós-Críticos	70
3.2.1.2. Superfícies de Energia	74
3.2.2. Influência da Rigidez Relativa das Molas	76
3.2.2.1. Caminhos Pós-Críticos	78
3.2.2.2. Superfícies de Energia	79
3.2.3. Modelo com Imperfeição Geométrica	80
3.2.3.1. Caminhos Não-Lineares de Equilíbrio	82
3.2.3.2. Superfícies de Energia	85
4 Análise Dinâmica – Vibração Livre	86
4.1. Modelo de Augusti	86
4.1.1. Freqüências Naturais	87
4.1.2. Princípio da Conservação de Energia	94
4.1.3. Variedades Invariantes dos Pontos de Sela	99
4.1.4. Modos Não-Lineares de Vibração	103
4.1.4.1. Modelo Perfeito	107
4.1.4.2. Influência da Rigidez Relativa das Molas	117
4.1.4.3. Modelo com Imperfeição Geométrica	121
4.2. Modelo de Torre Estaiada	130
4.2.1. Freqüências Naturais	132
4.2.2. Princípio da Conservação de Energia	140
4.2.3. Variedades Invariantes dos Pontos de Sela	144
4.2.4. Modos Não-Lineares de Vibração	148
4.2.4.1. Modelo Perfeito	149
4.2.4.2. Influência da Rigidez Relativa das Molas	155
4.2.4.3. Modelo com Imperfeição Geométrica	163
5 Análise Dinâmica – Vibração Forçada	172
5.1. Introdução	172
5.1.1. Fronteiras de Escape	172
5.1.2. Diagramas de Bifurcação	173
5.1.3. Bacias de Atração e Integridade Dinâmica	177
5.2. Modelo de Augusti	178
5.2.1. Modelo Perfeito	180

5.2.2. Influência da Rigidez Relativa das Molas	200
5.2.3. Modelo com Imperfeição Geométrica	207
5.3. Modelo de Torre Estaiada	214
5.3.1. Modelo Perfeito	217
5.3.2. Influência da Rigidez Relativa das Molas	229
5.3.3. Modelo com Imperfeição Geométrica	238
6 Controle da Erosão das Bacias de Atração	244
6.1. Introdução	244
6.1.1. Medidas de Integridade	244
6.1.2. Redução da Integridade	245
6.1.3. Controle da Integridade	247
6.2. Equações de Movimento Desacopladas	250
6.2.1. Modelo de Augusti	250
6.2.2. Modelo de Torre Estaiada	251
6.3. Formulação do Controle	253
6.3.1. Bifurcações Globais	254
6.3.2. Controle a partir da Adição de Super-Harmônicos	260
6.3.3. Controle Ótimo	265
6.4. Aplicação do Controle Ótimo	267
6.4.1. Modelo de Augusti	267
6.4.1.1. Modelo Perfeito	267
6.4.1.2. Modelo com Imperfeição Geométrica	275
6.4.2. Modelo de Torre Estaiada	283
7 Conclusões e Sugestões	289
7.1. Conclusões	289
7.2. Sugestões	291
8 Referências Bibliográficas	292

Lista de Figuras

Figura 2.1: Modelo de Augusti.	43
Figura 2.2: Modelo de Augusti imperfeito.	44
Figura 2.3: Modelo simplificado de torre estaiada.	49
Figura 3.1: Caminhos pós-críticos. Modelo de Augusti perfeito.	56
Figura 3.2: Projeções dos caminhos pós-críticos. Modelo de Augusti	
perfeito.	56
Figura 3.3: Superfícies de energia potencial total. Modelo de Augusti	
perfeito.	58
Figura 3.4: Caminhos pós-críticos. Modelo de Augusti considerando a	
influência da rigidez relativa das molas.	59
Figura 3.5: Projeções dos caminhos pós-críticos. Modelo de Augusti	
considerando a influência da rigidez relativa das molas.	60
Figura 3.6: Superfícies de energia potencial total para $\lambda = 0.9$. Modelo de	е
Augusti considerando a influência da rigidez relativa das molas.	61
Figura 3.7: Cortes nas superfícies de energia potencial total para $\lambda = 0.9$).
Modelo de Augusti considerando a influência da rigidez relativa das	
molas.	61
Figura 3.8: Caminhos não-lineares de equilíbrio para $\phi = 1^{\circ} e \psi = 0^{\circ}$.	
Modelo de Augusti com imperfeição geométrica.	63
Figura 3.9: Projeções dos caminhos não-lineares de equilíbrio para	
$\phi = 1^{\circ} e \psi = 0^{\circ}$. Modelo de Augusti com imperfeição geométrica.	63
Figura 3.10: Caminhos não-lineares de equilíbrio para $\phi = 1^{\circ}$. Modelo de	Э
Augusti com imperfeição geométrica.	64
Figura 3.11: Projeções dos caminhos não-lineares de equilíbrio para	
$\phi = 1^{\circ}$. Modelo de Augusti com imperfeição geométrica.	64
Figura 3.12: Variação da carga limite (ponto de bifurcação) com as	
grandezas que definem a imperfeição, ϕ e ψ . Modelo de Augusti com	
imperfeição geométrica.	65
Figura 3.13: Superfícies de energia potencial total para $\lambda = 0.9$ e $\phi = 1^{\circ}$.	

Modelo de Augusti com imperfeição geométrica.	66
Figura 3.14: Comportamento do modelo de torre estaiada em função do	C
ângulo eta (Thompson & Gaspar, 1977).	69
Figura 3.15: Caminhos pós-críticos para $\beta = 75^{\circ}$ - caso monoclinal.	
Modelo de torre estaiada perfeito.	71
Figura 3.16: Projeções dos caminhos pós-críticos para β = 75° - caso	
monoclinal. Modelo de torre estaiada perfeito.	71
Figura 3.17: Caminhos pós-críticos para $\beta = 50^{\circ}$ - caso homeoclinal.	
Modelo de torre estaiada perfeito.	72
Figura 3.18: Projeções dos caminhos pós-críticos para $\beta = 50^{\circ}$ - caso	
homeoclinal. Modelo de torre estaiada perfeito.	72
Figura 3.19: Caminhos pós-críticos para $\beta = 120^{\circ}$ - caso anticlinal.	
Modelo de torre estaiada perfeito.	73
Figura 3.20: Projeções dos caminhos pós-críticos para $\beta = 120^{\circ}$ - caso	
anticlinal. Modelo de torre estaiada perfeito.	73
Figura 3.21: Superfícies de energia potencial total para β = 75° - caso	
monoclinal. Modelo de torre estaiada perfeito.	74
Figura 3.22: Superfícies de energia potencial total para β = 50° - caso	
homeoclinal. Modelo de torre estaiada perfeito.	75
Figura 3.23: Superfícies de energia potencial total para $\beta = 120^{\circ}$ - caso	
anticlinal. Modelo de torre estaiada perfeito.	76
Figura 3.24: Caminhos pós-críticos para $\beta = 120^{\circ}$ - caso anticlinal.	
Modelo de torre estaiada considerando a influência da rigidez relativa	
das molas.	78
Figura 3.25: Projeções dos caminhos pós-críticos para $\beta = 120^{\circ}$ - caso	
anticlinal. Modelo de torre estaiada considerando a influência da rigidez	Z
relativa das molas.	79
Figura 3.26: Superfícies de energia potencial total para $\lambda = 0.7$ e $\beta = 120$)° -
caso anticlinal. Modelo de torre estaiada considerando a influência da	
rigidez relativa das molas.	80
Figura 3.27: Caminhos não-lineares de equilíbrio para $\phi = 1^{\circ} e \beta = 120^{\circ}$	-
caso anticlinal. Modelo de torre estaiada com imperfeição geométrica.	83

Figura 3.28: Projeções dos caminhos não-lineares de equilíbrio para $\phi = 1^{\circ}$ e $\beta = 120^{\circ}$ - caso anticlinal. Modelo de torre estaiada com imperfeição geométrica. 83 Figura 3.29: Variação da carga limite (ponto de bifurcação) com as grandezas que definem a imperfeição, $\phi \in \psi$, para $\beta = 120^{\circ}$ - caso anticlinal. Modelo de torre estaiada com imperfeição geométrica. 84 Figura 3.30: Superfícies de energia potencial total para $\phi = 1^{\circ}$, $\lambda = 0.7$ e $\beta = 120^{\circ}$ - caso anticlinal. Modelo de torre estaiada com imperfeição geométrica. 85 Figura 4.1: Configurações do modelo de Augusti. 88 Figura 4.2: Variação da maior freqüência natural com o parâmetro de rigidez α , para $\lambda = 0.9$. Modelo de Augusti considerando a influência da 93 rigidez relativa das molas. Figura 4.3: Variação das freqüências naturais com os parâmetros $\psi \in \phi$, para $\lambda = 0.9$. Modelo de Augusti com imperfeição geométrica. 93 Figura 4.4: Seções das bacias de atração conservativas em 3D $(\theta_1 \mathbf{x} \theta_2 \mathbf{x} d \theta_1 / dt)$, para $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti. 97 Figura 4.5: Seções das bacias de atração conservativas em 3D $(d\theta_1/dtxd\theta_2/dtx\theta_1)$, para $\lambda = 0.9 e \omega_p = 1.0/s$. Modelo de Augusti. 97 Figura 4.6: Seções das bacias de atração conservativas em 2D, para $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti. 98 Figura 4.7: Projeções das variedades invariantes dos pontos de sela, para $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti perfeito. 99 Figura 4.8: Projeções em planos de fase da reposta no tempo do primeiro ponto sela perturbado, para $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti 100 perfeito. Figura 4.9: Projeções das variedades invariantes e da reposta no tempo no plano $\theta_1 x \theta_2$, para $\alpha = 1.15$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti considerando a influência da rigidez relativa das molas. 101 Figura 4.10: Projeções das variedades invariantes e da reposta no tempo no plano $\theta_1 x \theta_2$, para $\psi = 0^\circ$, $\phi = 1^\circ$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti com imperfeição geométrica. 101

Figura 4.11: Projeções das variedades invariantes e da reposta no	
tempo, para $\psi = 45^{\circ}$, $\phi = 1^{\circ}$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti	
com imperfeição geométrica.	102
Figura 4.12: Seções de Poincaré para $\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$	•
Modelo de Augusti perfeito.	109
Figura 4.13: Comportamento no domínio do tempo dos pontos P01 e R	> 02,
para $\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti perfeito.	110
Figura 4.14: Comportamento no domínio do tempo dos pontos	
P11, P21, P12 e P22, para $\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$.	
Modelo de Augusti perfeito.	112
Figura 4.15: Seções de Poincaré dos pontos PS11, PQ11 e PC11, par	a
$\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti perfeito.	113
Figura 4.16: Coordenadas auxiliares, Modelo de Augusti perfeito.	114
Figura 4.17: Relações freqüência-amplitude para $\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e	Э
$\omega_p = 1.0/s$. Modelo de Augusti perfeito.	115
Figura 4.18: Relações freqüência-amplitude dos modos acoplados	
instáveis dos pontos de sela PS11, PS21, PS12 e PS22, para	
$\omega_1 = \omega_2 = 1/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti perfeito.	116
Figura 4.19: Seções de Poincaré com 5 % da energia do ponto de sela	а,
para $\alpha = 1.3$, $\omega_1 = 1/3$, $\omega_2 = 2/3$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti	
considerando a influência da rigidez relativa das molas.	118
Figura 4.20: Comportamento no domínio do tempo dos pontos P01 e R	> 02,
para $\alpha = 1.3$, $\omega_1 = 1/3$, $\omega_2 = 2/3$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti	
considerando a influência da rigidez relativa das molas.	118
Figura 4.21: Comportamento dos pontos P12, P22, P32 e P42, para	
$\alpha = 1.3, \ \omega_1 = 1/3, \ \omega_2 = 2/3, \ \lambda = 0.9 \ e \ \omega_p = 1.0/s.$ Modelo de Augusti	
considerando a influência da rigidez relativa das molas.	119
Figura 4.22: Relações freqüência-amplitude dos modos não-lineares	
estáveis desacoplados, para $\alpha = 1.3$, $\omega_1 = 1/3$, $\omega_2 = 2/3$, $\lambda = 0.9$ e $\omega_p = 1.0$)/s.
Modelo de Augusti considerando a influência da rigidez relativa das	
molas.	120

Figura 4.23: Seções de Poincaré para $\psi = 0^{\circ}, \phi = 1^{\circ}, \omega_1 = 0.311, \omega_2 = 0.353$, $\lambda = 0.9$ e $\omega_{\rm p} = 1.0$ /s. Modelo de Augusti com imperfeição geométrica. 123 Figura 4.24: Comportamento no domínio do tempo dos pontos P01 e P02, para $\psi = 0^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.311$, $\omega_2 = 0.353$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti com imperfeição geométrica. 124 Figura 4.25: Relação freqüência-amplitude do modo não-linear estável desacoplado no plano $\theta_{D1}xd\theta_{D1}/dt$, para $\psi = 0^\circ$, $\phi = 1^\circ$, $\omega_1 = 0.311$, $\omega_2 = 0.353$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti com imperfeição 124 geométrica. Figura 4.26: Relação freqüência-amplitude do modo acoplado estável do ponto P01, para $\psi = 0^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.311$, $\omega_2 = 0.353$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. 125 Modelo de Augusti com imperfeição geométrica. Figura 4.27: Seções de Poincaré com 50 % da energia do ponto de sela, para $\psi = 45^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.302$, $\omega_2 = 0.361$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti com imperfeição geométrica. 125 Figura 4.28: Seção de Poincaré com 50 % da energia do ponto de sela no plano $\theta_{D1} \mathbf{x} \theta_{D2}$, para $\psi = 45^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.302$, $\omega_2 = 0.361$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti com imperfeição geométrica. 126 Figura 4.29: Comportamento no domínio do tempo dos pontos P11, P21, P12 e P22, para $\psi = 45^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.302$, $\omega_2 = 0.361$, $\lambda = 0.9$ e $\omega_p = 1.0/s$. Modelo de Augusti com imperfeição geométrica. 127 Figura 4.30: Coordenadas auxiliares considerando $\psi = 45^{\circ}$. Modelo de Augusti com imperfeição geométrica. 128 Figura 4.31: Relações freqüência-amplitude dos modos não-lineares nãosimilares estáveis acoplados dos pontos P21 e P12, para $\psi = 45^{\circ}, \phi = 1^{\circ}, \phi = 1^{\circ}$ $\omega_1 = 0.302$, $\omega_2 = 0.361$, $\lambda = 0.9$ e $\omega_p = 1.0$ /s. Modelo de Augusti com 129 imperfeição geométrica. Figura 4.32: Relação freqüência-amplitude dos modos não-lineares similares estáveis acoplados dos pontos P11 e P12, para $\psi = 45^{\circ}, \phi = 1^{\circ}, \phi = 1^{\circ}$ $\omega_1 = 0.302$, $\omega_2 = 0.361$, $\lambda = 0.9$ e $\omega_0 = 1.0$ /s. Modelo de Augusti com 130 imperfeição geométrica.

Figura 4.33: Variação das freqüências naturais em função de rigidez α ,

para $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 139 Figura 4.34: Variação das freqüências naturais com os parâmetros $\psi \in \phi$, para $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo de torre estaiada com imperfeição 139 geométrica. Figura 4.35: Seções das bacias de atração conservativas em 3D $(u_1 x u_2 x d u_1/dt)$, para $\omega_p = 1.0/s$, $\lambda = 0.7 \text{ e } \beta = 120^\circ$. Modelo de torre estaiada. 143 Figura 4.36: Seções das bacias de atração conservativas em 2D, para $\omega_p = 1.0/s$, $\lambda = 0.7 \text{ e } \beta = 120^\circ$. Modelo de torre estaiada. 144 Figura 4.37: Projeções das variedades invariantes dos pontos de sela, para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada perfeito. 145 Figura 4.38: Projeções da reposta no tempo do primeiro ponto sela perturbado, para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada 146 perfeito. Figura 4.39: Projeções das variedades invariantes e da reposta no tempo no plano $u_1 x u_2$, para $\alpha = 0.82$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 146 Figura 4.40: Projeções das variedades invariantes e da reposta no tempo, para $\alpha = 1.18$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 147 Figura 4.41: Projeções das variedades invariantes e da reposta no tempo no plano $u_1 x u_2$, para $\psi = 0^\circ$, $\phi = 1^\circ$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada com imperfeição geométrica. 148 Figura 4.42: Projeções das variedades invariantes e da reposta no tempo no plano $u_1 x u_2$, para $\psi = 90^\circ$, $\phi = 1^\circ$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0/s$. Modelo de torre estaiada com imperfeição geométrica. 148 Figura 4.43: Seções de Poincaré com 50 % da energia do ponto de sela, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada perfeito. 150 Figura 4.44: Comportamento no domínio do tempo dos pontos P01, P11,

P21, P31, P41, P12, P22, P32 e P42, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^{\circ}$

e $\omega_p = 1.0$ /s. Modelo de torre estaiada perfeito. 151 Figura 4.45: Coordenadas auxiliares. Modelo de torre estaiada perfeito. 152 Figura 4.46: Relação fregüência-amplitude do modo não-linear estável desacoplado no plano $u_2 x du_2/dt$, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0/s$. Modelo de torre estaiada perfeito. 153 Figura 4.47: Relações freqüência-amplitude dos modos acoplados instáveis dos pontos de sela PS11, PS21 e PS12, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada perfeito. 154 Figura 4.48: Relações freqüência-amplitude dos modos não-lineares nãosimilares estáveis acoplados associados aos pontos P31, P41, P32 e P42, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada perfeito. 154 Figura 4.49: Relação freqüência-amplitude dos modos não-lineares similares estáveis acoplados dos pontos P11, P21, P12 e P22, para $\omega_1 = \omega_2 = 0.655$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada 155 perfeito. Figura 4.50: Seções de Poincaré com 50 % da energia do ponto de sela, para $\alpha = 0.82$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^\circ e \omega_p = 1.0/s$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 157 Figura 4.51: Comportamento no domínio do tempo dos pontos P11, P21, P31, P41, P12 e P22, para $\alpha = 0.82$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 158 Figura 4.52: Relações fregüência-amplitude do modo desacoplado instável do ponto de sela PS01, para $\alpha = 0.82$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 159 Figura 4.53: Relações freqüência-amplitude dos modos não-lineares acoplados estáveis, para $\alpha = 0.82$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_{\rm p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez

relativa das molas.

Figura 4.54: Seções de Poincaré com 50 % da energia do ponto de sela, para $\alpha = 1.18$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 160 Figura 4.55: Comportamento no domínio do tempo dos pontos P01, P11, P21, P12, P22, P32, P42 e P52, para $\alpha = 1.18$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 161 Figura 4.56: Relação freqüência-amplitude do modo não-linear estável desacoplado no plano $u_2 x du_2/dt$, P01, para $\alpha = 1.18$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\omega_{p} = 1.0$ /s. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 162 Figura 4.57: Relações freqüência-amplitude dos modos não-lineares acoplados estáveis, para $\alpha = 1.18$, $\omega_1 = 0.414$, $\omega_2 = 0.828$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0/s$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 162 Figura 4.58: Seções de Poincaré com 50 % da energia do ponto de sela, para $\psi = 0^{\circ}, \phi = 1^{\circ}, \omega_1 = 0.609, \omega_2 = 0.697, \lambda = 0.7, \beta = 120^{\circ} e \omega_p = 1.0/s.$ Modelo de torre estaiada com imperfeição geométrica. 167 Figura 4.59: Comportamento no domínio do tempo dos pontos P11, P21, P12 e P22, para $\psi = 0^{\circ}, \phi = 1^{\circ}, \omega_1 = 0.609, \omega_2 = 0.697, \lambda = 0.7, \beta = 120^{\circ} e$ $\omega_{p} = 1.0/s$. Modelo de torre estaiada com imperfeição geométrica. 167 Figura 4.60: Relações freqüência-amplitude dos modos acoplados associados aos pontos P11, P21, P12 e P22, para $\psi = 0^{\circ}, \phi = 1^{\circ}, \phi = 1^{\circ}$ $\omega_1 = 0.609, \ \omega_2 = 0.697, \ \lambda = 0.7, \ \beta = 120^\circ e \ \omega_p = 1.0/s.$ Modelo de torre estaiada com imperfeição geométrica. 168 Figura 4.61: Seções de Poincaré para $\psi = 90^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.612$, $\omega_2 = 0.693$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada com imperfeição geométrica. 169 Figura 4.62: Comportamento no domínio do tempo dos pontos P01 e P12 (P12'), para $\psi = 90^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.612$, $\omega_2 = 0.693$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e

159

$\omega_p = 1.0$ /s. Modelo de torre estaiada com imperfeição geométrica.	170
Figura 4.63: Relação freqüência-amplitude do modo não-linear estável	
desacoplado no plano $u_2 x du_2 / dt$, para $\psi = 90^\circ$, $\phi = 1^\circ$, $\omega_1 = 0.612$,	
$\omega_2 = 0.693$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada com	
imperfeição geométrica.	170
Figura 4.64: Relação freqüência-amplitude do modo não-linear acoplad	oc
estável associado ao ponto P12 (P12'), para $\psi = 90^{\circ}$, $\phi = 1^{\circ}$, $\omega_1 = 0.612$,	I
$\omega_2 = 0.693$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\omega_p = 1.0$ /s. Modelo de torre estaiada com	
imperfeição geométrica.	171
Figura 5.1: Forma como os multiplicadores de Floquet podem ultrapas	sar
o círculo de raio unitário (região de estabilidade).	174
Figura 5.2: Bifurcação do tipo <i>pitchfork</i> , supercrítica e subcrítica.	175
Figura 5.3: Bifurcação do tipo nó-sela.	175
Figura 5.4: Bifurcação por duplicação de período, supercrítica e	
subcrítica.	175
Figura 5.5: Bifurcação do tipo Hopf, supercrítica e subcrítica.	176
Figura 5.6: Exemplo de diagrama de bifurcação.	177
Figura 5.7: Vista superior ilustrativa do Modelo de Augusti.	178
Figura 5.8: Fronteiras de estabilidade (escape) para $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.0$).01.
Modelo de Augusti perfeito.	181
Figura 5.9: Variação da carga de escape, F_{esc} , com a direção da	
excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.9$ e	
$\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito.	181
Figura 5.10: Curvas de ressonância para $F = 0.02$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.00$	1.
Modelo de Augusti perfeito.	183
Figura 5.11: Curvas de ressonância e as relações freqüência-amplitud	е
dos modos não-lineares, para $F = 0.02$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo d	de
Augusti perfeito.	184
Figura 5.12: Fronteiras de estabilidade (escape), modelo acoplado e	
desacoplado, para $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti	
perfeito (valores mínimos – F_{esc} = 0.0267 (acoplado) e F_{esc} = 0.5800	
(desacoplado)).	185

Figura 5.13: Curvas de ressonância, modelo acoplado e desacoplado, para F = 0.02, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 186 Figura 5.14: Curvas de ressonância, modelo acoplado e desacoplado, para F = 0.03, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti 186 perfeito. Figura 5.15: Diagramas de bifurcação, modelo acoplado e desacoplado, para $\Omega = 1/3$, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 188 Figura 5.16: Respostas no tempo para dois níveis de carregamento, considerando diferentes condições inicias (θ_1 , $d\theta_1/dt$, θ_2 , $d\theta_2/dt$), para $\Omega = 1/3$ e $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 188 Figura 5.17: Diagramas de bifurcação, modelo acoplado e desacoplado, para $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 189 Figura 5.18: Seções das bacias de atração no plano $\theta_1 x d\theta_1/dt$, modelo acoplado e desacoplado, para $\Omega = 0.525$, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 190 Figura 5.19: Seções das bacias de atração no plano $\theta_1 x d\theta_1/dt$, modelo acoplado e desacoplado, para $\Omega = 1/3$, F = 0.1, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e 191 $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. Figura 5.20: Seções das bacias de atração no plano $\theta_1 x \theta_2$, modelo acoplado, para $\Omega = 1/3$, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 191 Figura 5.21: Medida de integridade local da bacia de atração, LIM, modelo acoplado e desacoplado, para $\Omega = 1/3$, $\varphi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 192 Figura 5.22: Fronteiras de estabilidade (escape), modelo acoplado e desacoplado, para $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito (valores mínimos – F_{esc} = 0.07 (acoplado e desacoplado)). 193 Figura 5.23: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito. 194

Figura 5.24: Diagramas de bifurcação, modelo acoplado e desacoplad	о,
para $\Omega = 0.4$, $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti	
perfeito.	195
Figura 5.25: Diagramas de bifurcação, modelo acoplado e desacoplad	0,
para $\Omega = 1/3$, $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti	
perfeito.	195
Figura 5.26: Seções das bacias de atração nos planos $\theta_1 x d\theta_1/dt \in \theta_1 x d\theta_2$	₽ ₂ ,
modelo acoplado, para $\Omega = 1/3$, $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo	de
Augusti perfeito.	196
Figura 5.27: Seções das bacias de atração e variedades dos pontos d	е
sela no plano <i>uxdu/dt</i> , modelo desacoplado, para $\Omega = 1/3$, $\varphi = 45^{\circ}$, $\lambda = 0$	0.9 e
$\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito.	197
Figura 5.28: Medida de integridade local da bacia de atração, LIM, mo	delo
acoplado e desacoplado, para $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo c	le
Augusti perfeito.	198
Figura 5.29: Mapeamento das bifurcações locais na região de	
ressonância fundamental, modelo acoplado, para $\varphi = 2^{\circ}$, $\lambda = 0.9$ e	
$\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito (valores mínimos (2 vales) –	F _{esc}
$= 0.2705 \text{ e } F_{esc} = 0.0882$).	199
Figura 5.30: Diagramas de bifurcação, modelo acoplado, para $\Omega = 0.3$,	
$\varphi = 2^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti perfeito	
$(F_{esc} = 0.3545).$	199
Figura 5.31: Variação da medida de integridade local da bacia de atraç	ção,
LIM, modelo acoplado, para $\Omega = 1/3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de	
Augusti perfeito.	200
Figura 5.32: Fronteiras de estabilidade (escape) para $\lambda = 0.9$ e	
$\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez	
relativa das molas.	201
Figura 5.33: Variação da carga de escape, <i>F_{esc}</i> , com a direção da	
excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.9$ e	
$\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez	
relativa das molas.	202

Figura 5.34: Curvas de ressonância para F = 0.02, $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez 203 relativa das molas. Figura 5.35: Fronteiras de estabilidade (escape), modelo acoplado e desacoplado, para $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez relativa das molas. 204 Figura 5.36: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado, para $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez relativa das molas. 205 Figura 5.37: Diagramas de bifurcação, modelo acoplado, para $\Omega = 2/3$, $\varphi = 45^{\circ}$, $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez relativa das molas ($F_{esc} = 0.1315$). 205 Figura 5.38: Seções das bacias de atração nos planos $\theta_1 x d\theta_1/dt$, $\theta_2 x d\theta_2/dt$ e $\theta_1 \times \theta_2$, modelo acoplado, para $\Omega = 2/3$, $\varphi = 45^\circ$, $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez relativa das molas. 206 Figura 5.39: Variação da medida de integridade local da bacia de atração, LIM, modelo acoplado, para $\Omega = 2/3$, $\alpha = 1.3$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti considerando a influência da rigidez relativa das molas. 207 Figura 5.40: Fronteiras de estabilidade (escape) para $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 208 Figura 5.41: Variação da carga de escape, F_{esc} , com a direção da excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 209 Figura 5.42: Curvas de ressonância para F = 0.01, $\phi = 1^{\circ}$, $\psi = 0^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 209 Figura 5.43: Curvas de ressonância para F = 0.01, $\phi = 1^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 210 Figura 5.44 Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\varphi = 45^\circ$, $\phi = 1^\circ$,

 $\psi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 211 Figura 5.45: Comparação do comportamento na região de ressonância fundamental entre o modelo perfeito e com imperfeição geométrica ($\phi = 1^{\circ}$ e $\psi = 45^{\circ}$), modelo acoplado, para $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. (Valores mínimos – F_{esc} = 0.1653 (perfeito) e F_{esc} = 0.0510 (imperfeito)). 212 Figura 5.46: Seções das bacias de atração no plano ux du/dt, modelo desacoplado, para $\Omega = 0.3026$, $\varphi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti. 213 Figura 5.47: Medida de integridade local da bacia de atração, LIM, modelo acoplado e desacoplado, para $\Omega = 0.3026$, $\varphi = 45^{\circ}$, $\phi = 1^{\circ}$, $\psi = 45^{\circ}$, $\lambda = 0.9$ e $\xi_1 = \xi_2 = 0.01$. Modelo de Augusti com imperfeição geométrica. 214 Figura 5.48: Comparação da medida de integridade local da bacia de atração, LIM, na ressonância fundamental entre o modelo perfeito e com imperfeição geométrica ($\phi = 1^\circ e \psi = 45^\circ$), modelo acoplado, para $\phi = 45^\circ$, $\lambda = 0.9 \text{ e } \xi_1 = \xi_2 = 0.01.$ 214 Figura 5.49 Vista superior ilustrativa do modelo de torre estaiada. 215 Figura 5.50: Fronteiras de estabilidade (escape) para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 217 Figura 5.51: Variação da carga de escape, F_{esc} , com a direção da excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 218 Figura 5.52: Curvas de ressonância para F = 0.02, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 219 Figura 5.53: Curvas de ressonância para valores crescentes de F, $\varphi = 0^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 219 Figura 5.54: Fronteiras de estabilidade (escape), modelo acoplado e desacoplado, para $\varphi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito (valores mínimos – F_{esc} = 0.0200 (acoplado) e F_{esc} 220 = 0.0400 (desacoplado)). Figura 5.55: Curvas de ressonância, modelo acoplado e desacoplado,

estaiada perfeito.

Figura 5.56: Curvas de ressonância, modelo acoplado e desacoplado, para F = 0.01, $\varphi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 221 Figura 5.57: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\varphi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 222 Figura 5.58: Diagramas de bifurcação, modelo acoplado e desacoplado, para $\Omega = 0.6546$, $\varphi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 223 Figura 5.59: Fronteiras de estabilidade (escape), modelo acoplado e desacoplado, para $\varphi = 30^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito (valores mínimos – F_{esc} = 0.0250 (acoplado) e F_{esc} = 0.0300 (desacoplado)). 224 Figura 5.60: Curvas de ressonância, modelo acoplado e desacoplado, para F = 0.02, $\varphi = 30^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 225 Figura 5.61: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\varphi = 30^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 226 Figura 5.62: Diagramas de bifurcação, modelo acoplado e desacoplado, para $\Omega = 0.6546$, $\varphi = 30^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 227 Figura 5.63: Seções das bacias de atração nos planos $u_1 x du_1/dt$, $u_2 x du_2/dt$ e $u_1 x u_2$, modelo acoplado, para $\Omega = 0.6546$, $\varphi = 30^\circ$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito. 227 Figura 5.64: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado, para $\varphi = 0^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada perfeito (valores mínimos (2 vales) $-F_{esc} = 0.0495 \text{ e } F_{esc} = 0.0150$). 228 Figura 5.65 Fronteiras de estabilidade (escape) para $\alpha < 1$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência

da rigidez relativa das molas.

Figura 5.66: Curvas de ressonância para F = 0.01, $\alpha = 0.82$, $\lambda = 0.7$,

 $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 230

Figura 5.67: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\alpha = 0.82$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo considerando a influência da rigidez relativa das molas.

Figura 5.68: Diagrama de bifurcação para $\Omega = 0.828$, $\varphi = 45^{\circ}$, $\alpha = 0.82$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas ($F_{esc} = 0.0437$). 232 Figura 5.69: Seções das bacias de atração nos planos $u_1 x du_1/dt$, $u_2 x du_2/dt$ e $u_1 x u_2$, modelo acoplado, para $\Omega = 0.828$, $\varphi = 45^{\circ}$, $\alpha = 0.82$, $\lambda = 0.7$,

 $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 233

Figura 5.70: Medida de integridade local da bacia de atração, LIM, modelo acoplado, para $\Omega = 0.828$, $\varphi = 45^{\circ}$, $\alpha = 0.82$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas.

Figura 5.71: Fronteiras de estabilidade (escape) para $\alpha > 1$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 234

Figura 5.72: Variação da carga de escape, F_{esc} , com a direção da excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas.

Figura 5.73: Curvas de ressonância para F = 0.01, $\alpha = 1.18$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 236

Figura 5.74: Fronteiras de estabilidade (escape), modelo acoplado e desacoplado, para $\varphi = 90^{\circ}$, $\alpha = 1.18$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das

molas (valores mínimos – F_{esc} = 0.047 (acoplado) e F_{esc} = 0.040 236 (desacoplado)). Figura 5.75: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado e desacoplado, para $\alpha = 1.18$, $\varphi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das molas. 237 Figura 5.76: Diagramas de bifurcação, modelo acoplado e desacoplado, para $\Omega = 0.82807$, $\varphi = 90^{\circ}$, $\alpha = 1.18$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada considerando a influência da rigidez relativa das 238 molas. Figura 5.77: Fronteiras de estabilidade (escape) para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 239 Figura 5.78: Variação da carga de escape, F_{esc} , com a direção da excitação, φ , (gráfico em coordenadas polares) para $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 240 Figura 5.79: Curvas de ressonância para F = 0.005, $\phi = 1^{\circ}$, $\psi = 90^{\circ}$, $\lambda = 0.7, \beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 240 Figura 5.80: Mapeamento das bifurcações locais na região de ressonância fundamental, modelo acoplado, para $\phi = 1^{\circ}, \psi = 90^{\circ}, \lambda = 0.7,$ $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 241 Figura 5.81: Diagramas de bifurcação para $\Omega = 0.6967$, $\varphi = 0^{\circ}$, $\phi = 1^{\circ}$, $\psi = 90^{\circ}$, $\lambda = 0.7$, $\beta = 120^{\circ}$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica (Fesc=0.0311). 242 Figura 5.82: Seções das bacias de atração nos planos $u_1 x du_1/dt$, $u_2 x du_2/dt$ e $u_1 x u_2$, para $\Omega = 0.6967$, $\varphi = 0^\circ$, $\phi = 1^\circ$, $\psi = 90^\circ$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 242 Figura 5.83: Medida de integridade local da bacia de atração, LIM, modelo acoplado, para $\Omega = 0.6967$, $\varphi = 45^\circ$, $\phi = 1^\circ$, $\psi = 90^\circ$, $\lambda = 0.7$, $\beta = 120^\circ$ e $\xi_1 = \xi_2 = 0.01$. Modelo de torre estaiada com imperfeição geométrica. 243

Figura 6.1: Ilustração de aplicação do método de controle proposto por	•
Lenci & Rega.	249
Figura 6.2: Variedades e perfil da energia potencial para $\Omega = 1/3$ e $\lambda = 0$).9.
Modelo perfeito desacoplado.	268
Figura 6.3: Ilustração de uma órbita heteroclínica.	268
Figura 6.4: Órbita heteroclínica para $\Omega = 1/3$ e $\lambda = 0.9$. Modelo perfeito	
desacoplado.	269
Figura 6.5: Mapeamento das bifurcações locais na região de ressonând	cia
fundamental para $\lambda = 0.9$ e $\xi = 0.01$. Modelo perfeito desacoplado.	270
Figura 6.6: Diagramas de bifurcação para $\Omega = 0.2465$, $\lambda = 0.9$ e $\xi = 0.01$,	
modelo original e modelo controlado (9 F_3 / F = -1.115279 e v_{3otimo} = π).	
Modelo perfeito desacoplado.	272
Figura 6.7: Variedades invariantes associadas às fronteiras de	
estabilidade para $F = 0.0528979$, $\Omega = 0.2465$, $\lambda = 0.9$ e $\xi = 0.01$, modelo	
original e modelo controlado (9 F_3 / F = -1.115279 e v_{3otimo} = π). Modelo	
perfeito desacoplado.	272
Figura 6.8: Medidas de integridade GIM e IF para $\Omega = 0.2465$, $\lambda = 0.9$ e	
$\xi = 0.01$, modelo original e modelo controlado (9 F_3 / $F = -1.115279$ e	
$v_{3otimo} = \pi$). Modelo perfeito desacoplado.	273
Figura 6.9: Bacias de atração para $\Omega = 0.2465$, $\lambda = 0.9$ e $\xi = 0.01$, model	0
original e modelo controlado (9 F_3 / F = -1.115279 e v_{3otimo} = π). Modelo	
perfeito desacoplado.	274
Figura 6.10: Variedades e perfil da energia potencial para $u_{10} = 1^{\circ}$, $\Omega =$: 1/3
e $\lambda = 0.9$. Modelo desacoplado com imperfeição geométrica.	275
Figura 6.11: Ilustração de uma órbita homoclínica.	276
Figura 6.12: Órbita homoclínica para $u_{10} = 1^{\circ}$, $\Omega = 1/3$ e $\lambda = 0.9$. Modelo	
com imperfeição geométrica.	276
Figura 6.13: Mapeamento das bifurcações locais na região de	
ressonância fundamental para $u_{10} = 1^{\circ}$, $\lambda = 0.9$ e $\xi = 0.01$. Modelo com	
imperfeição geométrica desacoplado.	278
Figura 6.14: Diagramas de bifurcação para $u_{10} = 1^{\circ}$, $\Omega = 0.254$, $\lambda = 0.9$ e	!
ξ = 0.01, modelo original e modelo controlado (4 F_2 / F = 1.337189 e	

$v_{2otimo} = \pi$). Modelo com imperfeição geométrica desacoplado.	279
Figura 6.15: Fronteiras de estabilidade para $F = 0.02561$, $u_{10} = 1^{\circ}$,	
$\Omega = 0.254$, $\lambda = 0.9$ e $\xi = 0.01$, o modelo original e modelo controlado	
$(4F_2 / F = 1.337189 \text{ e } \upsilon_{2otimo} = \pi)$. Modelo com imperfeição geométrica	
desacoplado.	280
Figura 6.16: Medidas de integridade GIM e IF para $u_{10} = 1^{\circ}$, $\Omega = 0.254$,	
$\lambda = 0.9$ e $\xi = 0.01$, modelo original e modelo controlado (4 F_2 / $F = 1.337$	189
e $v_{2otimo} = \pi$). Modelo com imperfeição geométrica desacoplado.	280
Figura 6.17: Bacias de atração para $u_{10} = 1^{\circ}$, $\Omega = 0.254$, $\lambda = 0.9$ e $\xi = 0.0$	01,
modelo original e modelo controlado (4 F_2 / F = 1.337189 e v_{2otimo} = π).	
Modelo com imperfeição geométrica desacoplado.	281
Figura 6.18: Comparação das medidas de integridade GIM e IF do mo	delo
perfeito (original e controlado) com o modelo imperfeito (original e	
controlado).	282
Figura 6.19: Variedades e perfil da energia potencial para $\Omega = 0.65465$	3 e
$\lambda = 0.7$. Modelo perfeito desacoplado.	284
Figura 6.20: Órbita homoclínica para $\Omega = 0.654653$ e $\lambda = 0.7$. Modelo	
perfeito desacoplado.	284
Figura 6.21: Mapeamento das bifurcações locais na região de	
ressonância fundamental para $\lambda = 0.7$ e $\xi = 0.01$. Modelo perfeito	
desacoplado.	285
Figura 6.22: Diagramas de bifurcação para $\Omega = 0.5456$, $\lambda = 0.7$ e $\xi = 0.0$)1,
modelo original e modelo controlado $(4F_2 / F = 1.160502 \text{ e } v_{2otimo} = \pi)$.	
Modelo perfeito desacoplado.	286
Figura 6.23: Medidas de integridade GIM e IF para $\Omega = 0.5456$, $\lambda = 0.7$	е
$\xi = 0.01$, modelo original e modelo controlado (4 F_2 / $F = 1.160502$ e	
$v_{2otimo} = \pi$). Modelo perfeito desacoplado.	287
Figura 6.24: Bacias de atração para $\Omega = 0.5456$, $\lambda = 0.7$ e $\xi = 0.01$, mod	elo
original e para o modelo controlado (4 F_2 / F = 1.160502 e v_{2otimo} = π).	
Modelo perfeito desacoplado.	288

Lista de Tabelas

Tabela 4.1: Freqüências naturais e modos lineares de vibração. Modele	0
de Augusti.	92
Tabela 4.2: Freqüências naturais e modos lineares de vibração. Model	0
de torre estaiada.	138
Tabela 5.1: Freqüências naturais para $\lambda = 0.9$. Modelo de Augusti	
perfeito.	180
Tabela 5.2: Freqüências naturais para $\lambda = 0.9$. Modelo de Augusti	
considerando a influência da rigidez relativa das molas.	200
Tabela 5.3: Freqüências naturais para $\lambda = 0.9$. Modelo de Augusti com	
imperfeição geométrica.	207
Tabela 5.4: Freqüências naturais para $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo de tor	re
estaiada perfeito.	217
Tabela 5.5: Freqüências naturais para $\alpha < 1$, $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo	de
torre estaiada considerando a influência da rigidez relativa das	
molas.	229
Tabela 5.6: Freqüências naturais para $\alpha > 1$, $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo	de
torre estaiada considerando a influência da rigidez relativa das	
molas.	234
Tabela 5.7: Freqüências naturais para $\lambda = 0.7$ e $\beta = 120^{\circ}$. Modelo de tor	re
estaiada com imperfeição geométrica.	238
Tabela 6.1: Resultados numéricos dos problemas de otimização com o)
aumento do número de super-harmônicos no caso de	
controle one-side.	266
Tabela 6.2: Resultados numéricos dos problemas de otimização com o)
aumento do número de super-harmônicos no caso de	
controle global.	266

Lista de Símbolos

С,	constante igual ou menor que à energia associada aos pontos de sela dos modelos:
C_i ,	parâmetros de amortecimento, expressos pelas taxas de amortecimento, ξ_i ;
$D_b(t),$	excitação harmônica de base;
DH,	vetor que representa a parte não perturbada do sistema;
Ε,	parcela de amortecimento;
<i>F</i> ,	amplitude da excitação harmônica de base, $F = F_b/l$;
Fcr^{h} ,	valor teórico da interseção homo/heteroclínica para uma excitação harmônica;
Fcr ^{cont} ,	valor teórico da interseção homo/heteroclínica para uma excitação harmônica com controle (adição de super-harmônicos);
F_b ,	magnitude do deslocamento de base;
F_i ,	amplitude da excitação dos super-harmônicos de ordem <i>i</i> ;
F_{esc} ,	amplitude crítica, carga de escape;
<i>g</i> ,	aceleração da gravidade;
g ,	vetor que representa a parte perturbada do sistema;
G^{hom} ,	controle de uma órbita homoclínica;
$G^{\rm het}$,	controle de uma órbita heteroclínica;
GIM,	medida global de integridade;
H,	Hamiltoniano dos modelos;
h,	nível de energia adotado, $H = h$.
h_j ,	parâmetros de controle;
IF,	fator de integridade;
k_i ,	constantes de rigidez das molas;
l,	comprimento da coluna;
<i>L</i> ,	função de Lagrange;
L_p ,	parcela do potencial gravitacional das cargas externas;

LIM,	medida de integridade local;
т,	massa concentrada na extremidade livre da coluna;
M(m),	função de Melnikov;
Ρ,	peso da massa concentrada na extremidade livre da coluna, $P = mg$;
Pcr_i ,	cargas críticas dos modelos;
t,	tempo;
Τ,	parcela da energia cinética;
и,	coordenada auxiliar, para desacoplar os modelos;
u _i ,	grandezas $u_i = sen \theta_i$, que representam os graus de liberdade do
	modelo de torre estaiada;
<i>u</i> _{i0} ,	parcelas da imperfeição geométrica do modelo de torre estaiada,
	respectivamente, nas direções dos graus de liberdade u_i ;
$u_b(t),$	parcela da excitação harmônica de base na direção x;
и _{Di} ,	deslocamentos dinâmicos, deformações devidas ao movimento;
u_{esti} ,	rotações estáticas;
u_h ,	órbita do sistema (homoclínica - u_{hom} ou heteroclínica - u_{het});
u_{Ti} ,	rotações totais;
u_{Si} ,	deformações estáticas;
U,	parcela da energia interna de deformação;
ν,	coordenada auxiliar, para desacoplar os modelos;
$v_b(t),$	parcela da excitação harmônica de base na direção y;
ν,	parcela da energia potencial total;
α,	relação entre as constantes de rigidez, k_i ;
$\alpha_i(j),$	termos que simplificam a formulação do controle;
β,	ângulo que define a posição das molas do modelo de torre estaiada;
Δ,	deslocamento vertical total de m medido em relação à configuração
	indeformada da coluna perfeita;
Δ_f ,	deslocamento vertical da carga na coluna imperfeita;
Δ_0 ,	deslocamento vertical de m devido à imperfeição geométrica;
Δ_{Li} ,	variação de comprimento das molas do modelo de torre estaiada;
Е,	parâmetro adimensional que mede a amplitude da perturbação;

γ_i ,	deformações das molas nas direções θ_i ;
λ,	relação $\lambda = P/Pcr$;
λ_{cr} ,	carga crítica, quando $\lambda = P/Pcr = 1$;
$\lambda_{ m lim}$,	carga estática limite;
ω,	freqüência não-linear dos modelos, pelo movimento;
ω_e ,	freqüência da excitação harmônica de base;
ω_i ,	freqüências naturais dos modelos;
ω_p ,	freqüência natural de um pêndulo simples;
Ω,	$\Omega = \omega_e / \omega_p ;$
Ω_i ,	$\Omega_i = \omega_i / \omega_p$;
ϕ ,	inclinação da coluna (modelo com imperfeição geométrica);
ϕ_i ,	parcelas da imperfeição geométrica do modelo de Augusti,
	respectivamente, nas direções dos graus de liberdade θ_i ;
arphi,	ângulo no plano $x \times y$ que defini a direção da excitação harmônica
	de base;
$arphi_i,$	ângulos formados entre a coluna em uma posição arbitrária e,
	respectivamente, os eixos x , y e z ;
ψ,	ângulo no plano $x \times y$ que define a direção da projeção da barra
	imperfeita neste plano;
$ heta_i$,	rotações impostas nas molas, graus de liberdade do Modelo de Augusti;
$ heta_{\scriptscriptstyle Di},$	deslocamentos dinâmicos, deformações devidas ao movimento;
$\theta_{\scriptscriptstyle esti},$	rotações estáticas;
$ heta_{Ti}$,	rotações totais;
$ heta_{\scriptscriptstyle Si}$,	deformações das molas sob carregamento estático;
τ,	$ au = \omega_e t;$
$V_{j},$	ângulo de fase entre os super-harmônicos;
ξ_i ,	taxas de amortecimento;
\sum ,	seção que define o mapa de Poincaré.