5 Simulação Física

O comportamento da corrente de turbidez foi avaliado segundo as observações dos experimentos conduzidos juntamente com o Núcleo de Estudos de Correntes de Densidade, NECOD, do Instituto de Pesquisas Hidráulicas, IPH, da Universidade Federal do Rio Grande do Sul, UFRGS. O objetivo desses ensaios foi determinar os parâmetros hidráulicos e deposicionais necessários para validação do modelo numérico proposto.

As correntes de turbidez são fluxos induzidos pela ação da gravidade sobre misturas de fluido e sedimentos, devido à diferença de densidade entre a mistura e o fluído ambiente. Assim, os ensaios consistem basicamente em liberar uma mistura composta de água e partículas sólidas em suspensão, *corrente de turbidez*, em um tanque cheio de água, *fluido ambiente*.

As simulações físicas foram constituídas por dois experimentos, variandose apenas o diâmetro dos sedimentos, conforme Tabela 1. As correntes de turbidez têm sido ensaiadas pelo NECDO, no IPH, utilizando-se vazões que variam de 30 a 100 l/min, o que seria valores razoáveis para a vazão desse tipo de correntes. Assim, adotou-se neste trabalho a vazão de 40 l/min para todos os ensaios físicos. Conforme já mencionado anteriormente, a concentração das correntes de turbidez de alta densidade chega a atingir valores da ordem de 30% em volume. Entretanto, pretende-se simular neste trabalho corrente de turbidez de baixa densidade. Dessa forma, adoto-se o valor de 2% em volume para a concentração das partículas.

Ensiao	Diâmetro	Conc. em	Vazão	
	(µm)	volume (%)	(l/min)	
1	100	2%	40	
2	150	2%	40	

Tabela 1 - Características dos ensaios

Dessa forma, têm-se basicamente dois tipos de fluxo continuo de material. O primeiro composto por sedimentos com diâmetro de aproximadamente 100 µm e concentração de 2% em volume. E o segundo com sedimentos de aproximadamente 150 µm e concentração de 2% em volume. O material granular presente nas misturas foi composto por microesferas de vidro com massa especifica de 2600 kg/m³. O protocolo de ensaio prevê ainda que a mistura seja liberada no tanque como um fluxo continuo durante 5 min e vazão média de 40 l/min.

5.1. Metodologia

A Figura 30 mostra a geometria do tanque utilizado nos ensaios. A parte externa do tanque é construída em concreto armado e alvenaria. A plataforma de ensaio é formada por duas rampas de policarbonato, com ajuste de declividade de 0º a 4º. Com isso, a inclinação da plataforma pode ser ajustada, de tal forma que cada protocolo de ensaio especificado seja devidamente atendido.

Figura 30 - Esquema do tanque utilizado nos ensaios

Nos ensaios deste trabalho adotou-se uma declividade de 4°, com uma projeção de 4,0 m, e uma plataforma com 5,0 m de comprimento.

Conectado a entrada do tanque há um difusor, Figura 31, que é ligado a dois reservatórios elevados, Figura 32, onde fica armazenado o fluido que será liberado no tanque durante o ensaio. O armazenamento do fluido mais denso nesses reservatórios elevados permite uma alimentação constante do tanque, da mesma forma que se tem nos casos de fluxos gravitacionais iniciados por fluxo contínuo.

O fluido nos reservatórios é composto por uma mistura de água e grãos e a homogeneização dessa mistura é garantida por um agitador eletromecânico posicionado dentro dos reservatórios. Esses grãos são constituídos por microesferas de vidro.

Figura 31 – Difusor acrílico usado para garantir a uniformidade do fluxo durante os ensaios

O difusor é uma caixa acrílica com 12 cm de largura, 11 cm de altura e 22,3 cm de comprimento A função principal desse difusor, além garantir a uniformidade do fluxo de entrada, é fornecer um controle adequado de todas as condições de contorno necessárias para a simulação computacional da corrente de turbidez.

Na parte frontal do difusor acrílico há uma comporta regulável, que serve para ajustar a altura exata da abertura por onde a mistura armazenada nos reservatórios adentra o tanque, logo, sabendo-se a altura e a largura da abertura do difusor em cada ensaio, é possível calcular a velocidade e a altura inicial do fluxo que serão usados como parâmetros de entrada do modelo numérico. Na parte traseira do difusor há uma abertura de 25 mm por onde a tubulação que sai dos reservatórios, onde se encontra a mistura, se conecta ao difusor.

Uma série de telas dentro do difusor é disposta de forma a garantir a uniformização do fluxo antes que este seja liberado no tanque. Por fim, tem-se a tampa superior que não permite que a mistura dentro do difusor entre em contato com o fluxo ambiente antes do lançamento no tanque.

Figura 32 - Reservatório elevado, utilizados para armazenar a mistura

Em seguida o tanque é cheio com água e todo o equipamento de iluminação e apoio é montado. É feito também o posicionamento da câmera de vídeo sobre o tanque, para que todo o ensaio possa ser registrado.

Concluída a etapa de preparação inicia-se então o ensaio propriamente dito. Um registro na tubulação é aberto e o fluido contido no reservatório é liberado no tanque durante aproximadamente 5 min com uma vazão média de 40 l/min, vazão esta monitorada por um computador conectado na tubulação durante todo o ensaio, gerando com isso um histórico de vazões, Figura 33.

Três amostras da mistura são retiradas do reservatório durante o decorrer do ensaio para verificar se a concentração da mistura está conforme o protocolo especificado. As amostras são coletadas nos tempos 0 min, 2,5 min e 5 min.

Figura 33 - Medidor de vazões conectado a entrada da tubulação

Após aproximadamente cinco minutos o registro é fechado, e com isso o fluido deixa de ser liberado no tanque. Depois de um período de decantação das partículas suspensas no tanque, o mesmo é esvaziado lentamente, com velocidades muito baixas, de modo que não ocorra nenhum tipo de perturbação, sejam elas ravinamentos ou mesmo destruição parcial do depósito.

A última etapa do ensaio consiste no levantamento da superfície resultante do depósito gerado pelos sedimentos durante os ensaios no tanque. Utilizou-se para essa tarefa um medidor de distância à laser, acoplado a um sistema de movimentação. O equipamento utilizado é um medidor de distância à laser de alta precisão, Figura 34, destinado à avaliação de distâncias, dimensões, posicionamentos relativo e comparação de cotas, realizando uma medida dinâmica, pontual ou contínua, sem contato físico entre o medidor e o objeto alvo, significando portanto maior precisão, durabilidade e rapidez (Manica, 2002). O laser mede as coordenadas x, y e z de toda superfície deposicional e as armazena em um arquivo texto, com isso pode-se reconstituir cada superfície de deposição formada.

Figura 34 - Medição da espessura dos depósitos com a utilização de laser

5.2. Resultados

Nesta seção serão mostrados os resultados dos ensaios realizados. Conforme mencionado anteriormente, todos os experimentos tiveram duração de 5 min e vazão média de 40 l/min. A concentração da mistura utilizada em cada ensaio foi determinada pela média aritmética das amostras da mistura coletadas nos tempos 0 min, 2,5 min e 5,0 min de cada experimento.

5.2.1. Evolução

A Figura 35 mostra a evolução do ensaio com sedimentos de 100 μ m e concentração de 1,91%. As imagens na Figura 35 foram obtidas nos seguintes instantes de tempo: 10 s, 60 s, 120 s, 180 s, 240 s e 300 s, respectivamente.

(b)

Figura 35 – Evolução da corrente de turbidez com concentração de 1,91% em volume e sedimentos de 100 μ m de diâmetro, nos seguintes tempos: (a) 10 s, (b) 60 s, (c) 120 s, (d) 180 s, (e) 240 s e (f) 300 s

74

A Figura 36 mostra a evolução do ensaio com sedimentos de 150 μ m e concentração de 1,85%. As imagens na Figura 36 foram obtidas nos seguintes instantes de tempo: 10 s, 60 s, 120 s, 180 s, 240 s e 300 s, respectivamente.

Figura 36 – Evolução da corrente de turbidez com concentração de 1,85% em volume e sedimentos de 150 μ m de diâmetro, nos seguintes tempos: (a) 10 s, (b) 60 s, (c) 120 s, (d) 180 s, (e) 240 s e (f) 300 s

Simulação Física

Nota-se, Figura 35b e Figura 36b, que à medida que se aumenta o diâmetro dos grãos presente na mistura, ocorre uma conseqüente diminuição no espalhamento da mistura dentro do tanque. Isso ocorre porque a partícula é mantida em suspensão devido à turbulência do fluxo, ou seja, quando a velocidade de queda da partícula é menor que a velocidade do fluxo a partícula é carregada pela corrente por mais tempo. Assim, como a velocidade de deposição da partícula é diretamente proporcional ao diâmetro do grão em suspensão, tem-se uma deposição mais rápida das partículas na mistura com maior diâmetro de grão suspenso, em conseqüência, um menor espalhamento da mistura dentro do tanque, conforme verificado.

5.2.2. Deposição

Nas Figura 37 e Figura 38, nota-se que a maior parte do depósito concentrou-se a uma distância de 33 cm da saída do difusor e espalhou-se por um raio de aproximadamente 34 cm, além desta distância houve apenas uma fina camada de depósitos. Na saída do difusor formou-se ainda um *vale*, ou seja, uma zona de menor deposição, com comprimento de 15 cm e raio de 18 cm. A altura máxima de depósitos atingida foi de aproximadamente 4,0 cm. Observa-se ainda, a formação de lobos oriundos da sobreposição de camadas subseqüentes de depósitos.

Figura 37 – Geometria da deposição gerada pela corrente de turbidez com concentração de 1,91% em volume e sedimentos de 100 µm de diâmetro, medidas em metros.

(b)

Figura 38 – Vista lateral da deposição gerada pela corrente de turbidez com concentração de 1,91% em volume e sedimentos de 100 µm de diâmetro. (a) Geometria da deposição.

As Figura 39 e Figura 40 referem-se ao ensaio com sedimentos de 150 µm e concentração de 1,85% em volume. O comprimento do lóbulo formado pela deposição das partículas foi de 32 cm e o raio de espalhamento foi de 42 cm. O comprimento da zona de menor deposição formada na saída do difusor foi de 17 cm e o raio de espalhamento foi de 15 cm. Os leques formados possuem um comprimento de 19 cm de extensão. Nota-se pela imagem que não houve a formação de uma camada fina de deposição fora dessa área de deposição.

Figura 39 – Geometria da deposição gerada pela corrente de turbidez com concentração de 1,85% em volume e sedimentos de 150 µm, medidas em metros.

(b)

Figura 40 – Vista lateral da deposição gerada pela corrente de turbidez com concentração de 1,85% em volume e sedimentos de 150 μ m, medidas em metros.

A Tabela 2 resume os resultados das deposições, conforme apresentada na Figura 37 e na Figura 39, obtidas pelas simulações físicas dos dois tipos de corrente de turbidez realizadas, o primeiro com sedimentos de 100 µm e o segundo 150 µm. A altura máxima na tabela foi obtida na parte frontal do lobo formado pelas partículas.

Ensaio	Sedimento (µm)	Conc. em volume (%)	Geometria da Deposição				
			L (cm)	R (cm)	l (cm)	r (cm)	e _{max} (mm)
1	100	1,91%	33	34	15	18	40,66
2	150	1,85%	32	42	17	15	63,66

Tabela 2 - Resumo dos resultados dos ensaios

Com o arquivo de saída fornecido pelo medidor de distâncias à laser pode-se a reconstruir a superfície deposicional gerada em cada experimento, Figura 41. O arquivo de saída do medidor de distância fornece a coordenada zda superfície deposicional já descontada a coordenada da plataforma de ensaio, ou seja, a coordenada z já é a espessura de depósito em cada ponto. As superfícies da Figura 41 foram geradas utilizando-se o software GoCad® da Paradigm Software.

Com as superfícies geradas pelo *GoCad*® é possível avaliar com precisão onde estão localizados os pontos de altura máxima e mínima, bem como, o valor de um dado ponto em uma posição qualquer da malha.

Figura 41 – Reconstrução das superfícies dos ensaios com o software *GoCad*®. (a) Ensaio 1 (b) Ensaio 2