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Robust Tracking: Relation Between the Numerators, Mode
Readability, and Inverse Internal Model

Pedro M. G. Ferreira

Abstraci—In the robust, multivariable, asymptotic tracking problem
with two-output plants, it is shown that if the numerator related fo the
controlled output is Gxed, while the other numerator and the denominator
are perturbed, then there is no solution to the problem. If, bowever, the
whale part of the plant related to the controlled output is stable and fixed,
while the other pari is arbitrarily perturbed, the problem bat a solution
and the compensator that solves the problem incorporates am “inverse

internal model™ of the signal (o be tracked.
Indexr Terma—Internal model, robustness, stability, tracking.

I. INTRODUCTION

The linear, multivariable, robust tracking problem has been ad-
dressed for more than 25 years, having achieved a degree of matunty
in the solution of the main issues. In the mid-1970"s, the problem was
studied, among others, in the state-space/matrix formulation by [1], in
the state-space/geometric approach by [5], in the state-space/Laplace
transform by [4], and by [3].

In the early-mid-1980°s, the problem in the input-output/Laplace
transform was solved by [9] for one-output plant, one-de-
grec-of-freedom compensator, by [8] for one-output plant, two-de-
grees-of-freedom compensator, and by [7] for the general problem,
namely, two-output plant, two-degrees-of-freedom compensator.

Most recently, [6] addressed the issue of the robustness with respect
to perturbations of the compensatar in the scalar problem with one-
output plant, two-degrees-of-freedom compensator. The present note
is motivated by a conjecture made by [7], relating the numerators of
the two-output plant.

[n this note, after the setup of the problem in Section [I, we show in
Section 111 that indeed the problem has no solution if the numerators
are unrelated, but in Section [V, it is shown that if the pari of the plant
related to the controlled output is fixed and stable, while the other part
is perturbed, then the problem does have a solution: the compensator
must incorporate an “inverse internal model” of the exogenous signal.

Il. SETTING LIP THE PROBLEM

A Notation and Abbreviations

The set of proper and stable rational fanctions, a principle ideal do-
main, [9], is denoted by S. The set of matrices with clements in 5 is
denoted by M(S). It is the ficld of real numbers. Left coprime will
be abbreviated by /[.c., right coprime will be abbreviated by rc., “such
that™ will be abbreviated by «... All the left factors will be denoted with
an “I" index, e.g., Ih.

In Fig. 1, z(s) and r(s) are g-valued vectors, u(s) is a m-valued
vector and y( ) is a p-valued vector

F:Lﬂ]

P(s) = [ﬁm
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represents the given plant. C{s) = [C1(s) —Cu(s)] is the compen-
sator to be designed.
Omitting henceforth the argument (#) when convenient, we have:

r=Pu, y=Fu u=Cr-~ oy

I, P, C,, and C; are proper rational matrices and have the ap-
propriate dimensions. /% is assumed strictly proper for convenience in
terms of well-posedness and because this is the case in most practical
situations. This assumption might be dropped easily. The exogenous
signal r is assumed proper. [, and % are assumed to have full rank.
All the factorizations in the paper are over 5.

Let
s Py G N =1
e [F&] & [-""1 ] o
a rc factorization.

LetC=[{C, -Ci]= D,_‘.l[ N —Npz |, ale factorization.

We assume that the exogenous signal r has all its poles in the closed
right complex plane; those are the relevant poles, since the modes come-
sponding o stable poles decay asymptotically to zero. This assumption
is standard in the literature of the servo problem, but might be easily

dropped.

r= D7 Nipra
there
Dy is a kmown matrix,
Nir need not be known,
Dh- and ."I"-[-l.- are f.l'.‘..,. and
ris is an arbitrary vector of real numbers.

'wm Will denote the largest invariant factor of ;.. We use the standard
efinition of closed loop stability. [t is known, [2], that if the closed
wop is stable, Dy, Ni2. D. and Ny can be chosen, without loss of

enerality such that
.DJ. D= .Trf-g.."u"-; =f [”

here [ is the identity mainx.

0018-9286/0:0510.00 £ 2000 IEEE
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Fig. 1.

Moreover, there exist X3, D., Dy, and Vyz, corresponding to a re.
of C'; and Le. factorization of P, respectively, .1,

oy - Nz D. ' e I 10 :
i '-h_-q; D;,._ - ;‘lt',._g ﬂ g n I 3 { ﬂ-}
Commute the left-hand side (LHS) of (1a) and call it { 1b). (1b)

Let IT be the transfir function matrix between = and r. Asymptotic
tracking is aid to take place if and only if the loop is stable and

(I - H)r € M(S). (2)
Straightforward calculations pive, in view of (1):
H=NNa. (3)

Perturb the plant, P — P*, Let H™ be the resulting transfer matrix
between = and r. We say that C is a robust tracking compensator if and
only if the perturbed closed loop is stable and

(I - H™)r € M(5)

whatever be the perturbation in a given set,

Remark [: Recall, [9], that if ||Fllee < 1, with F € M(5), then
[ 4 F is unimodualar, We have next a technical result:

Lemma: LetAgy, Ay € M(5) besuchthat f+ D A p+ N A v
is unimodular. Then there exist £, £ € and Q. Q2 € M(5) such
that

(2°)

(F+ Dol o+ NiezAn ) =T = a1 Dl — <aNiea (e, (4)

Conversely, let =y, =y € R and (}y, ()2 € M(S5) be such that I -
g0 0}y = £2N2()2 is unimodular. Then there exists Apn, Axy €

M({5) such that (4) holds. Moreaver,

An =60 - 51 D)y = 22 N120Qa) " (5a)
An =eaQa(f = 1 Dich = <2 N12Q) ™" (5b)
2Q: =Ap(I + Di.Ap + NiaAn)™" (5¢)
£2Q2 =An(I + D1.Ap + Nz & x) ™. (5d)

Proof: From (5a) and (5b), we have:

F+DLAp 4+ Nl
=1+ DiessQi(f = £y DicQy = 22 N1e2Qe) "
+ NpazaQa(l = 2 Dp}y = €aNpulla) ™!
=({f -0,y — £2N120Q2 + 21 Dy + ez NiaQa)
= 21 Die@Qy = 22 N1e2Q2) ™"
= (I - 51 D1t = 2 Npalda) ™!

which is (4).
By the same token, (4) is obtained from (5¢) and (5d) also. L%

[n thewr important paper [7], Sugie and Vidyasagar assume that /¥,
and V4 are related by

Ni{s) = L{s)N2(5) (6)

where the zeros and poles of L are disjoint from those of .. No-
tice that . can be improper and unstable (but of course .V, is proper

and stable, by definition). This relationship between .Y, and ¥y is a
rather mild one. The authors call it “maode readability,” a weaker con-
dition than “readability,” assumed by [1] and [5], in which L is con-
stant. Sugie and Vidyasagar, allow perturbations of L even though not
arbitrary. We omit here the class of allowed perturbations of L for the
sake of brevity, remitting it to that paper. They make the following con-
Jjecture: the relationship (6) is necessary for robust tracking. Then they
prove that the compensator, which solve the problem must be such that
LD} has its poles disjoint from those of r. So, it is generalized the
idea that the compensator (with L) must incorporate a replicated—in
the multivariable case—internal model of the signal to be tracked.

We show in Section LIl that if ¥y is fixed, while V3 and I are per-
turbed “arbitrarily,” the problem has no solution. In Section IV we show
that if P, is fixed and P is “arbitrarily™ perturbed, the problem does
have a solution only if Py is stable. In this case we will see that the
campensator (with P ) must incorporate an inverve imternal model of
the signal to be tracked.

[II. PERTURBING Nz AND D AND FIXING ¥y

The allowed perturbations in this note are those in the sense of the
previous Lemma, ie., they are arbitrary, but sufficiently small x.e. I +
Dy An + NpaAx is unimodular.

Theorem 1: Perturb D and N3 “arbitrarily” (in the sensc defined
above), while maintaining Ny fixed Then the robust tracking problem

has no solution.

Proof: Pertarp D — D+Ap and fix V) and V3. Then, it is easy
to obtain = = V([ + -D!._-ﬂu}_hll‘fr!.;lf = .-"I-"'L{f = &1 D!rQL]Ni.-lﬂ
in view of (4). Hence,

cC=r—2zI
Z{f - .'ql'rlt..f — EIDIqQI j-:"‘rnl'r-l].r
=l = NiNpy e + Nie 1 D1.Q Ny v

Now, in view of (2), (2*), and (3), asymptotic tracking implies
M Dy Nirr € M(S), Y}, € M(S).
And from the definition of r we get
MDiQuiNia D' € M(S),

Now, in view of (2) and (3) it is clear that V)., and Dy, are re.
Let Niea Dp,' =: A7'D, a lc factorization. [t is clear that A and
L)y, have the same invariant factors. Then, in view of (7}, we have

NiDnghA™' € M(S). Y@, € M(5). (8)

Let 54 be the Smith form of A and let L7 and 1 be unimodular matrices
such that A = U'54V. Define ) = Q;1"~". Then from (8)

MDD 537 € M(S). Y, € MIS). (9)
Let o; be the invariant factors of 4. ;] £

Y, € M(S). (7)

m, where m =

{1.2..--. m}. Letn;, j € p, be the columns of N D,.. Let qu; be
the elements of ¢y, . Choose ¢}, such that
':Fjur = 11 qi.. = D ‘?‘Ifnll'. E.b -#- 1...::'- M.
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*...'L. M ,. D
——p M
Fig. 2.
Then, straightforward caleulations from (9) pive n;a c

M(S). Vj € p,or,

NiDyal! € M(S). (10)

MNow, perturb N2 — N3 4+ Ay, fixing D and .¥,. From the block
diagram we obtain

== N+ ¥iazAx ) "Nearr = ML = £2N0:202) N v
in view of (4). Hence,
e=(F = M Nar + NMi22Nie2Qz Niarr.
So, robust tracking implies, in view of {2), (2*), and (3),

NiNteaQuNea D7 e M(85) W0y € M(S).
Detining matrices A. 54 as above [after (8)] and choosing an appro-
priate matrix in the same way as (), we obtain

NiNizayn! € M(S5). (11)

From (10) and (11}, we have
n:rl -,i"’l I.Dhn :Efrﬂi E' H{'SJ'

But from (1), Dy, and .¥y.; are [, hence, the last implies v,' Ny €
M(5). Hence there exists Xy € M(5) such that X, = o, ¥y, But
from (2) and (3), there should exist W £ M{S) such that

M Nwoom + WD, = [

It is clear that there is no solution for this equation in .V and W,
since o/ and ). are not r.c., proving the theorem. v

Remark 2: A reviewer of a previous version of this note remarks on
the result above: “If 'y perturbs and y and = have no relation, then the
robust tracking has no solution. This result seems to be obvious because
we have no way to obtain any information on = in this case.”

Example 1: We consider now the following simple scalar example,
regarding Theorem | and the previous remark P, = % = 1/(s = 1),
r=Afs, A € B, Ap = fi(s +1)7", Ax = S(s +1)7, &,
bz € R, arbitrary and sufficiently small.

We redraw the block diagram (Fig. 2) in a more appropriate way
for the problem at hand. Let T denote the transfer matrix between
the input to 2V, and the output of N.;. In the nominal situation (no
perturbation of . and D)), we have Ty, = 1. Let the perturbed signals
and parameters (as a result of perturbation of 2 and V4 ) be denoted
with a (=), eg, IT7. ", ete. Itis clear that 7" = 1/(1 + &, (s +
YD, 4+ &:(%+ 1)""¥.4). Hence,

AT I=T; T Il
=—(Ails+ 1" D+ Fals 4+ 1) N2l

(14+8(s+1)"" Do+ da(s + 1) N.2).

—{=

1]

.Dq,-l =

Now, ™ = (1 — NV )r — NiAr Vv, So, the contribution to
the error due to the perturbation in D and Ny is

A, i=e"—-¢
=—=N Ay Nar
=—(¢+ 1)"*Xléi D + 52N.2) A/
A1+ (s+ 1) (51D + b2N.2)

In view of the fact that s{s + 1)~ and V., are coprime, while &,
and &y are arbitrary, it is clear that A. & 5, because D, and .3 are
copnme. Therefore, the problem has no solution.

IV. SOLUTION OF THE PROBLEM WITH I”; FIXED AND [%; PERTURBED

Theorem 2: Perturb Ny and D “arbitrarily™ (in the sense above ) and
fix ;. Then the asymptotic tracking problem has a solution only if P,
is stable. If this is the case, ' is a robust tracking compensator if and
only if it stabilizes the loop and

a) (I = PLDX,,.)D;;' € M(S);

b) PNy € M(S).

Proof: 'We prove first that P, has to be stable. Condition a) of the
Theorem is necessary for the nominal plant. Perurh 0 — D + Ap.

Then,

e={I - P(D+Ap)(J + Dicdn) " Niaa]r
=[I={(AD+ AT = DhQ)Nua|r
={f — DNy — (=10 DD,
+ P Ap(I - 50D )) Niea ) r
=[I - PLDNiy + {1 B DD1.Gh — =1 PGy ) N
- D! Niero.

So, asymptotic tracking implies in view of a) of the Theorem

Pl - DD, )Q, N D;' € M(S), V() € M(5).
And in view of (1b), we have
PN N2 N ﬂ':—rj e M(5), Y € M(5).

Choosing appropriate (};°s as in the proof of Theorem I, the last
implies
? :"'rTr_-z;"f:gri:,.l E M(5). (12)
Let N11 D" be a re. factorization of Py. It is clear that stability of the
loop implies the left coprimeness of [, and V.2, because Dy is a left
divisor of D, Then perturb Ny at the outset, if necessary, so that (12)
is not satisfied. Hence, /7 has ta be stable.
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N

Qﬂ v

Fig. 3.

We proceed now to the proof of the necessity of condition b} of the
theorem, recalling that condition a) is necessary for the nominal loop.
Fﬂm.Ib‘ .'1"‘3. Thﬂl'l,_

2= P D + Ne2Ax ) ' Nrar = DU ~ €2N12Qu) Niarr.

Hence, asymptotic tracking implies

[I = PLDUT = £2N1:2Q2 ) Nia | D1 € MULS), Y2 € M(5).
And this implies in view of a):
P DNie2QuNia Dy € M(S), V{Q: € M(S5).
In view of {1b), we have
PANaDiQ:Nia D' € M(S), Yz € M(5).

Choosing appropriate (J2's, it can be shown, as in the proof of The-
orem |, that the last implies

P\ NaDiay,' € M(S). (13)
From this and (12),
Py Noa[Di, Nugly,' € M(S).
And in view of the left coprimeness of [D; and V2, we have
P Naa,,' € M(S). (14)

{Sufficiency): Perturbing 2 and N, we have

s=P{D+ AT+ DiAp + NialAx ) ' Nuar
e=[l =D+ Ap)l = D0 — ey Ntz Q)N |r
=(I = PADNia)r — [PiD (—=1 DicCh — 22 N2z, )
+ PiAp(T =51 D1,.Qy — €2 N1.20Q02) N1 .

Call X the first term of the right-hand side (RHS), which according
to a), belongs to M(S). Then, in view of (5a),

e=X — [P|{—*_-'| ﬂﬂr,.ﬂq — £a D;"ﬂ.-gﬂ?zi + Pig Q|].'\"r.--1i‘
=X = Pioi(l = DD Qi Nt + Piza DNea Qe Niarr

So, in view of {Ib), we have
e=.N =1 Ng .-"h'ﬂQ| Niar + EEPI Neaa ﬂ'rl?: Nir.

The proof is complete in view of the fact that o r € M(5). v

Remark 3: The meaning of this result was given by the reviewer
mentioned in the previous remark: “If I} is fixed, the information on
= can be obtained via » when J% perturbs arbitranly. This is the main
reason why the track can be achieved when y contains no information
on =. In this case, the feedforward control plays the essential role in

tracking. Therefore the feedforward control should be designed in such
a way that y does not affect u with respect to the modes of r (i.e., Cu

must contain the blocking zeros with respect to the poles of ).
Example 2: Let P, = (s + 1), Fy, r, Ap, and Ay as in the
previous example. We redraw the block diagram (Fig. 3).
Let T be the transfer matrix between the input to P, and the output
of ¥.1. It is easy to see that T; = D. And in view of (1a), we have

Ayg :=T; - Tn
=(NaNopAp — DNLAN (1 4+ DoAp + Naadw)
= (s + 1) Noa(y = 8a2(s — 1))/
(14 (a4 1)"" (61 Do + 52.¥.2)).

Hence, the contribution to the error, due to the perturbations in the plant
15

A, =[5+ 177 (6 = a5 = 1)) N2Af
s(14+6(s+1)7" D + 825 + 1) Nea).

[t is clear that the problem is solved if s(s + 1)™" is a factor of V.,

as pointed out by Remark 3. O
The solvability condition for the problem handled in this section is
given next.

Theorem 3: Assume £ fixed and stable. Then there exists a two-
degrees-of-freedom compensator, which solves the robust asymptotic
tracking problem if, and only if, P D and cx,,, I are left coprime.

Proof: (Only if): From (1b), we have

PiDD. + PANaNn = A.

But P, has full row rank, otherwise asymptotic tracking would be im-
possible. Let P\ be a right inverse of P,. Then,

P.DD, . PF + PANa NP} =L

Let € be a mode of r. Then from Theorem 2, b), it is clear in view of
the above identity that P D(£) has full row rank. This is equivalent to

saying that ’, D and e, [ are left coprime.

(If): If P\ D and e J are left coprime, then det(D(£)) # 0 for
every £ s am (£) = (). So, we may choose Nz = o X, satisfying
condition b) of Thearem 2, with X and D s.t. the loop is stable. On the
other hand, the left coprimeness of P D and o, { implies the existence

of Y and W & MI(5), 5.1
PBDY +Wanl=1I

But e,y d = V Iy, for some V' € M(S). Hence, we have
PDY + WV, =1

Condition a) of Theorem 2 is satisfied choosing Ny, = 1, completing
the proof. N
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V. CONCLUDING REMARES

i) The problem handled in Section IV has no solution with one-
degree-of-freedom feedback compensator. Indeed, conditions a)
and b) of Theorem 1 contradict each other if Ny, = N, 2.

ii) The result presented in the last section contrasts evidently with
the so called internal model principle: see [5] and [1] and, more
recently, [7]. According to the internal model pnnciple, in order
ta obtain robust tracking, the compensator must incorporate a
replicated—in the multivariable problem—internal mode] of the
exogenous signal.

Now, in condition b) of our Theorem 2, we have an “inverse
internal model™ in the sense that the exogenous poles affect the
numerator of the feedback channel of the compensator, not the
denominator of it. See Remark 3 above, explaining the apparent
contradiction. Indeed, in our note we assume that P, is fixed,
while in the three papers mentioned above, a relationship is as-
sumed between Py and P, namely, P, = LF.;. In the first two
papers quoted above, L is a fixed matnx of real numbers and
then it is said that = is “readable™ from y. In the paper by Sugie
and Vidyasagar [7], L is a rational matrix, not necessanly proper
or stable, and whose zeros and poles are disjoint from the ex-
ogenous modes: besides, L is perturbable in a restricted sense
and the authors call = “mode readable™ from y. It is clear that
made readability is a weaker condition than readability. Sugie
and Vidyasagar believe that mode readability is a recexyary con-
dition for robust tracking. We assumed that P, is fixed, while F;
is arbitrarily perturbed, so in our assumption there is no mode
readability and a fortiori no readability.

iii) A practical situation of Theorem 2 might occur, say, when P,
would refer to the digital part, so in most cases virfually unper-
turbable, of a plant.
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H . State Feedback Control for Discrete Singular Systems

Shengyuan Xu and Chengwu Yang

Abstract—This note deals with the problem of state feedback H ., con-
trol for discrete singular systeme. It is not assumed that the singular system
under consideration is necessarily regular. The problem we address is the
design of a state feedback controller, such that the resulting clesed-loop
system is not only regnlar, cansal, and stable, but also satisfies a prescribed
H,, -norm-bound condition. In terms of certain matrix inequalities, a nec-
essary and suflicient condition for the solution to this problem is obtained,
and a suitable state feedback-control law is also given.

Index Terms—Discrete singular systems, i, control, state feedback.

[. INTRODUCTION

The problem of H ., control for standard state-space systems has re-
ceived considerable interest over the last decade. This problem is con-
cerned with constructing a controller such that the closed-loop system
is stable and the norm of the closed-loop transfer function is minimized.
It has been shown that a solution to this problem for linear time-in-
variant state-space systems involves solving a set of Riccati equations
(see [4], [13], [19], and the references therein). [n the context of linear
discrete-time state-space systems, the results for continuous systems
have been extended, see, e.g., [3], [5], and [17). Some cfforts have
also been made to deal with the H... controller design for discrete-time
state-space systems subjected to plant parameter perturbations [2], [6],
[18].

Recently, much attention has been given to the extensions of the
results of Ho.. control theory for state-space systems to singular sys-
tems (also known as descriptor systems, implicit systems, generalized
state-space systems, differential-algebraic systems, or semistate sys-
tems [1], [9]). For example, Takaba e al. [14] have considered the H
control problem for singular systems by using the J-spectral factoriza-
tion approach [(J. J')-spectral factorization for discrete singular sys-
tems can be found in [8]]. Masubuchi et al. [11] have shown that the so-
lution of the H . control problem for singular systems can be obtained
by solving a set of matrix inequalities. Moreover, Wang et al. [15] have
presented the necessary and sufficient conditions based on two general-
ized algebraic Riccati equations for the solution to the above problem.
It should be pointed out that all of the works mentioned above are con-
cemned with the H .. control problem for continuous singular systems.
Though there are many publications on the .. controller design for
discrete state-space systems, it appears that no effort has been made to
extend the available results to the case of discrete singular systems.

In this note, we investigate the problem of H .. control for discrete
singular systems. The singular system under consideration is not as-
sumed to be necessarily regular. This implies that we study the H
controller design for the general case of discrete singular systems. The
motivation for studying these singular systems can be found in [7], [10],
and [12]. The purpose of this note is to design a state feedback con-
troller such that the resulting closed-loop system is regular, causal, and
stable while satisfying an H... norm condition with a prescribed level.
To solve this problem, we first give a necessary and sufficient condi-
tion for a discrete singular system to be regular, causal, stable and to
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