[1] ANGELETOS, G.-M.; LA'O, J. Incomplete information, higherorder beliefs and prices inertia. Journal of Monetary Economics, 56(Suplement 1):S19-S37, October 2009.
[2] ANGELETOS, G.-M.; PAVAN, A. Efficient use of information and social value of information. Econometrica, 75(4):1103-1142, July 2007.
[3] ANGELETOS, G.-M.; PAVAN, A. Policy with dispersed information. Journal of the European Economic Association, 7(1):11-60, March 2009.
[4] ANGELETOS, G.-M.; WERNING, I. Crises and prices: Information aggregation, multiplicity, and volatility. American Economic Review, 96(5):1720-1736, December 2006.
[5] AREOSA, M.; AREOSA, W. ; CARRASCO, V. Central bank communication and price setting. Department of Economics, PUC-Rio, Unpublished, 2010a.
[6] AREOSA, M.; AREOSA, W. ; CARRASCO, V. Optimal informational interest rate rule. Department of Economics, PUC-Rio, Unpublished, 2010b.
[7] AREOSA, W. Information (in) chains: Information transmission through production chains. Department of Economics, PUC-Rio, Unpublished, 2009.
[8] AREOSA, W. The signal effect of exchange rates: Pass-through under dispersed information. Department of Economics, PUC-Rio, Unpublished, 2010.
[9] ATKESON, A.; BURSTEIN, A. Pricing-to-market, trade costs, and international relative prices. American Economic Review, 98(5):1998-2031, December 2008.
[10] BACCHETTA, P.; VAN WINCOOP, E. Why do consumer prices react less than import prices to exchange rates? Journal of the European Economic Association, 1(2-3):662-670, April-May 2003.
[11] BACCHETTA, P.; VAN WINCOOP, E. Can information heterogeneity explain the exchange rate determination puzzle? American Economic Review, 96(3):552-576, June 2006.
[12] BACCHETTA, P.; VAN WINCOOP, E. On the unstable relationship between exchange rates and macroeconomic fundamentals. Technical report, NBER Working Paper 15008, 2009.
[13] BAILLIU, J.; FUJII, E. Exchange rate pass-through and the inflation environment in industrialized countries: An empirical investigation. Technical report, Bank of Canada Working Paper 200421, 2004.
[14] BALL, L. M. Policy responses to exchange-rate movements. Technical report, NBER Working Paper 15173, July 2009.
[15] BANERJEE, A. V. A simple model of herd behavior. Quarterly Journal of Economics, 107(3):797-817, August 1992.
[16] BASU, S. Intermediate goods and business cycles: Implications for productivity and welfare. American Economic Review, 85(3):512-531, June 1995.
[17] BERGIN, P. R.; FEENSTRA, R. C. Pricing-to-market, staggered contracts and real exchange rate persistence. Journal of International Economics, 54(2):333-359, August 2001.
[18] BIKHCHANDANI, S.; HIRSHLEIFER, D. ; WELCH, I. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5):992-1026, October 1992.
[19] BLANCHARD, O. J. Price Asynchronization and Price Level Inertia, p. 3-24. MIT Press, Cambridge, Massachusetts, January 1984.
[20] BLANCHARD, O. J.; KIYOTAKI, N. Monopolistic competition and the effects of aggregate demand. American Economic Review, 77(4):647-666, September 1987.
[21] BOUAKEZ, H.; REBEI, N. Has exchange rate pass-through really declined? evidence from canada. Journal of International Economics, $75(2): 249-267$, July 2008.
[22] BURSTEIN, A. T.; AO C. NEVES, J. ; REBELO, S. Distribution costs and real exchange rate dynamics during exchange-ratebased stabilizations. Journal of Monetary Economics, 50(6):11891214, September 2003.
[23] BURSTEIN, A. T.; EICHENBAUM, M. ; REBELO, S. Large devaluations and the real exchange rate. Journal of Political Economy, 113(4):742-784, August 2005.
[24] CALVO, G. A. Staggered prices in a utility-maximizing framework. Journal of Monetary Economics, 12(3):383-398, September 1983.
[25] CAMPA, J. M.; GOLDBERG, L. S. Exchange rate pass-through into import prices. The Review of Economics and Statistics, 87(4):679-690, November 2005.
[26] CAMPA, J. M.; GOLDBERG, L. S. Pass through of exchange rates to consumption prices: What has changed and why? Technical report, NBER Working Paper 12547, October 2006a.
[27] CAMPA, J. M.; GOLDBERG, L. S. Distribution margins, imported inputs, and the sensitivity of the cpi to exchange rates. Technical report, NBER Working Paper 12121, March 2006b.
[28] CAMPA, J. M.; GOLDBERG, L. S. ; GONZÁLEZ-MÍNGUEZ, J. M. Exchange rate pass through to import prices in the euro area. Technical report, NBER Working Paper 11632, September 2005.
[29] CARROLL, C. D. Macroeconomic expectations of households and professional forecasters. Quarterly Journal of Economics, 118(1):269298, February 2003.
[30] CARVALHO, C. V.; SCHWARTZMAN, F. Heterogeneous price setting behavior and aggregate dynamics: Some general results. Unpublished, March 2008.
[31] CA’ZORZI, M.; HAHN, E. ; SÁNCHEZ, M. Exchange rate passthrough in emerging markets. Technical report, European Central Bank Working Paper Series 739, March 2007.
[32] CHOUDHRI, E. U.; HAKURA, D. Exchange rate pass-through to domestic prices: Does the inflationary environment matter? Technical report, IMF Working Paper 01/194, December 2001.
[33] CLARK, T. E. The responses of prices at different stages of production to monetary policy shocks. Review of Economics and Statistics, 81(3):420-433, August 1999.
[34] CORSETTI, G.; DEDOLA, L. A macroeconomic model of international price discrimination. Journal of International Economics, 67(1):129-155, September 2005.
[35] CRUCINI, M. J.; SHINTANI, M. ; TSURUGA, T. Accounting for persistence and volatility of good-level real exchange rates: The role of sticky information. Technical report, NBER Working Papers 14381, October 2008.
[36] CURTIN, R. Sticky information and inflation targeting: How people obtain accurate information about inflation. Unpublished, 2009.
[37] DALY, D.; HELLERSTEIN, R. ; MARSH, C. Have u.s. import prices become less responsive to changes in the dollar? FRBNY Current Issues in Economics and Finance, 12(6), September 2006.
[38] DEVEREUX, M. B.; ENGEL, C. Exchange rate pass-through, exchange rate volatility, and exchange rate disconnect. Journal of Monetary Economics, 49(5):913-940, July 2002.
[39] DEVEREUX, M. B.; YETMAN, J. Price-setting and exchange rate pass-through: Theory and evidence. In: CONFERENCE ON PRICE ADJUSTMENTS AND MONETARY POLICY, p. 347-371. Bank of Canada, November 2002.
[40] DIXIT, A. K.; STIGLITZ, J. E. Monopolistic competition and optimum product diversity. American Economic Review, 67(3):297308, June 1977.
[41] DORNBUSCH, R. Exchange rates and prices. American Economic Review, 77(1):93-106, March 1987.
[42] DUPOR, B.; TSURUGA, T. Sticky information: The impact of different information updating assumptions. Journal of Money, Credit and Banking, 37(6):1143-1152, December 2005.
[43] ENGEL, C. Accounting for u.s. real exchange rate changes. Journal of Political Economics, 107(3):507-538, June 1999.
[44] ENGEL, C. The responsiveness of consumer prices to exchange rates and the implications for exchange rate policy: A survey of a few recent new open-economy macro models. Technical report, NBER Working Paper 8725, January 2002.
[45] ENGEL, C.; ROGERS, J. H. How wide is the border? American Economic Review, 86(5):1112-1125, December 1996.
[46] ENGEL, C.; WEST, K. D. Exchange rates and fundamentals. Journal of Political Economy, 113(3):485-517, June 2005.
[47] FEENSTRA, R. C. Symmetric pass-through of tariffs and exchange rates under imperfect competition: An empirical test. Journal of International Economics, 27(1,2):25-45, August 1989.
[48] FEENSTRA, R. C. Integration of trade and disintegration of production in the global economy. Journal of Economic Perspectives, 12(4):31-50, Autumn 1998.
[49] FLOOD, R. P.; ROSE, A. K. Understanding exchange rate volatility without the contrivance of macroeconomics. Economic Journal, 109(459):F660-F672, November 1999.
[50] FRANKEL, J. A.; PARSLEY, D. C. ; WEI, S.-J. Slow passthrough around the world: A new import for developing countries? Technical report, NBER Working Paper 11199, March 2005.
[51] GAGNON, J. E.; IHRIG, J. Monetary policy and exchange rate pass-through. International Journal of Finance \& Economics, 9(4):315338, October 2004.
[52] GIOVANNINI, A. Exchange rates and traded goods prices. Journal of International Economics, 24(1-2):45-68, February 1988.
[53] GOLDBERG, P. K.; HELLERSTEIN, R. A framework for identifying the sources of local-currency price stability with an empirical application. Technical report, NBER Working Paper 13183, June 2007.
[54] GOLDBERG, P. K.; HELLERSTEIN, R. A structural approach to explaining incomplete exchange-rate pass-through and pricing-to-market. American Economic Review: Papers and Proceedings, 98(2):423-429, May 2008.
[55] GOLDBERG, P. K.; KNETTER, M. M. Goods prices and exchange rates: What have we learned? Journal of Economic Literature, 35(3):1243-1272, September 1997.
[56] GOPINATH, G.; ITSKHOKI, O. ; RIGOBON, R. Currency choice and exchange rate pass-through. American Economic Review, 100(1):304-336, March 2010.
[57] GORDON, R. J. What is new-keynesian economics? Journal of Economic Literature, 28(3):1115-1171, September 1990.
[58] GORODNICHENKO, Y. Endogenous information, menu costs and inflation persistence. Technical report, NBER Working Paper 14184, July 2008.
[59] GRON, A.; SWENSON, D. L. Cost pass-through in the u.s. automobile market. Review of Economics and Statistics, 82(2):316324, May 2000.
[60] GROSSMAN, S. J. An introduction to the theory of rational expectations under asymmetric information. Review of Economic Studies, 48(4):541-559, October 1981.
[61] GROSSMAN, S. J.; STIGLITZ, J. E. Information and competitive price systems. American Economic Review: Papers and Proceedings, 66(2):246-253, May 1976.
[62] HAYEK, F. A. The use of knowledge in society. American Economic Review, 35(4):519-530, September 1945.
[63] HELLWIG, C. Heterogeneous information and the welfare effects of public information disclosures. UCLA, Unpublished, 2005.
[64] HELLWIG, C. Monetary business cycles (imperfect information). In: Durlauf, S. N.; Blume, L. E., editors, THE NEW PALGRAVE DICTIONARY OF ECONOMICS. Palgrave Macmillan, Basingstoke, 2008.
[65] HELLWIG, C.; MUKHERJI, A. ; TSYVINSKI, A. Self-fulfilling currency crises: The role of interest rates. American Economic Review, 96(5):1769-1787, December 2006.
[66] HELLWIG, C.; VELDKAMP, L. Knowing what others know: Coordination motives in information acquisition. Review of Economic Studies, 76(1):223-251, January 2009.
[67] HELLWIG, C.; VENKATESWARAN, V. Setting the right prices for the wrong reasons. Journal of Monetary Economics, 56(Supplement 1):S57-S77, October 2009.
[68] HOLMSTROM, B.; MYERSON, R. B. Efficient and durable decision rules with incomplete information. Econometrica, 51(6):17991819, November 1983.
[69] HUANG, K. X. D.; LIU, Z. Production chains and general equilibrium aggregate dynamics. Journal of Monetary Economics, 48(2):437-462, October 2001.
[70] HUANG, K. X. D.; LIU, Z. Business cycles with staggered prices and international trade in intermediate inputs. Journal of Monetary Economics, 54(4):1271-1289, May 2007.
[71] IHRIG, J. E.; MARAZZI, M. ; ROTHENBERG, A. D. Exchangerate pass-through in the g-7 countries. Technical report, FRB International Finance Discussion Paper 2006-851, January 2006.
[72] KASA, K. Adjustment costs and pricing-to-market theory and evidence. Journal of International Economics, 32(1-2):1-30, February 1992.
[73] KLENOW, P. J.; MALIN, B. A. Microeconomic evidence on pricesetting. Technical report, NBER Working Paper 15826, March 2010.
[74] KNETTER, M. M. Price discrimination by u.s. and german exporters. American Economic Review, 79(1):198-210, March 1989.
[75] LORENZONI, G. A theory of demand shocks. American Economic Review, 99(5):2050-2084, December 2009.
[76] LORENZONI, G. Optimal monetary policy with uncertain fundamentals and dispersed information. Review of Economic Studies, 77(1):305-338, January 2010.
[77] LUCAS, R. E. Expectations and the neutrality of money. Journal of Economic Theory, 4(2):103-124, April 1972.
[78] MACDONALD, R. Exchange rate behaviour: Are fundamentals important? Economic Journal, 109(459):F673-F691, November 1999.
[79] MANKIW, N. G.; REIS, R. Sticky information versus sticky prices: A proposal to replace the new keynesian phillips curve. Quarterly Journal of Economics, 117(4):1295-1328, November 2002.
[80] MANKIW, N. G.; REIS, R. Pervasive stickiness. American Economic Review: Papers and Proceedings, 96(2):164-169, May 2006.
[81] MANKIW, N. G.; REIS, R. Sticky information in general equilibrium. Journal of the European Economic Association, 5(2-3):603-613, April-May 2007.
[82] MANKIW, N. G.; REIS, R. Imperfect information and aggregate supply. Technical report, NBER Working Paper 15773, February 2010.
[83] MANKIW, N. G.; REIS, R. ; WOLFERS, J. Disagreement about Inflation Expectations, volume 18, p. 209-270. MIT Press, 2004.
[84] MARAZZI, M.; SHEETS, N.; VIGFUSSON, R. J.; FAUST, J.; GAGNON, J. E.; MARQUEZ, J.; MARTIN, R. F.; REEVE, T. A. ; ROGERS, J. H. Exchange rate passthrough to us import prices: Some new evidence. Technical report, FRB International Finance Discussion Paper 2005-833, April 2005.
[85] MARQUEZ, J.; THOMAS, C. P. Measurement matters for modeling u.s. import prices. Technical report, FRB International Finance Discussion Paper 2006-883, December 2006.
[86] MATSUYAMA, K. Complementarities and cumulative processes in models of monopolistic competition. Journal of Economic Literature, 33(2):701-729, June 1995.
[87] MCCARTHY, J. Pass-through of exchange rates and import prices to domestic inflation in some industrialized economies. Technical report, BIS Working Paper 79, November 1999.
[88] MEANS, G. C. Industrial prices and their relative inflexibility. Technical report, U.S. Senate Document 13, 74th Congress, 1st Session, Washington, DC, 1935.
[89] MEESE, R. A.; ROGOFF, K. Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1-2):3-24, February 1983.
[90] MIHALJEK, D.; KLAU, M. A note on the pass-through from exchange rate and foreign price changes to inflation in selected emerging market economies. In: MODELLING ASPECTS OF THE INFLATION PROCESS AND THE MONETARY TRANSMISSION MECHANISM IN EMERGING MARKET COUNTRIES, p. 69-81, November 2001.
[91] MIRRLEES, J. A. An exploration in the theory of optimum income taxation. Review of Economic Studies, 38(2):175-208, April 1971.
[92] MISHKIN, F. S. Exchange rate pass-through and monetary policy. Technical report, NBER Working Paper 13889, April 2008.
[93] MORRIS, S.; SHIN, H. S. The social value of public information. American Economic Review, 92(5):1521-1534, December 2002.
[94] MORRIS, S.; SHIN, H. S. Endogenous public signals and coordination. Princeton, Unpublished, 2006.
[95] NAKAMURA, E.; ZEROM, D. Accounting for incomplete passthrough. Technical report, NBER Working Paper 15255, August 2009.
[96] OTANI, A.; SHIRATSUKA, S. ; SHIROTA, T. Revisiting the decline in the exchange-rate pass-through: Further evidence from japan's import prices. Monetary and Economic Studies, 24(1):61-75, March 2006.
[97] PARSLEY, D. C.; POPPER, H. Understanding real exchange rate movements with trade in intermediate products. Unpublished, February 2009.
[98] PARSLEY, D. C.; WEI, S.-J. Explaining the border effect: The role of exchange rate variability, shipping costs, and geography. Journal of International Economics, 55(1):87-105, October 2001.
[99] PHELPS, E. S. Money-wage dynamics and labor market equilibrium. Journal of Political Economy, 76(4):678-711, July-August 1968.
[100] RADNER, R. Team decision problems. The Annals of Mathematical Statistics, 33(3):857-881, September 1962.
[101] REIS, R. Inattentive consumers. Journal of Monetary Economics, 53(8):1761-1800, November 2006a.
[102] REIS, R. Inattentive producers. Review of Economic Studies, 73(3):793-821, July 2006b.
[103] REIS, R. Optimal monetary policy rules in an estimated stickyinformation model. American Economic Journal: Macroeconomics, 1(2):1-28, July 2009.
[104] SANYAL, K. K.; JONES, R. W. The theory of trade in middle products. American Economic Review, 72(1):16-31, March 1982.
[105] SARNO, L.; VALENTE, G. Exchange rates and fundamentals: Footloose or evolving relationship? Journal of the European Economic Association, 7(4):786-830, June 2009.
[106] SIMS, C. A. Implications of rational inattention. Journal of Monetary Economics, 50(3):665-690, April 2003.
[107] SIMS, C. A. Rational Inattention and Monetary Economics. Elsevier-North Holland, Forthcoming.
[108] SOTO, C.; SELAIVE, J. Openness and imperfect pass-through: Implications for the monetary policy. Technical report, Central Bank of Chile Working Paper 216, June 2003.
[109] TARASHEV, N. A. Currency crises and the informational role of interest rates. Technical report, BIS Working Paper 135, September 2003.
[110] TAYLOR, J. B. Low inflation, pass-through, and the pricing power of firms. European Economic Review, 44(7):1389-1408, June 2000.
[111] VALDERRAMA, D. The exchange rate-consumer price puzzle. Technical report, FRBSF Economic Letter 2006-23, September 2006.
[112] VELDKAMP, L. Information choice in macroeconomics and finance. NYU, Unpublished, 2009.
[113] WOODFORD, M. Imperfect Common Knowledge and the Effects of Monetary Policy, p. 25-58. Princeton University Press, Princeton, NJ, 2002.
[114] WOODFORD, M. Information-constrained state-dependent pricing. Journal of Monetary Economics, 56(Supplement 1):S100-S124, October 2009.

5
 Appendixes

5.1
 Appendix of Chapter 1

5.1.1
 The Model of Huang and Liu (2001)

In the model economy, the production of a final consumption good requires N stages of processing. The production of each good at stage 1 requires labor services only, with a constant-returns-to-scale technology given by $Y_{1}(j)=H_{1}(j)$, where $H_{1}(j)$ is the labor input and $Y_{1}(j)$ is the output. The production of each good at stage $n \in\{2, \ldots, N\}$ uses labor and all goods produced at the previous stage as inputs according to the following technology

$$
Y_{n}(j)=\left[\int_{0}^{1} Y_{n-1}(j, z)^{\frac{1}{\mu}} d z\right]^{r \mu} H_{n}(j)^{1-r},
$$

where $Y_{n}(j)$ is the output of a stage- n firm of type $j, Y_{n-1}(j, z)$ is the input supplied to j by a stage- $(n-1)$ firm of type $z, \mu>1$ is function of the elasticity of substitution between such goods, $H_{n}(j)$ is the labor input used by j, and $r \in(0,1)$ is the share of composite of stage- $(n-1)$ goods in j 'production. Firms behave as imperfect competitors in their output markets and are pricetakers in their input markets. Given the constant-returns-to-scale technologies, the unit cost is also the marginal cost and is firm-independent. The optimal price decision under flexible prices is just a mark-up over marginal costs

$$
\begin{equation*}
P_{n}(j)=\mu\left[\bar{r}\left(P_{n-1}\right)^{r}(W)^{1-r}\right], \tag{5-1}
\end{equation*}
$$

where $\bar{r} \equiv r^{-r}(1-r)^{-(1-r)}, P_{n-1} \equiv\left[\int_{0}^{1} P_{n-1}(z)^{\frac{1}{1-\mu}} d z\right]^{1-\mu}$ is a price index for goods produced at stage $n-1$, and W is nominal wage per hour.

The representative household is infinitely lived and maximizes expected life utility. The following equation describes the labor supply decision of the household

$$
\begin{equation*}
\frac{W}{P_{N}}=C, \tag{5-2}
\end{equation*}
$$

Table 5.1: Parameter Values

Parameter	Description	Interval
α	Private information precision	$[0.10,50.0]$
β	Public or Semi-public information precision	$[0.10,50.0]$
r	Share of goods produced at stage $(n-1)$	
	in the production of stage n	$[0.10,0.90]$

where consumption C is a Dixit and Stiglitz (1977) composite of the final-stage goods

$$
\begin{equation*}
C=\left[\int_{0}^{1} Y_{N}(z)^{\frac{1}{\mu}} d z\right]^{\mu} \equiv Y_{N} \tag{5-3}
\end{equation*}
$$

where $Y_{N}(z)$ is a type z good produced at stage N. We combine equations (5-1), (5-2), and (5-3) to obtain

$$
\frac{P_{n}(j)}{P_{N}}=\mu\left(\frac{P_{n-1}}{P_{N}}\right)^{r}\left(Y_{N}\right)^{1-r}
$$

which log-linearized yields $p_{n}^{*} \equiv r P_{n-1}+(1-r) \theta$, where $\theta \equiv Y_{N}+P_{N}$ is nominal aggregate demand.

5.1.2
 Simulation

We simulate the model in order to understand the evolution of semipublic information precision $\hat{\beta}_{n}$. The model's structural parameters are α, β, and r. For ease of reference, we group all primitive parameter definitions and values in Table 5.1. We avoid extreme values of r even tough results don't change dramatically in these cases. We comment about the extreme cases $r=0$ and $r=1$ bellow.

$\hat{\beta}^{*}$ limit

Substitute the lag of the expression for $\hat{\lambda}_{n}$ at (1-13) in (1-12) to obtain a recursive expression for $\hat{\beta}_{n}$

$$
\begin{equation*}
\hat{\beta}_{n}=\frac{\left[\beta\left(\alpha+\hat{\beta}_{n-1}\right)\right]^{2} \hat{\beta}_{n-1}}{\beta\left(\alpha+\hat{\beta}_{n-1}\right)^{2} \hat{\beta}_{n-1}+\left[(\beta-r \alpha) \hat{\beta}_{n-1}+r \alpha \beta\right]^{2}} \tag{5-4}
\end{equation*}
$$

If we set $\hat{\beta}_{n}=\hat{\beta}_{n-1}=\hat{\beta}^{*}$, we obtain

$$
\hat{\beta}^{*}=\frac{\left[\beta\left(\alpha+\hat{\beta}^{*}\right)\right]^{2} \hat{\beta}^{*}}{\beta\left(\alpha+\hat{\beta}^{*}\right)^{2} \hat{\beta}^{*}+\left[(\beta-r \alpha) \hat{\beta}^{*}+r \alpha \beta\right]^{2}},
$$

which is a root of the third degree equation

$$
\begin{equation*}
f(X) \equiv(X)^{3}+c_{1}(X)^{2}+c_{2} X+c_{3}, \tag{5-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1} \equiv \frac{\alpha}{\beta}\left[2 \beta(1-r)+r^{2} \alpha\right]>0, \\
& c_{2} \equiv \alpha\left[\alpha\left(1-2 r^{2}\right)-2 \beta(1-r)\right], \\
& c_{3} \equiv-\alpha^{2} \beta\left(1-r^{2}\right)<0 .
\end{aligned}
$$

Considering the parameter values of Table 3.1, $\hat{\beta}_{n}$ decreases monotonically to $\hat{\beta}^{*}$, the unique positive root of (5-5) when stage n increases.

Extreme values of r

If $r=1$, zero is necessarily one of the roots of $f(X)$ and thus we must define $\hat{\beta}^{*}$ as the unique strict positive root of (5-5). For values of r very close to zero, we need an extra condition regarding the exogenous precisions α, β, and r to guarantee monotonicity. If $r=0$, for example, we need $\alpha \leq \frac{3}{4} \beta$. To see this, consider (5-5) when $r=0$

$$
\begin{equation*}
f(X) \equiv(X)^{3}+2 \alpha(X)^{2}+\alpha(\alpha-2 \beta) X-\alpha^{2} \beta \tag{5-6}
\end{equation*}
$$

In order to $\hat{\beta}_{n}$ converges monotonically to $\hat{\beta}^{*}$, the first derivative of (5-4) must be non-negative on $\hat{\beta}^{*}$

$$
\begin{aligned}
\left.\frac{\partial \hat{\beta}_{n}}{\partial \hat{\beta}_{n-1}}\right|_{\hat{\beta}_{n-1}=\hat{\beta}^{*}} & =\frac{\beta^{2}\left(\left(\hat{\beta}^{*}\right)^{2}-\alpha^{2}\right)}{\left[\left(\alpha+\hat{\beta}^{*}\right)^{2}+\beta \hat{\beta}^{*}\right]^{2}} \geq 0 \\
& \Rightarrow \hat{\beta}^{*} \geq \alpha .
\end{aligned}
$$

If we substitute $\hat{\beta}^{*}=\alpha$ in the third degree equation (5-6), we obtain the result

$$
f(\alpha)=0 \Rightarrow \alpha=\frac{3}{4} \beta
$$

5.2
 Appendix of Chapter 2

5.2.1
 Proofs of Results

Proof 19 (Proof of Result 12: ERPT under Complete Information)

If information is complete, the external price of a given exporter is

$$
p_{f}^{*}=\left(1-r^{*}\right) \theta^{*}+r^{*} P_{F}^{*} .
$$

Because firms are identical, all set the same price. As a result,

$$
P_{F}^{*}=\left(1-r^{*}\right) \theta^{*}+r^{*} P_{F}^{*} \Rightarrow P_{F}^{*}=\theta^{*},
$$

and the price of an imported good is $p_{f}=P_{F}=e+\theta^{*}$. Now, consider the prices of domestic firms. Under complete information, all final goods' firms set the same price

$$
p_{h}=(1-r) \theta+r\left[e+\theta^{*}\right] .
$$

Setting $r=1$ establishes the result

$$
p_{h}=P_{F}=e+\theta^{*} .
$$

Proof 20 (Proof of Result 13: Incomplete ERPT (Morris and Shin (2002)))

Under dispersed information, the optimal response for an exporter is

$$
p_{f}^{*}=E\left[\left(1-r^{*}\right) \theta^{*}+r^{*} P_{F}^{*} \mid \Im_{f}^{*}\right] .
$$

After iterating and writing $E\left[\theta^{*} \mid \Im^{*}\right]$ for the average expectation of θ^{*} across exporters, we have

$$
\begin{equation*}
p_{f}^{*}=\left(1-r^{*}\right) \sum_{k=0}^{\infty}\left(r^{*}\right)^{k} E\left[E^{k}\left[\theta^{*} \mid \Im^{*}\right] \mid \Im_{f}^{*}\right] . \tag{5-7}
\end{equation*}
$$

Given the signals, it is straightforward to compute the high-order beliefs. The average expectation of θ^{*} across exporters is

$$
\begin{aligned}
E\left[\theta^{*} \mid \Im^{*}\right] & \equiv \int_{f \in[0,1]} E\left[\theta^{*} \mid \Im_{f}^{*}\right] d f \\
& =\left(1-\lambda^{*}\right) \int_{f \in[0,1]} x_{f}^{*} d f+\lambda^{*}\left[\int_{f \in[0,1]} y_{f}^{*} d f-e\right] \\
& =\left(1-\lambda^{*}\right) \theta^{*}+\lambda^{*}[\theta-e] .
\end{aligned}
$$

Now, the expected value of the average expectation for a given exporter is

$$
\begin{aligned}
E\left[E\left[\theta^{*} \mid \Im^{*}\right] \mid \Im_{f}^{*}\right] & =E\left[\left(1-\lambda^{*}\right) \theta^{*}+\lambda^{*}[\theta-e] \mid \Im_{f}^{*}\right] \\
& =\left(1-\lambda^{*}\right) E\left[\theta^{*} \mid \Im_{f}^{*}\right]+\lambda^{*}\left[E\left[\theta \mid \Im_{f}^{*}\right]-e\right] \\
& =\left[1-\lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{2}}{\lambda^{*}+\eta^{*}}\right)\right] x_{f}^{*} \\
& +\lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{2}}{\lambda^{*}+\eta^{*}}\right)\left[y_{f}^{*}-e\right] .
\end{aligned}
$$

More generally, we have

$$
\begin{align*}
E\left[E^{k}\left[\theta^{*} \mid \Im^{*}\right] \mid \Im_{f}^{*}\right] & =\left[1-\lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{k+1}}{\lambda^{*}+\eta^{*}}\right)\right] x_{f}^{*} \\
& +\lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{k+1}}{\lambda^{*}+\eta^{*}}\right)\left[y_{f}^{*}-e\right] \tag{5-8}
\end{align*}
$$

PUC-Rio - Certificação Digital № 0610524/CA
If we replace (5-8) in (5-7), we obtain

$$
\begin{aligned}
p_{f}^{*} & =\left(1-r^{*}\right) \sum_{k=0}^{\infty}\left(r^{*}\right)^{k}\left[1-\lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{k+1}}{\lambda^{*}+\eta^{*}}\right)\right] x_{f}^{*} \\
& +\left(1-r^{*}\right) \sum_{k=0}^{\infty}\left(r^{*}\right)^{k} \lambda^{*}\left(\frac{1-\left(1-\lambda^{*}-\eta^{*}\right)^{k+1}}{\lambda^{*}+\eta^{*}}\right)\left[y_{f}^{*}-e\right] \\
& =\left(1-\delta^{*}\right) x_{f}^{*}+\delta^{*}\left[y_{f}^{*}-e\right] .
\end{aligned}
$$

where

$$
\begin{aligned}
\delta^{*} & \equiv \frac{\lambda^{*}}{1-r^{*}\left(1-\lambda^{*}-\eta^{*}\right)} \\
& =\underbrace{\frac{\sigma_{x}^{2 *}}{\sigma_{x^{*}}^{2}+\sigma_{y^{*}}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}}} \in(0,1) \\
& : \text { signal effect for exporters }
\end{aligned}
$$

As a result, import prices are

$$
\begin{aligned}
p_{f} & =e+p_{f}^{*} \\
& =e+\left(1-\delta^{*}\right) x_{f}^{*}+\delta^{*}\left[y_{f}^{*}-e\right] \\
& =\left(1-\delta^{*}\right)\left[x_{f}^{*}+e\right]+\delta^{*} y_{f}^{*} .
\end{aligned}
$$

Setting $r^{*}=0$ establishes our result.
Proof 21 (Proof of Result 14: ERCP Puzzle) Given Result 13, aggre-
gate imports' prices are

$$
\begin{aligned}
P_{F} & \equiv \int_{f \in[0,1]} p_{f} d f \\
& =\left(1-\delta^{*}\right)\left[\int_{f \in[0,1]} x_{f}^{*} d f+e\right]+\delta^{*} \int_{f \in[0,1]} y_{f}^{*} d f \\
& =\left(1-\delta^{*}\right)\left[\theta^{*}+e\right]+\delta^{*} \theta .
\end{aligned}
$$

As a result, domestic prices are

$$
\begin{aligned}
p_{h} & =E\left[(1-r) \theta+r P_{F} \mid \Im_{h}\right] \\
& =E\left[(1-r) \theta+r\left[\left(1-\delta^{*}\right)\left[\theta^{*}+e\right]+\delta^{*} \theta\right] \mid \Im_{h}\right] \\
& =\left[1-r\left(1-\delta^{*}\right)\right] E\left[\theta \mid \Im_{h}\right]+r\left(1-\delta^{*}\right) E\left[\theta^{*}+e \mid \Im_{h}\right] \\
& =(1-\delta) x_{h}+\delta\left[y_{h}+e\right],
\end{aligned}
$$

where

$$
\delta \equiv \lambda+r\left(1-\delta^{*}\right)(1-\lambda-\eta)
$$

$$
=1 \underbrace{\frac{\sigma_{y}^{2}+\left[1-r\left(1-\delta^{*}\right)\right] \sigma_{e}^{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}}}
$$

: signal effect for domestic firms

Setting $r=1$ establishes our result.

Proof 22 (Proof of Result 15: Macroeconomic Stability and ERPT)

Given Result 14, the first derivative of δ with respect to σ_{e}^{2} is

$$
\frac{\partial \delta}{\partial \sigma_{e}^{2}}=\frac{r\left(1-\delta^{*}\right)\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)-r \frac{\partial \delta^{*}}{\partial \sigma_{e}^{2}} \sigma_{e}^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)-\sigma_{x}^{2}}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)^{2}}
$$

where

$$
\frac{\partial \delta^{*}}{\partial \sigma_{e}^{2}}=-\frac{\left(1-r^{*}\right) \sigma_{x^{*}}^{2}}{\left[\sigma_{x^{*}}^{2}+\sigma_{y^{*}}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}\right]^{2}}
$$

If we set $\sigma_{x}^{2}=\sigma_{x^{*}}^{2}, \sigma_{y}^{2}=\sigma_{y^{*}}^{2}$, we obtain

$$
\frac{\partial \delta}{\partial \sigma_{e}^{2}}>0 \Leftrightarrow r\left\{\left[\sigma_{y}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}\right]\left(1+\frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}\right)+\frac{\left(1-r^{*}\right) \sigma_{e}^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)}{\left[\sigma_{x}^{2}+\sigma_{y}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}\right]}\right\}>1
$$

If we also set $r=1, r^{*}=0$, we obtain

$$
\frac{\partial \delta}{\partial \sigma_{e}^{2}}=\frac{\left(\sigma_{y}^{2}-\sigma_{x}^{2}+\sigma_{e}^{2}\right)\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)^{3}}>0 \Leftrightarrow \sigma_{e}^{2}>\sigma_{x}^{2}-\sigma_{y}^{2}
$$

If instead we have $r=r^{*}$

$$
\frac{\partial \delta}{\partial \sigma_{e}^{2}}=\frac{1}{(\Delta)^{2}(\Lambda)^{2}}\left[2 r(1-r) \sigma_{x}^{2} \sigma_{e}^{2}\left(\Delta-\frac{r}{2} \sigma_{e}^{2}\right)+\left(r \sigma_{y}^{2}-\sigma_{x}^{2}\right)(\Lambda)^{2}\right]
$$

where

$$
\begin{aligned}
\Delta & \equiv \sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2} \\
\Lambda & \equiv \sigma_{x}^{2}+\sigma_{y}^{2}+(1-r) \sigma_{e}^{2}
\end{aligned}
$$

Note that if

$$
r>\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} \in(0,1) \Rightarrow \frac{\partial \delta}{\partial \sigma_{e}^{2}}>0
$$

Note also that

$$
\begin{aligned}
\frac{\partial^{2} \delta}{\partial r \partial \sigma_{e}^{2}} & =\frac{\left(1-\delta^{*}\right)\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)-\frac{\partial \delta^{*}}{\partial \sigma_{e}^{2}} \sigma_{e}^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)^{2}}>0 \\
\frac{\partial^{2} \delta}{\partial r^{*} \partial \sigma_{e}^{2}} & =\frac{r \sigma_{x^{*}}^{2} \sigma_{e}^{2}}{\left[\sigma_{x^{*}}^{2}+\sigma_{y^{*}}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}\right]^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{e}^{2}\right)^{2}} \\
& \times\left[\frac{\left(1-r^{*}\right) \sigma_{e}^{4}-\left[\sigma_{x^{*}}^{2}+\sigma_{y^{*}}^{2}\right]\left(2 \sigma_{x}^{2}+2 \sigma_{y}^{2}+\sigma_{e}^{2}\right)}{\left[\sigma_{x^{*}}^{2}+\sigma_{y^{*}}^{2}+\left(1-r^{*}\right) \sigma_{e}^{2}\right]}\right]
\end{aligned}
$$

5.2.2

Production Chains

For $n=1$, domestic prices are

$$
\begin{aligned}
p_{H, 1} & =E\left[\theta \mid \Im_{1}\right]=(1-\lambda) x_{1}+\lambda\left[y_{1}+e\right] \\
p_{F, 1}^{*} & =E\left[\theta^{*} \mid \Im_{1}^{*}\right]=\left(1-\lambda^{*}\right) x_{1}^{*}+\lambda^{*}\left[y_{1}^{*}-e\right] .
\end{aligned}
$$

Then, foreign prices are

$$
\begin{aligned}
p_{H, 1}^{*} & =p_{H, 1}-e=(1-\lambda)\left[x_{1}-e\right]+\lambda y_{1}, \\
p_{F, 1} & =e+p_{F, 1}^{*}=\left(1-\lambda^{*}\right)\left[x_{1}^{*}+e\right]+\lambda^{*} y_{1}^{*} .
\end{aligned}
$$

If we aggregate:

$$
\begin{aligned}
P_{H, 1} & \equiv \frac{1}{m} \int_{0}^{m} p_{H, 1}(j) d j=(1-\lambda) \theta+\lambda\left[\theta^{*}+e\right] \\
P_{F, 1}^{*} & \equiv \frac{1}{1-m} \int_{m}^{1} p_{F, 1}^{*}(j) d j=\left(1-\lambda^{*}\right) \theta^{*}+\lambda^{*}[\theta-e],
\end{aligned}
$$

and then

$$
\begin{aligned}
P_{H, 1}^{*} & \equiv P_{H, 1}-e=(1-\lambda)[\theta-e]+\lambda \theta^{*} \\
P_{F, 1} & \equiv e+P_{F, 1}^{*}=\left(1-\lambda^{*}\right)\left[\theta^{*}+e\right]+\lambda^{*} \theta .
\end{aligned}
$$

The countries price levels are

$$
\begin{aligned}
P_{1} & \equiv(1-\chi) P_{H, 1}+\chi P_{F, 1} \\
& =(1-\chi)\left[(1-\lambda) \theta+\lambda\left[\theta^{*}+e\right]\right]+\chi\left[\left(1-\lambda^{*}\right)\left[\theta^{*}+e\right]+\lambda^{*} \theta\right] \\
& =\left(1-\delta_{1}\right) \theta+\delta_{1}\left[\theta^{*}+e\right], \\
P_{1}^{*} & \equiv\left(1-\chi^{*}\right) P_{F, 1}^{*}+\chi^{*} P_{H, 1}^{*} \\
& =\left(1-\chi^{*}\right)\left[\left(1-\lambda^{*}\right) \theta^{*}+\lambda^{*}[\theta-e]\right]+\chi^{*}\left[(1-\lambda)[\theta-e]+\lambda \theta^{*}\right] \\
& =\left(1-\delta_{1}^{*}\right) \theta^{*}+\delta_{1}^{*}[\theta-e],
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1} \equiv(1-\chi) \lambda+\chi\left(1-\lambda^{*}\right) \\
& \delta_{1}^{*} \equiv\left(1-\chi^{*}\right) \lambda^{*}+\chi^{*}(1-\lambda)
\end{aligned}
$$

Now, consider $n=2$:

$$
\begin{aligned}
p_{H, 2} & =E\left[(1-r) \theta+r P_{1} \mid \Im_{2}\right] \\
& =E\left[(1-r) \theta+r\left[\left(1-\delta_{1}\right) \theta+\delta_{1}\left[\theta^{*}+e\right]\right] \mid \Im_{2}\right] \\
& =\left(1-r \delta_{1}\right) E\left[\theta \mid \Im_{2}\right]+r \delta_{1} E\left[\theta^{*}+e \mid \Im_{2}\right] \\
& =\left(1-\lambda_{2}\right) x_{2}+\lambda_{2}\left[y_{2}+e\right], \\
p_{F, 2}^{*} & =E\left[\left(1-r^{*}\right) \theta^{*}+r^{*} P_{1}^{*} \mid \Im_{2}^{*}\right] \\
& =E\left[\left(1-r^{*}\right) \theta^{*}+r^{*}\left[\left(1-\delta_{1}^{*}\right) \theta^{*}+\delta_{1}^{*}[\theta-e]\right] \mid \Im_{2}^{*}\right] \\
& =\left(1-r^{*} \delta_{1}^{*}\right) E\left[\theta^{*} \mid \Im_{2}^{*}\right]+r^{*} \delta_{1}^{*} E\left[\theta-e \mid \Im_{2}^{*}\right] \\
& =\left(1-\lambda_{2}^{*}\right) x_{2}^{*}+\lambda_{2}^{*}\left[y_{2}^{*}-e\right] .
\end{aligned}
$$

Foreign prices are

$$
\begin{aligned}
& p_{H, 2}^{*}=p_{H, 2}-e=\left(1-\lambda_{2}\right)\left[x_{2}-e\right]+\lambda_{2} y_{2}, \\
& p_{F, 2}=e+p_{F, 2}^{*}=\left(1-\lambda_{2}^{*}\right)\left[x_{2}^{*}+e\right]+\lambda_{2}^{*} y_{2}^{*},
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{2} \equiv\left(1-r \delta_{1}\right) \lambda+r \delta_{1}(1-\eta) \\
& \lambda_{2}^{*} \equiv\left(1-r^{*} \delta_{1}^{*}\right) \lambda^{*}+r^{*} \delta_{1}^{*}\left(1-\eta^{*}\right)
\end{aligned}
$$

If we aggregate

$$
\begin{aligned}
P_{H, 2} & \equiv \frac{1}{m} \int_{0}^{m} p_{H, 2}(j) d j=\left(1-\lambda_{2}\right) \theta+\lambda_{2}\left[\theta^{*}+e\right] \\
P_{F, 2}^{*} & \equiv \frac{1}{1-m} \int_{m}^{1} p_{F, 2}^{*}(j) d j=\left(1-\lambda_{2}^{*}\right) \theta^{*}+\lambda_{2}^{*}[\theta-e],
\end{aligned}
$$

and then

$$
\begin{aligned}
P_{H, 2}^{*} & \equiv P_{H, 2}-e=\left(1-\lambda_{2}\right)[\theta-e]+\lambda_{2} \theta^{*} \\
P_{F, 2} & \equiv e+P_{F, 2}^{*}=\left(1-\lambda_{2}^{*}\right)\left[\theta^{*}+e\right]+\lambda_{2}^{*} \theta
\end{aligned}
$$

The countries price levels are

$$
\begin{aligned}
P_{2} & \equiv(1-\chi) P_{H, 2}+\chi P_{F, 2} \\
& =(1-\chi)\left[\left(1-\lambda_{2}\right) \theta+\lambda_{2}\left[\theta^{*}+e\right]\right]+\chi\left[\left(1-\lambda_{2}^{*}\right)\left[\theta^{*}+e\right]+\lambda_{2}^{*} \theta\right] \\
& =\left(1-\delta_{2}\right) \theta+\delta_{2}\left[\theta^{*}+e\right], \\
P_{2}^{*} & \equiv\left(1-\chi^{*}\right) P_{F, 2}^{*}+\chi^{*} P_{H, 2}^{*} \\
& =\left(1-\chi^{*}\right)\left[\left(1-\lambda_{2}^{*}\right) \theta^{*}+\lambda_{2}^{*}[\theta-e]\right]+\chi^{*}\left[\left(1-\lambda_{2}\right)[\theta-e]+\lambda_{2} \theta^{*}\right] \\
& =\left(1-\delta_{2}^{*}\right) \theta^{*}+\delta_{2}^{*}[\theta-e],
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{2} \equiv(1-\chi) \lambda_{2}+\chi\left(1-\lambda_{2}^{*}\right) \\
& \delta_{2}^{*} \equiv\left(1-\chi^{*}\right) \lambda_{2}^{*}+\chi^{*}\left(1-\lambda_{2}\right)
\end{aligned}
$$

For a generic $n \geq 1$:

$$
\begin{aligned}
p_{H, n} & =\left(1-\lambda_{n}\right) x_{n}+\lambda_{n}\left[y_{n}+e\right], \\
p_{F, n}^{*} & =\left(1-\lambda_{n}^{*}\right) x_{n}^{*}+\lambda_{n}^{*}\left[y_{n}^{*}-e\right], \\
p_{H, n}^{*} & =\left(1-\lambda_{n}\right)\left[x_{n}-e\right]+\lambda_{n} y_{n}, \\
p_{F, n} & =\left(1-\lambda_{n}^{*}\right)\left[x_{n}^{*}+e\right]+\lambda_{n}^{*} y_{n}^{*},
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{n} \equiv \lambda+r(1-\lambda-\eta) \delta_{n-1}, \quad \lambda_{1}=\lambda, \\
& \lambda_{n}^{*} \equiv \lambda^{*}+r^{*}\left(1-\lambda^{*}-\eta^{*}\right) \delta_{n-1}^{*}, \quad \lambda_{1}^{*}=\lambda,
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{n} & \equiv(1-\chi) \lambda_{n}+\chi\left(1-\lambda_{n}^{*}\right) \\
\delta_{n}^{*} & \equiv\left(1-\chi^{*}\right) \lambda_{n}^{*}+\chi^{*}\left(1-\lambda_{n}\right)
\end{aligned}
$$

If we aggregate

$$
\begin{aligned}
P_{H, n} & =\left(1-\lambda_{n}\right) \theta+\lambda_{n}\left[\theta^{*}+e\right], \\
P_{F, n}^{*} & =\left(1-\lambda_{n}^{*}\right) \theta^{*}+\lambda_{n}^{*}[\theta-e], \\
P_{H, n}^{*} & =\left(1-\lambda_{n}\right)[\theta-e]+\lambda_{n} \theta^{*}, \\
P_{F, n} & =\left(1-\lambda_{n}^{*}\right)\left[\theta^{*}+e\right]+\lambda_{n}^{*} \theta,
\end{aligned}
$$

which yields

$$
\begin{aligned}
& P_{n} \equiv\left(1-\delta_{n}\right) \theta+\delta_{n}\left[\theta^{*}+e\right], \\
& P_{n}^{*} \equiv\left(1-\delta_{n}^{*}\right) \theta^{*}+\delta_{n}^{*}[\theta-e] .
\end{aligned}
$$

We can obtain recursive expressions for $\left(\lambda_{n}, \lambda_{n}^{*}\right)$

$$
\begin{aligned}
\lambda_{n} & \equiv \lambda+r(1-\lambda-\eta) \delta_{n-1} \\
& =\lambda+r(1-\lambda-\eta)\left[(1-\chi) \lambda_{n-1}+\chi\left(1-\lambda_{n-1}^{*}\right)\right], \\
\lambda_{n}^{*} & \equiv \lambda^{*}+r^{*}\left(1-\lambda^{*}-\eta^{*}\right) \delta_{n-1}^{*} \\
& =\lambda^{*}+r^{*}\left(1-\lambda^{*}-\eta^{*}\right)\left[\left(1-\chi^{*}\right) \lambda_{n-1}^{*}+\chi^{*}\left(1-\lambda_{n-1}\right)\right] .
\end{aligned}
$$

Write the weights in matrix format

$$
\begin{aligned}
& \Delta_{n}=\Delta+A \Lambda_{n}, \\
& \Lambda_{n}=\Lambda+B \Delta_{n-1},
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{n} & \equiv\left[\begin{array}{c}
\delta_{n} \\
\delta_{n}^{*}
\end{array}\right], \quad \Lambda_{n} \equiv\left[\begin{array}{l}
\lambda_{n} \\
\lambda_{n}^{*}
\end{array}\right], \\
\Delta & \equiv\left[\begin{array}{c}
\chi \\
\chi^{*}
\end{array}\right] \neq \Delta_{1} \equiv\left[\begin{array}{l}
\delta_{1} \\
\delta_{1}^{*}
\end{array}\right], \quad \Lambda \equiv\left[\begin{array}{c}
\lambda \\
\lambda^{*}
\end{array}\right]=\Lambda_{1}, \\
A & \equiv\left[\begin{array}{cc}
1-\chi & -\chi \\
-\chi^{*} & 1-\chi^{*}
\end{array}\right], \ldots B \equiv\left[\begin{array}{cc}
r(1-\lambda-\eta) & 0 \\
0 & r^{*}\left(1-\lambda^{*}-\eta^{*}\right)
\end{array}\right] .
\end{aligned}
$$

If we combine the two equations

$$
\begin{aligned}
\Delta_{n} & =\Delta+A\left[\Lambda+B \Delta_{n-1}\right] \\
& =\sum_{j=0}^{n-1} C^{j} \Delta_{1},
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{1} & \equiv \Delta+A \Lambda \\
C & \equiv A B
\end{aligned}
$$

In order to solve the matricial difference equation, we must obtain the inverse of $I-C$ and calculate the powers of C. Under our simplifying assumptions $\left(r=r^{*}, \sigma_{x}^{2}=\sigma_{x^{*}}^{2}, \sigma_{y}^{2}=\sigma_{y^{*}}^{2},\right)$, the weights on e are $\lambda=\lambda$ and $\eta=\eta^{*}$. As a result

$$
C=\tilde{r}\left[\begin{array}{cc}
1-\chi & -\chi \\
-\chi^{*} & 1-\chi^{*}
\end{array}\right],
$$

where $\tilde{r} \equiv r(1-\lambda-\eta)$.
We can show that matrix $I-C$ is invertible. Just note that

$$
|I-C|=\left|\begin{array}{cc}
1-\tilde{r}(1-\chi) & \tilde{r} \chi \\
\tilde{r} \chi^{*} & 1-\tilde{r}\left(1-\chi^{*}\right)
\end{array}\right|=0
$$

if and only if

$$
(1-\tilde{r})\left[1-\tilde{r}\left(1-\chi-\chi^{*}\right)\right]=0 .
$$

Thus, matrix $I-C$ is invertible as long as $\tilde{r} \neq\left\{1,\left(1-\chi-\chi^{*}\right)^{-1}\right\}$. This condition is not restrictive because $\tilde{r} \in(0,1)$. In this case

$$
(I-C)^{-1}=\frac{1}{(1-\tilde{r})\left[1-\tilde{r}\left(1-\chi-\chi^{*}\right)\right]}\left[\begin{array}{cc}
1-\tilde{r}\left(1-\chi^{*}\right) & -\tilde{r} \chi \\
-\tilde{r} \chi^{*} & 1-\tilde{r}(1-\chi)
\end{array}\right] .
$$

We must also calculate the powers of C. The eigenvalue ϕ is such that

$$
\left|\begin{array}{cc}
\tilde{r}(1-\chi)-\phi & -\tilde{r} \chi \\
-\tilde{r} \chi^{*} & \tilde{r}\left(1-\chi^{*}\right)-\phi
\end{array}\right|=0
$$

or

$$
\left[\tilde{r}\left(1-\chi-\chi^{*}\right)-\phi\right][\tilde{r}-\phi]=0 .
$$

As a result, we obtain

$$
\phi=\left\{\tilde{r}, \tilde{r}\left(1-\chi-\chi^{*}\right)\right\} .
$$

The eigenvectors $\{v\}$ are

$$
\begin{aligned}
& \tilde{r}\left[\begin{array}{cc}
1-\chi & -\chi \\
-\chi^{*} & 1-\chi^{*}
\end{array}\right]\left[\begin{array}{l}
v_{11} \\
v_{21}
\end{array}\right]=\tilde{r}\left[\begin{array}{l}
v_{11} \\
v_{21}
\end{array}\right] \\
& \tilde{r}\left[\begin{array}{cc}
1-\chi & -\chi \\
-\chi^{*} & 1-\chi^{*}
\end{array}\right]\left[\begin{array}{l}
v_{12} \\
v_{22}
\end{array}\right]=\tilde{r}\left(1-\chi-\chi^{*}\right)\left[\begin{array}{l}
v_{12} \\
v_{22}
\end{array}\right],
\end{aligned}
$$

or

$$
\begin{aligned}
v_{21} & =-v_{11} \\
v_{22} & =\frac{\chi^{*}}{\chi} v_{12}
\end{aligned}
$$

If we set $v_{11}=v_{12}=1$, we can rewrite C as

$$
C \equiv T D T^{-1},
$$

where

$$
\begin{aligned}
T & \equiv\left[\begin{array}{cc}
1 & 1 \\
-1 & \frac{\chi^{*}}{\chi}
\end{array}\right], T^{-1} \equiv \frac{\chi}{\chi+\chi^{*}}\left[\begin{array}{cc}
\frac{\chi^{*}}{\chi} & -1 \\
1 & 1
\end{array}\right] \\
D & \equiv\left[\begin{array}{cc}
\tilde{r} & 0 \\
0 & \tilde{r}\left(1-\chi-\chi^{*}\right)
\end{array}\right]
\end{aligned}
$$

and then

$$
\begin{aligned}
C^{n} & =T D^{n} T^{-1} \\
& =\tilde{r}^{n} \frac{\chi}{\chi+\chi^{*}}\left[\begin{array}{cc}
\frac{\chi^{*}}{\chi}+\left(1-\chi-\chi^{*}\right)^{n} & -\left[1-\left(1-\chi-\chi^{*}\right)^{n}\right] \\
-\frac{\chi^{*}}{\chi}\left[1-\left(1-\chi-\chi^{*}\right)^{n}\right] & 1+\frac{\chi^{*}}{\chi}\left(1-\chi-\chi^{*}\right)^{n}
\end{array}\right]
\end{aligned}
$$

Finally, we obtain

$$
\Delta_{n}=\left(I-C^{n}\right)(I-C)^{-1} \Delta_{1} .
$$

If we ignore home-bias $\left(\bar{\chi}=\bar{\chi}^{*}=1\right)$, then $\chi+\chi^{*}=1$. We can rewrite $(I-C)^{-1}$ and C^{n} as

$$
(I-C)^{-1}=\frac{1}{1-\tilde{r}}\left[\begin{array}{cc}
1-\tilde{r} \chi & -\tilde{r} \chi \\
-\tilde{r}(1-\chi) & 1-\tilde{r}(1-\chi)
\end{array}\right]
$$

and

$$
C^{n}=\tilde{r}^{n}\left[\begin{array}{cc}
(1-\chi) & -\chi \\
-(1-\chi) & \chi
\end{array}\right] .
$$

After tedious calculation, we obtain

$$
\begin{aligned}
\delta_{n} & =\chi+\left(\chi^{*}-\chi\right)\left(\frac{1-\tilde{r}^{n}}{1-\tilde{r}}\right) \lambda \\
& <\delta_{n-1} \Longleftrightarrow \chi^{*}<\chi, \\
\delta_{n}^{*} & =\chi^{*}-\left(\chi^{*}-\chi\right)\left(\frac{1-\tilde{r}^{n}}{1-\tilde{r}}\right) \lambda \\
& <\delta_{n-1}^{*} \Longleftrightarrow \chi^{*}>\chi, \\
\lambda_{n} & \equiv \lambda+\tilde{r} \delta_{n-1} \\
& <\lambda_{n-1} \Leftrightarrow \delta_{n-1}<\delta_{n-2} \Leftrightarrow \chi^{*}<\chi, \\
\lambda_{n}^{*} & \equiv \lambda+\tilde{r} \delta_{n-1}^{*} \\
& <\lambda_{n-1}^{*} \Leftrightarrow \delta_{n-1}^{*}<\delta_{n-2}^{*} \Leftrightarrow \chi^{*}>\chi .
\end{aligned}
$$

5.3

Appendix of Chapter 3

Proof 23 (Proof of expression (3-21): Equilibrium Aggregate Price Level) First, we replace (3-1) in (3-7) to obtain:

$$
\begin{aligned}
P_{t} & =\sum_{j=0}^{\infty} \int_{\Lambda_{t-j}} E\left[r P_{t}+(1-r) \theta_{t} \mid \Im_{t-j}(z)\right] d z \\
& =r \sum_{j=0}^{\infty} \int_{\Lambda_{t-j}} E\left[P_{t} \mid \Im_{t-j}(z)\right] d z+(1-r) \sum_{j=0}^{\infty} \int_{\Lambda_{t-j}} E\left[\theta_{t} \mid \Im_{t-j}(z)\right] d z
\end{aligned}
$$

From the definition of the average $1^{\text {st }}$ order belief in (3-8):

$$
P_{t}=r \bar{E}\left[P_{t}\right]+(1-r) \bar{E}\left[\theta_{t}\right] .
$$

If we iterate one time, we obtain:

$$
\begin{aligned}
P_{t} & =r \bar{E}\left[r \bar{E}\left[P_{t}\right]+(1-r) \bar{E}\left[\theta_{t}\right]\right]+(1-r) \bar{E}\left[\theta_{t}\right] \\
& =r^{2} \bar{E}\left[\bar{E}\left[P_{t}\right]\right]+r(1-r) \bar{E}\left[\bar{E}\left[\theta_{t}\right]\right]+(1-r) \bar{E}\left[\theta_{t}\right] \\
& =r^{2} \bar{E}^{2}\left[P_{t}\right]+r(1-r) \bar{E}^{2}\left[\theta_{t}\right]+(1-r) \bar{E}\left[\theta_{t}\right] .
\end{aligned}
$$

If we iterate N times:

$$
P_{t}=r^{N} \bar{E}^{N}\left[P_{t}\right]+(1-r) \sum_{k=1}^{N} r^{k-1} \bar{E}^{k}\left[\theta_{t}\right]
$$

Taking the limit as $N \rightarrow \infty$, we obtain expression (3-9):

$$
P_{t}=(1-r) \sum_{k=1}^{\infty} r^{k-1} \bar{E}^{k}\left[\theta_{t}\right]
$$

which proves the result.
Proof 24 (Obtaining the Expectations) $E\left[\theta_{t-m} \mid \Im_{t-j}(z)\right]$: First, we calculate the distribution of the fundamental θ_{t-j} given that the firm updated its information set at period $t-j$. We can compute $f\left(\theta_{t-j} \mid \Theta_{t-j-1}, x_{t-j}\right)$ as

$$
\begin{aligned}
f\left(\theta_{t-j} \mid \theta_{t-j-1}, x_{t-j}\right) & =\frac{f\left(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}\right)}{\int_{-\infty}^{\infty} f\left(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}\right) d \theta_{t-j}} \\
& =\frac{f\left(\theta_{t-j-1}, x_{t-j} \mid \theta_{t-j}\right) f\left(\theta_{t-j}\right)}{\int_{-\infty}^{\infty} f\left(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}\right) d \theta_{t-j}} \\
& =\frac{f\left(\theta_{t-j-1} \mid \theta_{t-j}\right) f\left(x_{t-j} \mid \theta_{t-j}\right) f\left(\theta_{t-j}\right)}{\int_{-\infty}^{\infty} f\left(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}\right) d \theta_{t-j}}
\end{aligned}
$$

where the last equality holds due to the independence of $\xi_{t}(z)$ and ϵ_{t-j}. As

$$
\begin{aligned}
x_{t-j}(z) & =\theta_{t-j}+\xi_{t-j}(z) \\
\theta_{t-j-1} & =\theta_{t-j}-\epsilon_{t-j}
\end{aligned}
$$

where $\xi_{t}(z) \sim N\left(0, \beta^{-1}\right)$ and $\epsilon_{t-j} \sim N\left(0, \alpha^{-1}\right)$, we have that $f\left(x_{t-j} \mid \theta_{t-j}\right)=$ $N\left(\theta_{t-j}, \beta^{-1}\right)$ and $f\left(\theta_{t-j-1} \mid \theta_{t-j}\right)=N\left(\theta_{t-j}, \alpha^{-1}\right)$. If the dynamics of θ_{t} was

$$
\theta_{t-j-1}=\rho \theta_{t-j}-\epsilon_{t-j},
$$

we would have

$$
\begin{aligned}
E\left[\theta_{t-j}\right] & =E\left[\theta_{t}\right]=\frac{E\left[\epsilon_{t}\right]}{1-\rho}=0, \\
\operatorname{Var}\left[\theta_{t-j}\right] & =\operatorname{Var}\left[\theta_{t}\right]=\frac{\operatorname{Var}\left[\epsilon_{t}\right]}{1-\rho^{2}}=\frac{\alpha^{-1}}{1-\rho^{2}} .
\end{aligned}
$$

Therefore, the distribution of θ_{t-j} would be given by $f\left(\theta_{t-j}\right)=N\left(0, \Psi^{-1}\right)$ where $\Psi=\alpha\left(1-\rho^{2}\right)$. Thus, we would obtain

$$
\begin{aligned}
f\left(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}\right) & =c \times \exp \left\{-\frac{1}{2}\left[\frac{\left(x_{t-j}(z)-\theta_{t-j}\right)^{2}}{\beta^{-1}}+\frac{\left(\theta_{t-j-1}-\rho^{-1} \theta_{t-j}\right)^{2}}{\left(\rho^{2} \alpha\right)^{-1}}+\frac{\theta_{t-j}^{2}}{\Psi^{-1}}\right]\right\} \\
& =c \times \exp \left\{-\frac{1}{2}\left[(\beta+\alpha+\Psi) \theta_{t-j}^{2}-2\left(\beta x_{t-j}(z)+\alpha \rho \theta_{t-j-1}\right) \theta_{t-j}\right]\right\} \\
& \times \exp \left\{-\frac{1}{2}\left[\beta x_{t-j}^{2}(z)+\alpha \rho^{2} \theta_{t-j-1}^{2}\right]\right\} \\
& =c \times d \times \frac{1}{\sqrt{2 \pi} \sigma \Sigma} \times \exp \left\{-\frac{1}{2} \frac{\left(\theta_{t-j}-\mu\right)^{2}}{\Sigma^{2}}\right\},
\end{aligned}
$$

where

$$
\begin{array}{ll}
c=(2 \pi)^{-3 / 2}(\beta \alpha \Psi)^{1 / 2}, & d=\sqrt{2 \pi} \sigma \exp \left\{-\frac{1}{2}\left[-\mu^{2} \Sigma^{-2}+\beta x_{t-j}^{2}(z)+\alpha \rho^{2} \theta_{t-j-1}^{2}\right]\right\}, \\
\mu=\left[\Delta x_{t-j}(z)+(1-\Delta) z_{t-j-1}\right], & \Delta=\beta(\beta+\alpha+\Psi)^{-1}, \\
z_{t-j-1}=\Lambda \rho \theta_{t-j-1}, & \Lambda=\alpha(\beta+\alpha)^{-1} . \\
\Sigma^{2}=(\beta+\alpha+\Psi)^{-1}, & \\
\text { As } \rho \rightarrow 1, \text { we have } \Psi \rightarrow 0, \Delta \rightarrow \delta, \text { and } \Sigma^{2} \rightarrow(\beta+\alpha)^{-1} . \text { Thus } \\
\begin{array}{ll}
\\
f\left(\theta_{t-j} \mid \theta_{t-j-1}, x_{t-j}\right)=N\left(\mu, \sigma^{2}\right) \text { where } \mu=\left[\delta x_{t-j}(z)+(1-\delta) \theta_{t-j-1}\right], \text { and } \\
\sigma^{2}=(\beta+\alpha)^{-1} .
\end{array}
\end{array}
$$

Proof 25 (Proof of Lemma 17: Higher Order Beliefs) In this Appendix we derive the general formula of the k-th order average expectation

$$
\bar{E}^{k}\left[\theta_{t}\right]=\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[\kappa_{m, k} \theta_{t-m}+\delta_{m, k} \theta_{t-m-1}\right]
$$

with the weights $\left(\kappa_{m, k}, \delta_{m, k}\right)$ recursively defined for $k \geq 1$

$$
\left[\begin{array}{c}
\kappa_{m, k+1} \\
\delta_{m, k+1}
\end{array}\right]=\left[\begin{array}{c}
(1-\delta) \\
\delta
\end{array}\right]\left[1-(1-\lambda)^{m}\right]^{k}+A_{m}\left[\begin{array}{c}
\kappa_{m, k} \\
\delta_{m, k}
\end{array}\right]
$$

where the matrix A_{m} is given by

$$
A_{m} \equiv\left[\begin{array}{cc}
{\left[(1-\delta)\left[1-(1-\lambda)^{m+1}\right]+\delta\left[1-(1-\lambda)^{m}\right]\right]} & 0 \\
\delta\left[\left[1-(1-\lambda)^{m+1}\right]-\left[1-(1-\lambda)^{m}\right]\right] & {\left[1-(1-\lambda)^{m+1}\right]}
\end{array}\right]
$$

and the initial weights are $\left(\kappa_{1, k}, \delta_{1, k}\right) \equiv(1-\delta, \delta)$.
We start by computing $\bar{E}^{1}\left[\theta_{t}\right]$ as

$$
\begin{aligned}
\bar{E}^{1}\left[\theta_{t}\right] & =\sum_{j=0}^{\infty} \int_{\Lambda_{j}} E\left[\bar{E}^{0}\left[\theta_{t}\right] \mid \Im_{t-j}(z)\right] d z \\
& =\sum_{j=0}^{\infty} \int_{\Lambda_{j}} E\left[\theta_{t} \mid \Im_{t-j}(z)\right] d z \\
& =\sum_{j=0}^{\infty} \int_{\Lambda_{j}}\left[(1-\delta) x_{t-j}(z)+\delta \theta_{t-j-1}\right] d z \\
& =\lambda \sum_{j=0}^{\infty}(1-\lambda)^{j}\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1}\right] .
\end{aligned}
$$

We can use this result to obtain $\bar{E}^{2}\left[\theta_{t}\right]$ as

$$
\begin{aligned}
\bar{E}^{2}\left[\theta_{t}\right] & =\sum_{m=0}^{\infty} \int_{\Lambda_{m}} E\left[\bar{E}^{1}\left[\theta_{t}\right] \mid \Im_{t-m}(z)\right] d z \\
& =\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=0}^{\infty}(1-\lambda)^{j} E\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1} \mid \Im_{t-m}(z)\right] d z
\end{aligned}
$$

We know that

$$
E\left[\theta_{t-j} \mid \Im_{t-m}(z)\right]= \begin{cases}(1-\delta) x_{t-m}(z)+\delta \theta_{t-m-1} & : m \geq j \\ \theta_{t-j} & : m<j\end{cases}
$$

Thereafter,

$$
\begin{aligned}
\bar{E}^{2}\left[\theta_{t}\right] & =\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=0}^{m-1}(1-\lambda)^{j}\left\{(1-\delta) E\left[\theta_{t-j} \mid \Im_{t-m}(z)\right]+\delta E\left[\theta_{t-j-1} \mid \Im_{t-m}(z)\right]\right\} d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}}(1-\lambda)^{m}\left\{(1-\delta) E\left[\theta_{t-m} \mid \Im_{t-m}(z)\right]+\delta \theta_{t-m-1}\right\} d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=m+1}^{\infty}(1-\lambda)^{j}\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1}\right] d z \\
& =\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=0}^{m-1}(1-\lambda)^{j}\left[(1-\delta) x_{t-m}(z)+\delta \theta_{t-m-1}\right] d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}}(1-\lambda)^{m}\left[(1-\delta)\left[(1-\delta) x_{t-m}(z)+\delta \theta_{t-m-1}\right]+\delta \theta_{t-m-1}\right] d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=m+1}^{\infty}(1-\lambda)^{j}\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1}\right] d z \\
& =\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[(1-\delta) \theta_{t-m}+\delta \theta_{t-m-1}\right] \sum_{j=0}^{m-1}(1-\lambda)^{j} \\
& +\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{2 m}\left[(1-\delta)^{2} \theta_{t-m}+\left[1-(1-\delta)^{2}\right] \theta_{t-m-1}\right] \\
& +\lambda^{2} \sum_{j=1}^{\infty}(1-\lambda)^{j}\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1}\right] \sum_{m=0}^{j-1}(1-\lambda)^{m} \\
& =\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[(1-\delta) \theta_{t-m}+\delta \theta_{t-m-1}\right]\left[1-(1-\lambda)^{m}\right] \\
& +\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{2 m}\left[(1-\delta)^{2} \theta_{t-m}+\left[1-(1-\delta)^{2}\right] \theta_{t-m-1}\right] \\
& +\lambda \sum_{j=1}^{\infty}(1-\lambda)^{j}\left[(1-\delta) \theta_{t-j}+\delta \theta_{t-j-1}\right]\left[1-(1-\lambda)^{j}\right] \\
& =\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m} 2\left[1-(1-\lambda)^{m}\right]\left[(1-\delta) \theta_{t-m}+\delta \theta_{t-m-1}\right] \\
& +\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{2 m}\left[(1-\delta)^{2} \theta_{t-m}+\left[1-(1-\delta)^{2}\right] \theta_{t-m-1}\right] .
\end{aligned}
$$

We can write this expression as

$$
\bar{E}^{2}\left[\theta_{t}\right]=\lambda \sum_{j=0}^{\infty}(1-\lambda)^{j}\left[\kappa_{j, 2} \theta_{t-j}+\delta_{j, 2} \theta_{t-j-1}\right],
$$

where

$$
\begin{aligned}
\kappa_{j, 2} & =\left(1-\delta^{2}\right)\left[1-(1-\lambda)^{j}\right]+(1-\delta)^{2}\left[1-(1-\lambda)^{j+1}\right] \\
& =\left[1-(1-\lambda)^{j+1}\right] \kappa_{j, 1}^{2}+\left[1-(1-\lambda)^{j}\right]\left(1-\delta_{j, 1}^{2}\right), \\
\delta_{j, 2} & =\delta^{2}\left[1-(1-\lambda)^{j}\right]+\left[1-(1-\delta)^{2}\right]\left[1-(1-\lambda)^{j+1}\right] \\
& =\left[1-(1-\lambda)^{j+1}\right]\left(1-\kappa_{j, 1}^{2}\right)+\left[1-(1-\lambda)^{j}\right] \delta_{j, 1}^{2} .
\end{aligned}
$$

Note that

$$
\kappa_{j, 2}+\delta_{j, 2}=\sum_{n=0}^{1}\left[1-(1-\lambda)^{j}\right]^{n}\left[1-(1-\lambda)^{j+1}\right]^{1-n}
$$

We use induction to obtain the general case. Suppose that (3-18) holds for $k-1$. Then

$$
\bar{E}^{k-1}\left[\theta_{t}\right]=\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[\kappa_{m, k-1} \theta_{t-m}+\delta_{m, k-1} \theta_{t-m-1}\right],
$$

where

$$
\sum_{j=0}^{m-1}(1-\lambda)^{j}\left(\kappa_{j, k-1}+\delta_{j, k-1}\right)=\frac{1}{\lambda}\left[1-(1-\lambda)^{m}\right]^{k-1}
$$

As a result,

$$
\begin{aligned}
\bar{E}^{k}\left[\theta_{t}\right] & =\sum_{m=0}^{\infty} \int_{\Lambda_{m}} E\left[\bar{E}^{k-1}\left[\theta_{t}\right] \mid \Im_{t-m}(z)\right] d z \\
& =\sum_{m=0}^{\infty} \int_{\Lambda_{m}} E\left[\lambda \sum_{j=0}^{\infty}(1-\lambda)^{j}\left[\kappa_{j, k-1} \theta_{t-j}+\delta_{j, k-1} \theta_{t-j-1}\right] \mid \Im_{t-m}(z)\right] d z \\
& =\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=0}^{m-1}(1-\lambda)^{j}\left\{\kappa_{j, k-1} E\left[\theta_{t-j} \mid \Im_{t-m}(z)\right]+\delta_{j, k-1} E\left[\theta_{t-j-1} \mid \Im_{t-m}(z)\right]\right\} d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}}(1-\lambda)^{m}\left\{\kappa_{m, k-1} E\left[\theta_{t-m} \mid \Im_{t-m}(z)\right]+\delta_{m, k-1} \theta_{t-m-1}\right\} d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=m+1}^{\infty}(1-\lambda)^{j}\left[\kappa_{j, k-1} \theta_{t-j}+\delta_{j, k-1} \theta_{t-j-1}\right] d z \\
& =\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=0}^{m-1}(1-\lambda)^{j}\left(\kappa_{j, k-1}+\delta_{j, k-1}\right)\left[(1-\delta) x_{t-m}(z)+\delta \theta_{t-m-1}\right] d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}}(1-\lambda)^{m}\left[\kappa_{m, k-1}\left[(1-\delta) x_{t-m}(z)+\delta \theta_{t-m-1}\right]+\delta_{m, k-1} \theta_{t-m-1}\right] d z \\
& +\lambda \sum_{m=0}^{\infty} \int_{\Lambda_{m}} \sum_{j=m+1}^{\infty}(1-\lambda)^{j}\left[\kappa_{j, k-1} \theta_{t-j}+\delta_{j, k-1} \theta_{t-j-1}\right] d z \\
& =\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[(1-\delta) \theta_{t-m}+\delta \theta_{t-m-1}\right] \sum_{j=0}^{m-1}(1-\lambda)^{j}\left(\kappa_{j, k-1}+\delta_{j, k-1}\right) \\
& +\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{2 m}\left[\kappa_{m, k-1}(1-\delta) \theta_{t-m}+\left[\kappa_{m, k-1} \delta+\delta_{m, k-1}\right] \theta_{t-m-1}\right] \\
& +\lambda^{2} \sum_{j=1}^{\infty}(1-\lambda)^{j}\left[\kappa_{j, k-1} \theta_{t-j}+\delta_{j, k-1} \theta_{t-j-1}\right] \sum_{m=0}^{j-1}(1-\lambda)^{m} \\
& =\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[1-(1-\lambda)^{m}\right]^{k-1}\left[(1-\delta) \theta_{t-m}+\delta \theta_{t-m-1}\right] \\
& +\lambda^{2} \sum_{m=0}^{\infty}(1-\lambda)^{2 m}\left[\kappa_{m, k-1}(1-\delta) \theta_{t-m}+\left[\kappa_{m, k-1} \delta+\delta_{m, k-1}\right] \theta_{t-m-1}\right] \\
& +\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[1-(1-\lambda)^{m}\right]\left[\kappa_{m, k-1} \theta_{t-m}+\delta_{m, k-1} \theta_{t-m-1}\right] .
\end{aligned}
$$

We can rewrite the last three lines above as

$$
\bar{E}^{k}\left[\theta_{t}\right]=\lambda \sum_{m=0}^{\infty}(1-\lambda)^{m}\left[\kappa_{m, k} \theta_{t-m}+\delta_{m, k} \theta_{t-m-1}\right]
$$

where

$$
\begin{aligned}
\kappa_{m, k} & \equiv(1-\delta)\left[1-(1-\lambda)^{m}\right]^{k-1}+\left[(1-\delta) \lambda(1-\lambda)^{m}+\left[1-(1-\lambda)^{m}\right]\right] \kappa_{m, k-1} \\
& =(1-\delta)\left[1-(1-\lambda)^{m}\right]^{k-1} \\
& +\left[(1-\delta)\left[1-(1-\lambda)^{m+1}\right]+\delta\left[1-(1-\lambda)^{m}\right]\right] \kappa_{m, k-1}, \\
\delta_{m, k} & \equiv \delta\left[1-(1-\lambda)^{m}\right]^{k-1}+\delta \lambda(1-\lambda)^{m} \kappa_{m, k-1}+\left[\lambda(1-\lambda)^{m}+\left[1-(1-\lambda)^{m}\right]\right] \delta_{m, k-1} \\
& =\delta\left[1-(1-\lambda)^{m}\right]^{k-1} \\
& +\delta\left[\left[1-(1-\lambda)^{m+1}\right]-\left[1-(1-\lambda)^{m}\right]\right] \kappa_{m, k-1}+\left[1-(1-\lambda)^{m+1}\right] \delta_{m, k-1},
\end{aligned}
$$

since

$$
\lambda(1-\lambda)^{m}=\left[1-(1-\lambda)^{m+1}\right]-\left[1-(1-\lambda)^{m}\right] .
$$

Rewriting these weights in matrix format, we obtain

$$
\left[\begin{array}{c}
\kappa_{m, k+1} \\
\delta_{m, k+1}
\end{array}\right]=\left[\begin{array}{c}
(1-\delta) \\
\delta
\end{array}\right]\left[1-(1-\lambda)^{m}\right]^{k}+A_{m}\left[\begin{array}{c}
\kappa_{m, k} \\
\delta_{m, k}
\end{array}\right]
$$

where the matrix A_{m} is given by

$$
A_{m} \equiv\left[\begin{array}{cc}
{\left[(1-\delta)\left[1-(1-\lambda)^{m+1}\right]+\delta\left[1-(1-\lambda)^{m}\right]\right]} & 0 \\
\delta\left[\left[1-(1-\lambda)^{m+1}\right]-\left[1-(1-\lambda)^{m}\right]\right] & {\left[1-(1-\lambda)^{m+1}\right]}
\end{array}\right]
$$

which is exactly our result.

