6. Referências bibliográficas

AGILENT TECHNOLOGIES. The Fundamentals of Modal Testing. Application Note 243 -3. 2000.

BAIN, Carol. Bamboo in Hawaii. Bali, Indonesia, 1995. Disponível em: http://www.kauai.net/bambooweb/cbarticle.html. Acesso em: 24 ago. 2007.

CLOUGH, R.; PENZIEN, J. Dynamics of structures. International student edition, New York: McGraw Hill, 1975.

COELHO, C. Análise experimental das propriedades dinâmicas dos bambus das espécies *guadua*, *dendrocalamus* e *áurea*. Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. Rio de Janeiro. 2005.

GERVÁSIO, H; SIMÕES DA SILVA, L. A sustentabilidade do aço. V congresso de construção metálica e mista, Lisboa, 2005, pp. 719-730.

GHAVAMI, K. Bamboo as a reinforcement in structural concrete columns. Cement & Concrete Composites, 2005, pp. 637-649.

GHAVAMI, K. Bambu, um material alternativo na Engenharia. Revista de Engenharia. Construção Civil. Pesquisa Engenho. Editora Técnica Ltda, São Paulo No. 492., 1992, pp. 23-27.

GHAVAMI, K.; MARINHO, A. Propriedades físicas e mecânicas do colmo inteiro do bambu da espécie *Guadua Angustifólia*. Revista Brasileira de Engenharia Agrícola e Ambiental. Vol. 9, No. 1, 2005, pp. 107-114.

GHAVAMI, K.; RODRIGUES, C.; PACIORNIK, S. Bamboo: Functionally graded material. Asian journal of civil engineering (building and housing). Vol.4, No. 1, 2003, pp. 1-10.

GHAVAMI, K.; SOUZA, M. V. Propriedades mecánicas do bambu. Rio de Janeiro: PUC-Rio, Relatorio interno, 2000.

GHAVAMI, K.; VENANCIO FILHO, F.; RODRIGUES Jr., S.; PASQUETTI, E. Experimental analysis of damping property of bamboo, NOCMAT/3 – Vietnam. International Conference on Non-conventional Materials and technologies, 2003, pp. 325-330.

GUTIERREZ, C. A. RFP Modal parameter estimation from frequency response function using rational fraction polynomials method. Chile, 2002.

JIMENEZ, C. Al eje cafetero lo mató el uso de casas en concreto. El Tiempo, Colombia, 11 feb. 1999. Sección Nación.

LIESE, W.; WEINER, G. Modifications of bamboo culm structures due to ageing and wounding. The Bamboos, 1997, pp. 313-322.

MAIA, N.; SILVA, J. (Ed). Theoritical and Experimental Modal Analysis. Research Studies Press Ltd, England, 1997.

MONTALVÃO, D.; RIBEIRO, A.; MAIA, N.; DUARTE J.; CLÁUDIO, R. Damping measurements on a carbon fibre reinforced laminaté. International conference of noise and vibration engineering, Belgium, 2006.

MURPHY, R.; SULAIMAN, O.; ALVIN, K. Fungal deterioration of bamboo cell walls. The Bamboos, 1997, pp. 323-332.

RICHARDSON, M; FORMENTI, D. Global Curve Fitting of Frequency Response Measurements using the Rational Fraction Polynomial Method. 3rd International Modal Analysis Conference, Florida, 1985.

RICHARDSON, M; FORMENTI, D. Parameter estimation from frequency response measurements using rational fraction polynomials. 1st International Modal Analysis Conference, Florida, 1982.

ROEHL, J. L. Dinâmica das estruturas – Análise no tempo. Notas de aula do Mestrado em estruturas, Departamento de Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro, Volume 1, [199-?], pp. 1-40.

SALAS, E. Actualidad y futuro de la arquitectura de bambu en Colombia. Tese (Doutorado) – Universidad Politécnica de Cataluña, Departamento de Construcciones Arquitectónicas. Barcelona, 2006, pp. 251-253.

SANCHEZ, M. L. Caracterização física e mecânica de colmos inteiros de bambu da espécie Phyllostachys Áurea: Comportamento à flambagem. Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. Rio de Janeiro, 2002, pp. 62-66.

SHARMA, C. Vibration characteristics of thin circular cylinders. Journal of sound and vibration, 1979, pp. 581-592.

SINGHAL, R.; GUAN, W.; WILLIAMS, K. Modal analysis of a thick-walled circular cylinder. Mechanical Systems and Signal Processing, 2002, pp. 141-153.

TSE, F; MORSE, I; HINKLE, R. Mechanical Vibrations theory and applications. Second Edition. Allyn and Bacon series, United Statés of America, 1979, pp. 276-279.

APÊNDICE A: FORMULAÇÃO MATÉMÁTICA DO MÉTODO DOS POLINÔMIOS DE FRAÇÃO RACIONAL (RFP)

A FRF, em termos de receptância, para um sistema com *n* graus de liberdade e amortecimento viscoso na forma de frações parciais é apresentada na eq. (A.1):

$$\alpha(\omega) = \sum_{r=1}^{n} \frac{A_r + i\omega B_r}{\omega_r^2 - \omega^2 + i2\xi_r \omega_r \omega}$$
(A.1)

Onde A_r e B_r são constantes. A eq. (A.1) pode ser expressa pela relação de dois polinômios em $i\omega$, eq. (A.2), que representam a fração racional de $\alpha(\omega)$ (Richardson & Formenti, 1982).

$$\alpha(\omega) = \frac{\sum_{k=0}^{2n-1} a_k (i\omega)^k}{\sum_{k=0}^{2n} b_k (i\omega)^k}$$
(A.2)

Uma função erro entre a FRF analítica $\alpha(\omega)$ e a obtida experimentalmente $\overline{\alpha}(\omega)$ para cada freqüência ω_{i} , é definida da forma da eq. (A.3):

$$e_{j} = \frac{\sum_{k=0}^{2n-1} a_{k} (i\omega)^{k}}{\sum_{k=0}^{2n} b_{k} (i\omega)^{k}} - \overline{\alpha}(\omega_{j})$$
(A.3)

Trabalhando com a função erro $e_j = e_j \sum_{k=0}^{2N} b_k (i\omega_j)^k$ e fazendo $b_{2N} = 1$,

temos a eq. (A.4) (Maia & Silva, 1997):

$$e_{j}' = \sum_{k=0}^{2N-1} a_{k} (i\omega_{j})^{k} - \overline{\alpha} (\omega_{j}) \left[\sum_{k=0}^{2N-1} b_{k} (i\omega_{j})^{k} + (i\omega_{j})^{2N} \right]$$
(A.4)

Esta formulação dá como resultado um sistema de equações lineares, sem ter que fazer uma estimação inicial dos parâmetros modais. Define-se o vetor erro na eq. (A.5), para todas as *L* freqüências medidas:

$$\{E\} = \begin{cases} e_1' \\ e_2' \\ \vdots \\ e_L' \end{cases}$$
(A.5)

Reescrevendo o vetor erro na forma matriz-vetor e expandindo cada um dos termos da eq. (A.4), temos (eq. (A.6)):

$${E} = [P]{A} - [T]{B} - {W}$$
(A.6)

Na eq. (A.6) [P] corresponde a matriz definida na eq. (A.7), $\{A\}$ ao vetor definido na eq. (A.8), [T] a matriz da eq. (A.9), e $\{B\}$ e $\{W\}$ aos vetores das eq. (A.10) e eq. (A.11) respectivamente.

$$[P] = \begin{bmatrix} 1 & (i\omega_{1}) & (i\omega_{1})^{2} & \cdots & (i\omega_{1})^{2N-1} \\ 1 & (i\omega_{2}) & (i\omega_{2})^{2} & \cdots & (i\omega_{2})^{2N-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (i\omega_{L}) & (i\omega_{L})^{2} & \cdots & (i\omega_{L})^{2N-1} \end{bmatrix}$$
(A.7)
$$\{A\} = \begin{cases} a_{0} \\ a_{1} \\ \vdots \\ a_{2N-1} \end{cases}$$
(A.8)

$$[T] = \begin{bmatrix} \overline{\alpha}(\omega_{1}) & \overline{\alpha}(\omega_{1})(i\omega_{1}) & \cdots & \overline{\alpha}(\omega_{1})(i\omega_{1})^{2N-1} \\ \overline{\alpha}(\omega_{2}) & \overline{\alpha}(\omega_{2})(i\omega_{2}) & \cdots & \overline{\alpha}(\omega_{2})(i\omega_{2})^{2N-1} \\ \vdots & \vdots & \vdots \\ \overline{\alpha}(\omega_{L}) & \overline{\alpha}(\omega_{L})(i\omega_{L}) & \cdots & \overline{\alpha}(\omega_{L})(i\omega_{L})^{2N-1} \end{bmatrix}$$
(A.9)
$$\{B\} = \begin{cases} b_{0} \\ b_{1} \\ \vdots \\ b_{2N-1} \end{cases}$$
(A.10)
$$[\overline{\alpha}(\omega_{1})(i\omega_{1})^{2N}]$$

$$\{W\} = \begin{cases} \alpha(\omega_{1})(i\omega_{1}) \\ \alpha(\omega_{2})(i\omega_{2})^{2N} \\ \vdots \\ \alpha(\omega_{L})(i\omega_{L})^{2N} \end{cases}$$
(A.11)

As matrizes $\{A\}$ e $\{B\}$ definidas nas eq. (A.8) e eq. (A.10), são calculadas pelo procedimento dos mínimos quadrados, minimizando a função de erro definida como se mostra na eq. (A.12):

$$J = \{E^*\}^T \{E\}$$
(A.12)

Na eq. (A.12) * refere-se ao complexo conjugado. Substituindo a eq. (A.6) na eq. (A.12), e realizando algumas operações e manipulações, obtém-se a eq. (A.13):

$$J = \{A\}^{T} [P^{*}]^{T} [P]\{A\} + \{B\}^{T} [T^{*}]^{T} [T]\{B\} + \{W^{*}\}^{T} \{W\} - 2 \operatorname{Re}(\{A\}^{T} [P^{*}]^{T} [T]\{B\}) - 2 \operatorname{Re}(\{A\}^{T} [P^{*}]^{T} [W\}) - 2 \operatorname{Re}(\{B\}^{T} [T^{*}]^{T} \{W\})$$
(A.13)

Na eq. (A.13) Re() denota a parte real do numero complexo. Para minimizar a função J é necessário derivar a função em relação a $\{A\}$ e $\{B\}$, iguala-lhas a zero e encontrar o ponto onde ocorre o mínimo, procedimento apresentado nas eq. (A.14) e eq. (A.15):

$$\frac{\partial J}{\partial A} = 2[P^*]^T [P] \{A\} - 2 \operatorname{Re}([P^*]^T [T] \{B\}) - 2 \operatorname{Re}([P^*]^T \{W\}) = \{0\}$$
(A.14)

$$\frac{\partial J}{\partial B} = 2[T^*]^T[T]\{B\} - 2\operatorname{Re}\left([T^*]^T[P]\{A\}\right) - 2\operatorname{Re}\left([T^*]^T\{W\}\right) = \{0\} \quad (A.15)$$

Devido a que as eq. (A.14) e eq. (A.15) contêm as duas variáveis desconhecidas $\{A\}$ e $\{B\}$, tem que ser resolvidas como um sistema de equações da forma mostrada na eq. (A.16):

$$\begin{bmatrix} Y \end{bmatrix} \stackrel{:}{:} \begin{bmatrix} X \\ X \end{bmatrix} \\ \begin{bmatrix} \{A\} \\ \dots \\ \{B\} \end{bmatrix} = \begin{cases} \{G\} \\ \dots \\ \{F\} \end{cases}$$
(A.16)

Onde as matrizes [Y], [X], [Z] e os vetores $\{G\}$ e $\{F\}$ estão definidos na eq. (A.17):

$$[Y] = \operatorname{Re}\left(\left[P^{*}\right]^{T}\left[P\right]\right)$$

$$[X] = -\operatorname{Re}\left(\left[P^{*}\right]^{T}\left[T\right]\right)$$

$$[Z] = \operatorname{Re}\left(\left[T^{*}\right]^{T}\left[T\right]\right)$$

$$\{G\} = \operatorname{Re}\left(\left[P^{*}\right]^{T}\left\{W\right\}\right)$$

$$\{F\} = -\operatorname{Re}\left(\left[T^{*}\right]^{T}\left\{W\right\}\right)$$

Em principio, o valor de $\{A\}$ e $\{B\}$ pode ser obtido resolvendo a eq. (A.16), mais pelo fato de ser um conjunto de equações auto-condicionadas sua solução é difícil de determinar. Deste modo é necessário introduzir uma nova formulação usando polinômios ortogonais; assim [Y] e [Z] não estarão definidas como na eq. (A.17) e passarão a estar definidas como o produto de duas matrizes ortonormais, i.e., [Y] e [Z] serão matrizes unitárias. Portanto, a matriz [P] tem que ser substituída pela definida na eq. (A.18):

$$[P] = \begin{bmatrix} \varphi_{1,0} & \varphi_{1,1} & \cdots & \varphi_{1,2N-1} \\ \varphi_{2,0} & \varphi_{2,1} & \cdots & \varphi_{2,2N-1} \\ \vdots & \vdots & & \vdots \\ \varphi_{L,0} & \varphi_{L,1} & \cdots & \varphi_{L,2N-1} \end{bmatrix} = [\vartheta]$$
(A.18)

Onde $\varphi_{i,j}$ corresponde ao polinômio *i* avaliado na freqüência ω_i . Da mesma forma, [T] e [W] são redefinidas como as matrizes da eq. (A.19) e eq. (A.20) respectivamente:

$$[T] = \begin{bmatrix} \overline{\alpha}(\omega_{1}) & 0 & 0 & 0 \\ 0 & \alpha(\omega_{2}) & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \alpha(\omega_{L}) \end{bmatrix} \begin{bmatrix} \theta_{1,0} & \theta_{1,1} & \cdots & \theta_{1,2N-1} \\ \theta_{2,0} & \theta_{2,1} & \cdots & \theta_{2,2N-1} \\ \vdots & \vdots & & \vdots \\ \theta_{L,0} & \theta_{L,1} & \cdots & \theta_{L,2N-1} \end{bmatrix} = \begin{bmatrix} \backslash \overline{\alpha}_{\backslash} \end{bmatrix} [\Theta] \quad (A.19)$$

$$\{W\} = \begin{cases} \overline{\alpha}(\omega_{1})\theta_{1,2N} \\ \overline{\alpha}(\omega_{2})\theta_{2,2N} \\ \overline{\alpha}(\omega_{L})\theta_{L,2N} \end{cases}$$
(A.20)

Para que [Y] e [Z] sejam matrizes unitárias, é necessário que as funções complexas $\varphi \in \theta$ sejam polinômios complexos ortonormais. Assim a FRF é expressa em termos destes polinômios da forma mostrada na eq. (A.21):

$$\alpha(\omega) = \frac{\sum_{k=0}^{2N-1} c_k \varphi_k}{\sum_{k=0}^{2N} d_k \theta_k}$$
(A.21)

Depois de determinar as variáveis $\{c\}$ e $\{d\}$, os parâmetros $\{a\}$ e $\{b\}$ podem ser recuperados para calcular os parâmetros modais.

Cálculo dos polinômios ortogonais φ e θ

Como foi explicado anteriormente, para resolver o conjunto de equações auto-condicionadas definido na eq. (A.16) é necessário ter a condição mostrada na eq. (A.22) (Maia & Silva, 1997):

,

$$[Y] = \operatorname{Re}\left(\left[\vartheta^{*}\right]^{T}\left[\vartheta\right]\right) = [I]$$
(A.22)
$$[Z] = \operatorname{Re}\left(\left[\Theta^{*}\right]^{T}\left[\left[\alpha_{n}^{*}\right]^{T}\left[\Theta\right]\right] = [I]$$

Para isso, os polinômios φ devem ser calculados usando uma função complemento unitário e θ usando uma função complemento dada por $[\alpha^2]$. Desta forma para um sistema de 2 graus de liberdade a eq. (2.57) fica na forma da eq. (A.23):

$$\alpha(\omega) = \frac{a_0 + a_1(i\omega) + a_2(i\omega)^2 + a_3(i\omega)^3}{b_0 + b_1(i\omega) + b_2(i\omega)^2 + b_3(i\omega)^3 + b_4(i\omega)^4}$$
(A.23)

Assim, cada polinômio pode ser determinado como a combinação linear de polinômios ortogonais reais e imaginários, sendo os reais para as funções pares e os imaginários para as funções ímpares da forma apresentada na eq. (A.24) (para θ o procedimento é similar):

Portanto, o numerador da eq. (A.23) é o definido na eq. (A.25):

$$a'_{0} + a'_{1}(i\omega) + a'_{2} + a'_{3}(i\omega)^{2} + a'_{4}(i\omega) + a'_{5}(i\omega)^{3}$$

= $a'_{0} + a'_{2} + (a'_{1} + a'_{4})(i\omega) + a'_{3}(i\omega)^{2} + a'_{5}(i\omega)^{3}$ (A.25)

Pelo fato de trabalhar com funções pares e ímpares é necessário considerar as freqüências positivas e negativas; se a FRF experimental contém *L* pontos para serem ajustados, a propriedade de ortogonalidade é a definida na eq. (A.26):

$$\operatorname{Re}\left(\sum_{j=-L}^{L} \varphi_{j,k}^{*} \varphi_{j,i}\right) = \begin{cases} 0 \to k \neq i \\ 1 \to k = i \end{cases}$$
(A.26)

Escrevendo-se φ como $\operatorname{Re}(\varphi) + i \operatorname{Im}(\varphi)$ (eq. (A.27)):

$$\sum_{j=-L}^{L} \left(\operatorname{Re}(\varphi_{j,k}) \operatorname{Re}(\varphi_{j,i}) + \operatorname{Im}(\varphi_{j,k}) \operatorname{Im}(\varphi_{j,i}) \right) = \begin{cases} 0 \to k \neq i \\ 1 \to k = i \end{cases}$$
(A.27)

Mas as FRF estão definidas por freqüências negativas e portanto a eq. (A.27) tem que ser transformada em funções positivas para os pontos de *1* até *L*. Dividindo a eq. (A.27) em funções negativas e positivas temos a eq. (A.28):

$$\sum_{j=-L}^{L} \left(\operatorname{Re}(\varphi_{j,k}^{-}) \operatorname{Re}(\varphi_{j,i}^{-}) + \operatorname{Im}(\varphi_{j,k}^{-}) \operatorname{Im}(\varphi_{j,i}^{-}) \right) + \sum_{j=1}^{L} \left(\operatorname{Re}(\varphi_{j,k}^{+}) \operatorname{Re}(\varphi_{j,i}^{+}) + \operatorname{Im}(\varphi_{j,k}^{+}) \operatorname{Im}(\varphi_{j,i}^{+}) \right) = \begin{cases} 0 \to k \neq i \\ 1 \to k = i \end{cases}$$
(A.28)

Introduzindo-se a definição de funções pares e ímpares $\operatorname{Re}(\varphi^{-}) = \operatorname{Re}(\varphi^{+})$ e $\operatorname{Im}(\varphi^{-}) = -\operatorname{Im}(\varphi^{+})$ na eq. (A.28) obtém-se a eq. (A.29):

$$2\sum_{j=1}^{L} \left(\operatorname{Re}(\varphi_{j,k}^{+}) \operatorname{Re}(\varphi_{j,i}^{+}) + \operatorname{Im}(\varphi_{j,k}^{+}) \operatorname{Im}(\varphi_{j,i}^{+}) \right) = \begin{cases} 0 \to k \neq i \\ 1 \to k = i \end{cases}$$
(A.29)

Ou, dividindo por 2, a (eq. (A.30)),

$$\operatorname{Re}\left(\sum_{j=1}^{L} \left(\varphi_{j,k}^{+}\right)^{*} \left(\varphi_{j,i}^{+}\right)\right) = \begin{cases} 0 \to k \neq i\\ 0.5 \to k = i \end{cases}$$
(A.30)

Para os polinômios θ^{*} (correspondentes aos polinômios θ_{k} na eq. (A.21)), o procedimento é similar, mas trabalhando com a função complemento $|\overline{\alpha}(\omega_{j})|^{2}$, por tanto obtém-se a eq. (A.31):

$$\operatorname{Re}\left(\sum_{j=1}^{L} \left(\theta_{j,k}^{+}\right)^{*} \left(\theta_{j,i}^{+}\right) \overline{\alpha}\left(\omega_{j}\right)^{2}\right) = \begin{cases} 0 \to k \neq i\\ 0.5 \to k = i \end{cases}$$
(A.31)

Conhecendo os valores das funções $\varphi^{\dagger} \in \theta^{\dagger}$ que satisfaçam as eq. (A.30) e eq. (A.31) é possível calcular as matrizes $[P] \in [T]$ definidas na eq. (A.18) e eq. (A.19), onde $\varphi \in \theta$ devem ser entendidos como $\varphi^{\dagger} \in \theta^{\dagger}$. Assim, a eq. (A.16) fica da forma mostrada na eq. (A.32):

$$\begin{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \vdots \begin{bmatrix} X \\ 0.5 \end{bmatrix} \begin{bmatrix} c \\ \cdots \\ d \end{bmatrix} = \begin{cases} G \\ \cdots \\ 0.5 \end{bmatrix}$$
(A.32)

Com [X] e [G] definidas como na eq. (A.17) e [P] e [T] definidas em termos de φ^{+} e θ^{+} . Multiplicando ambos os lados da eq. (A.32) por 2 (eq. (A.33)):

$$\begin{bmatrix} [I] & \vdots & [X'] \\ \cdots & \vdots & \cdots \\ [X']^T & \vdots & [I] \end{bmatrix} \begin{cases} \{c\} \\ \cdots \\ \{d\} \end{cases} = \begin{cases} \{G'\} \\ \cdots \\ \{0\} \end{cases}$$
(A.33)

Onde [X'] = 2[X] e [G'] = 2[G]. Resolvendo a eq. (A.33), tem-se (eq. (A.34)):

$$\{d\} = -[[I] - [X']^T [X']]^{-1} [X']^T \{G'\}$$

$$\{c\} = \{G'\} - [X']\{d\}$$
(A.34)

Calculo dos parâmetros modais

Para o calculo dos parâmetros modais a eq. (A.21) (com $\varphi \in \theta$ substituídos por $\varphi^{t} \in \theta^{t}$) tem que ser reformulada em termos dos coeficientes $\{a\} \in \{b\}$ definidos na eq. (A.2). Se os coeficientes dos polinômios $\varphi^{t} \in \theta^{t}$ são armazenados, é possível determinar uma transformação linear que relacione $\{a\}$ com $\{c\} \in \{b\}$ com $\{d\}$.

Conhecendo a solução para $\{b\}$, têm-se os valores para freqüências naturais e coeficientes de amortecimento. Com esses resultados é possível calcular os demais parâmetros modais usando as eq. (A.1) e eq. (A.2) (Maia & Silva, 1997).

APÊNDICE B: CÁLCULO ANALÍTICO DAS FREQÜÊNCIAS NATURAIS ANALÍTICAS

Especie: Dendrocalamus Giganteus - Segmento Inteiro							
		•	A	- 13mm	40mm		
¥	550	umm	A	-	A-A		
PROPRIEDA	DES GEC	DMETRIC	AS				
L = h = b =	0.55 0.013 0.04	m m m		A = I =	0.000532 9.123E-09	m² m⁴	
PROPRIEDA	DES FÍSI	<u>CAS E M</u>	ECÂNIC	AS			
E = ρ= m =	13.872 740 0.3937	Gpa kg/m ³ kg/m		k =	1773.33	N/m	
EQUACÕES	DA VIBR	ACÃO LA	TERAL	EM VIGA	AS		
Equação da f	requência	a: cos	$\beta \beta L \cos \beta$	h $\beta L = -$	-1	com	$\beta = \frac{m\omega^2}{EI}$
Raizes $\beta_i L$ c	la equaçã	io da freq	uência:				
$\beta_1 L = \beta_2 L =$	1.8751 4.6941			$\beta_3 L = \beta_4 L =$	7.854757 10.995541		

FREQUÊNCIAS NATURAIS PARA OS QUATRO PRIMEIROS MODOS DE VIBRAÇÃO

Isolando o valor de ω da relação para β :

$$\boldsymbol{\omega} = \boldsymbol{\beta}^2 \sqrt{\frac{EI}{m}}$$

Frequência natural: $f = \frac{\omega}{2\pi}$

		$\omega_{\iota} \text{ [rad/seg]}$	f _i [Hz]		
	Modo 1	183.710	29.238		
	Modo 2	1151.289	183.233		
	Modo 3	3223.641	513.058		
	Modo 4	6317.051	1005.390		

FREQUÊNCIAS NATURAIS PARA OS QUATRO PRIMEIROS MODOS DE VIBRAÇÃO

Isolando o valor de ω da relação para β :

$$\omega = \beta^2 \sqrt{\frac{EI}{m}}$$

Frequência natural:

	270	
	$\omega_{\iota} \text{ [rad/seg]}$	f _i [Hz]
Modo 1	83.688	13.319
Modo 2	524.462	83.471
Modo 3	1468.508	233.720
Modo 4	2877.691	457.999

 $f = \frac{\omega}{2\pi}$

	2.11	
	ω_{t} [rad/seg]	f _i [Hz]
Modo 1	90.320	14.375
Modo 2	566.024	90.086
Modo 3	1584.884	252.242
Modo 4	3105.740	494.294

		A		40mm	<u></u> ז	f4mm
××	550r	nm	i '	A-A	L .	·
PROPRIEDAD	ES GEOM	IETRICAS				
L = h = b =	0.55 0.004 0.04	m m m	A = I =	0.00016 2.1E-10	m² m⁴	
PROPRIEDAD	<u>)ES FÍSICA</u>	AS E MECÂNICAS	<u>S</u>			
E = ρ= m=	7.97 626 0.10016	Gpa kg/m ³ kg/m	k =	30.6585	N/m	
EQUAÇÕES D	DA VIBRAÇ	ÃO LATERAL EN	<u>/I VIGAS</u>			
Equação da fro	equência:	$\cos\beta L\cos$	$\sinh\beta L =$	-1	com	$\beta = \frac{m\omega^2}{EI}$
Raizes $\beta_i L$ da	a equação	da frequência:				LI
$\beta_1 L = \beta_2 L =$	1.8751 4.69409		$\beta_3 L = \beta_4 L =$	7.85476 10.9955		
<u>FREQUÊNCIA</u> VIBRAÇÃO	<u>S NATUR/</u>	AIS PARA OS QU	JATRO PI	RIMEIROS	MODO	<u>S DE</u>
leolando o val	or do w do l	rolação para B:		$\alpha = \beta^2$	EI	
Frequência na	tural:	$f = \frac{\omega}{2\pi}$		$\omega = \rho$	\sqrt{m}	
	ſ	ω _t [rad/seg]	f _i	[Hz]		
	Modo 1	47.889	7.	.622		
	Modo 2	300.116	47	2.765		
	Modo 3 Modo 4	840.333 1646 718	13	3.743		
MODOS DE VIBRAÇÃO PARA A VIGA ENGASTADA						
1						
	an a state and a state of the s	**		. A	[—	Modo 1
مممعهد ا		\checkmark				Modo 2
						Modo 3
│ │ ⋖⋖	0.1			0.5		- Modo 4

L (m)

Especie: Phyllostachys Aurea - Segmento Inteiro

				► A	15mr	
PROP	RIEDA[4(DES GEO)0mm Metric <i>i</i>	<u>AS</u>	6mmA-A	
	L = h = b =	0.4 0.015 0.006	m m m	A = I =	0.00009 2.88E-10	m² m⁴
PROP	RIEDAI	<u>DES FÍSIC</u>	CAS E ME	<u>CÂNICAS</u>		
	_		-			• • /

E =	15.22	Gpa	k =	205.47	N/m
ρ=	808	kg/m³			
m =	0.0727	kg/m			

EQUAÇÕES DA VIBRAÇÃO LATERAL EM VIGAS

Equação da frequência: $\cos\beta L \cosh\beta L = -1$ $\cos\beta = \frac{m\omega^2}{EI}$

Raizes $\beta_i L$ da equação da frequência:

$\beta_1 L =$	1.8751	$\beta_3 L =$	7.854757
$\beta_2 L =$	4.6941	$\beta_4 L =$	10.995541

FREQUÊNCIAS NATURAIS PARA OS QUATRO PRIMEIROS MODOS DE VIBRAÇÃO

Isolando o valor de ω da relação para β :

Frequência natural:
$$f = \frac{\omega}{2\pi}$$

		$\omega_{t} \text{ [rad/seg]}$	f _i [Hz]
	Modo 1	170.611	27.154
	Modo 2	1069.202	170.169
	Modo 3	2993.796	476.477
	Modo 4	5866.646	933.706

MODOS DE VIBRAÇÃO PARA A VIGA ENGASTADA

 $\omega = \beta^2 \sqrt{\frac{EI}{m}}$

Especie: Phyllostachys Aurea - Segmento Externo

			A]	¦ 15m	m i	,	
<u> </u>			L ▶ A	- - -			_4mm	
*×1	400)mm		1	A-A			
PROPRIEDA	DES GEO	<u>METRI</u>	<u>CAS</u>					
L = h =	0.4 0.004	m m		A = I =	6E-05 8E-11	m² m⁴		
b =	0.015	m						
PROPRIEDA	<u>DES FÍSI</u>	CAS E I	MECÂNIC	AS				
E = ρ= m=	16.83 930 0.0558	Gpa kg/m ³ kg/m		k =	63.113	N/m		
EQUAÇÕES	DA VIBR	AÇÃO L	ATERAL	EM VIG	AS			
equação da frequência: $\cos\beta L \cosh\beta L = -1$ $\cos\beta = \frac{m\omega^2}{EI}$								
Raizes $\beta_i L$	da equaçã	io da fre	equência:					

$\beta_1 L =$	1.8751	$\beta_3 L =$	7.8548
$\beta_2 L =$	4.6941	$\beta_4 L =$	10.996

FREQUÊNCIAS NATURAIS PARA OS QUATRO PRIMEIROS MODOS DE VIBRAÇÃO

 $\omega = \beta^2 \sqrt{\frac{EI}{m}}$

Isolando o valor de ω da relação para β :

Frequência natural: $f = \frac{\alpha}{2\pi}$

		211		_
		$\omega_t \text{ [rad/seg]}$	f _i [Hz]	
	Modo 1	107.945	17.180	0.058
	Modo 2	676.477	107.665	
	Modo 3	1894.155	301.464	
	Modo 4	3711.788	590.749	

	4) J0mm		- <u>1</u>	5mm A-A	4mm
PROPRIEDA	ADES GEO	OMETRIC	CAS			
L = h = b =	0.4 0.004 0.015	m m m	A = =	6E-05 8E-11	m² m⁴	
PROPRIEDA	<u>ADES FÍSI</u>	CAS E N	<u>1ECÂNICAS</u>			
E = ρ= m=	9.37 686 0.0412	Gpa kg/m ³ kg/m	k =	35.138		
EQUAÇÕES	DA VIBR	AÇÃO LA	ATERAL EM VIO	<u>GAS</u>		
Equação da	frequência	a: co	s $\beta L \cosh \beta L =$	-1	com	$\beta = \frac{m\omega^2}{EI}$

Raizes $\beta_i L$ da equação da frequência:

$\beta_1 L =$	1.8751	$\beta_3 L =$	7.8548
$\beta_2 L =$	4.6941	$\beta_4 L =$	10.996

FREQUÊNCIAS NATURAIS PARA OS QUATRO PRIMEIROS MODOS DE VIBRAÇÃO

 $\omega = \beta^2 \sqrt{\frac{EI}{m}}$

Isolando o valor de ω da relação para β :

Frequência natural:
$$f = \frac{a}{2\pi}$$

	Δn		_
	$\omega_{t} \text{ [rad/seg]}$	f _i [Hz]	
Modo 1	93.779	14.925	0.067
Modo 2	587.706	93.536	
Modo 3	1645.594	261.904	
Modo 4	3224 708	513 228]

APÊNDICE C: CÁLCULO NUMÉRICO DAS FREQÜÊNCIAS NATURAIS ANALÍTICAS

ESPÉCIE: DENDROCALAMUS GIGANTEUS – SEGMENTO INTEIRO

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick
Text	Text	Text	Text	m	m
COMP	DG_COM	Shell	Shell-Thin	0.013	0.013

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG_COM	Isotropic	None	740	7400	1387000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.032744	30.54	191.89	36821
MODAL	Mode	2	0.005272	189.67	1191.7	1420200
MODAL	Mode	3	0.001897	527.15	3312.2	10971000
MODAL	Mode	4	0.000975	1025.8	6445.1	41540000

MODOS DE VIBRAÇÃO

ESPÉCIE: DENDROCALAMUS GIGANTEUS – FATIA EXTERNA

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick
Text	Text	Text	Text	m	m
F_EXT	DG	Shell	Shell-Thin	0.006	0.006

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	924	9240	15970000000	0.26

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.075044	13.326	83.727	7010.2
MODAL	Mode	2	0.01211	82.578	518.86	269210
MODAL	Mode	3	0.004367	228.98	1438.8	2070000
MODAL	Mode	4	0.00225	444.35	2791.9	7794800

MODOS DE VIBRAÇÃO

ESPÉCIE: DENDROCALAMUS GIGANTEUS – FATIA MÉDIA

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick
Text	Text	Text	Text	m	m
F_MEIO	DG	Shell	Shell-Thin	0.006	0.006

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	705	7050	14190000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.06954	14.38	90.353	8163.7
MODAL	Mode	2	0.011222	89.114	559.92	313510
MODAL	Mode	3	0.004047	247.11	1552.6	2410600
MODAL	Mode	4	0.002085	479.52	3012.9	9077500

MODOS DE VIBRAÇÃO

ESPÉCIE: DENDROCALAMUS GIGANTEUS – FATIA INTERNA

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick
Text	Text	Text	Text	m	m
F_INT	DG	Shell	Shell-Thin	0.004	0.004

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	626	6260	7970000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.127272	7.8572	49.368	2437.2
MODAL	Mode	2	0.020537	48.692	305.94	93601
MODAL	Mode	3	0.007409	134.97	848.07	719220
MODAL	Mode	4	0.003821	261.74	1644.6	2704600

MODOS DE VIBRAÇÃO

ESPÉCIE: *DENDROCALAMUS GIGANTEUS* – COLMO 1.00m COM DIAFRAGMA

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
DG_100	DG	0	Shell	Shell-Thin	0.013	0.013
DIAF	DIAFRAGM	0	Shell	Shell-Thin	0.003	0.003

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	740	7400	1387000000	0.26
DIAFRAGM	Isotropic	None	740	7400	13870000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.002798	357.35	2245.3	5041200

PRIMEIRO MODO DE VIBRAÇÃO:

ESPÉCIE: *DENDROCALAMUS GIGANTEUS* – COLMO 1.00m SEM DIAFRAGMA

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
DG_100	DG	0	Shell	Shell-Thin	0.013	0.013

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	740	7400	13870000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.002797	357.58	2246.8	5047900

PRIMEIRO MODO DE VIBRAÇÃO:

ESPÉCIE: DENDROCALAMUS GIGANTEUS - COLMO 0.33m

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
DG33	DG	0	Shell	Shell-Thin	0.013	0.013

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DG	Isotropic	None	740	7400	1387000000	0.26

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
MODAL	Mode	1	0.000699	1430.2	8985.9	80747000

PRIMEIRO MODO DE VIBRAÇÃO:

ESPÉCIE: PHYLLOSTACHYS AUREA – SEGMENTO INTEIRO

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick	
Text	Text	Text	Text	m	m	
COMP	PA COM	Shell	Shell-Thin	0.006	0.006	

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
PA_COM	Isotropic	None	808	8080	15220000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.037602	26.594	167.1	27921
MODAL	Mode	2	0.006097	164.01	1030.5	1062000
MODAL	Mode	3	0.002205	453.54	2849.7	8120700
MODAL	Mode	4	0.001137	879.53	5526.3	30540000

MODOS DE VIBRAÇÃO

ESPÉCIE: PHYLLOSTACHYS AUREA – FATIA EXTERNA

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
PA_INT	PA_EXT	0	Shell	Shell-Thin	0.004	0.004

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
PA_EXT	Isotropic	None	930	9300	16830000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.055132	18.138	113.97	12988
MODAL	Mode	2	0.008951	111.72	701.93	492710
MODAL	Mode	3	0.003247	308	1935.2	3745000
MODAL	Mode	4	0.001684	593.84	3731.2	13922000

ESPÉCIE: PHYLLOSTACHYS AUREA – FATIA INTERNA

TABLE: Area Section Properties

Section	Material	AreaType	Туре	Thickness	BendThick
Text	Text	Text	Text	m	m
PA_INT	PA_INT	Shell	Shell-Thin	0.004	0.004

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
PA_INT	Isotropic	None	686	6860	9370000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.06346	15.758	99.01	9803.1
MODAL	Mode	2	0.010303	97.056	609.82	371880
MODAL	Mode	3	0.003737	267.58	1681.3	2826600
MODAL	Mode	4	0.001938	515.91	3241.6	10508000

MODOS DE VIBRAÇÃO

ESPÉCIE: PHYLLOSTACHYS AUREA - COLMO 1.00m COM DIAFRAGMA

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
DIAF	DIAFRAGM	0	Shell	Shell-Thin	0.003	0.003
TUBO	PA	0	Shell	Shell-Thin	0.005	0.005

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
DIAFRAGM	Isotropic	None	808	8080	15220000000	0.34
PA	Isotropic	None	808	8080	15220000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0.006958	143.72	903.03	815470

PRIMEIRO MODO DE VIBRAÇÃO:

ESPÉCIE: PHYLLOSTACHYS AUREA - COLMO 1.00m SEM DIAFRAGMA

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
TUBO	PA	0	Shell	Shell-Thin	0.005	0.005

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
PA	Isotropic	None	808	8080	15220000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	4	0.006958	143.72	903.02	815450

PRIMEIRO MODO DE VIBRAÇÃO:

ESPÉCIE: PHYLLOSTACHYS AUREA - COLMO 0.20m

TABLE: Area Section Properties

Section	Material	MatAngle	AreaType	Туре	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
TUBO	PA	0	Shell	Shell-Thin	0.005	0.005

TABLE: Material Properties 1 - General

Material	Туре	DesignType	UnitMass	UnitWeight	E	U
Text	Text	Text	N-s2/m4	N/m3	N/m2	Unitless
PA	Isotropic	None	808	8080	15220000000	0.34

TABLE: Modal Periods And Frequencies

OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	4	0.000615	1625.2	10212	104280000

PRIMEIRO MODO DE VIBRAÇÃO:

