

Laurinda Fátima da F. P. Guimarães Bragança

Síntese e Caracterização de Nanocristais de Co-Fe suportados em Sílicas Mesoporosas para Síntese de Fischer-Tropsch

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo programa de Pós Graduação em Química do Departamento de Química da PUC-Rio.

Orientador: Prof. Maria Isabel Pais da Silva

Rio de Janeiro, abril de 2010

Laurinda Fátima da F. P. Guimarães Bragança

Síntese e Caracterização de Nanocristais de Co-Fe suportados em Sílicas Mesoporosas para Síntese de Fischer-Tropsch

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Ciências pelo Programa de Pós-Graduação em Química do Departamento de Química do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Maria Isabel Pais da Silva Orientadora Departamento de Química – PUC- Rio

> > Prof. Fábio Barboza Passos UFF

Prof. Fernando Benedicto Mainier UFF

Prof. Cristiane Assumpção Henriques UERJ

Dr^a. Paula Mendes Jardim Departamento de Engenharia de Materiais– PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 16 de abril de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Laurinda Fátima da F. P. Guimarães Bragança

Graduou-se em Engenharia Química na Universidade Federal Fluminense em 1979. Defendeu sua Dissertação de Mestrado em Fenômenos de Transporte em 1985 sob o título de "Separação de misturas líquidas em escoamento pelicular por radiação térmica", pela COPPE – Universidade Federal do Rio de Janeiro, tendo apresentado o trabalho "Separação de misturas líquidas em escoamento pelicular em canais inclinados" nos anais do VIII Congresso Brasileiro de Engenharia Mecânica – COBEM - 1985.

Ficha Catalográfica

Bragança, Laurinda Fátima da F. P. Guimarães

"Síntese e caracterização de nanocristais de Co-Fe suportados em sílicas mesoporosas para síntese de Fischer Tropsch" / Laurinda Fátima da F. P. Guimarães Bragança ; orientador: Maria Isabel Pais da Silva. – 2010. 201 f. : il. (color.) ; 30 cm

Tese (Doutorado em Química)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010. Inclui bibliografia

1. Química – Teses. 2. Sílicas mesoporosas. 3. HMS. 5. SBA-15. 6. Amostras bimetálicas de cobalto e ferro. 7. síntese de Fischer-Tropsch. I. Silva, Maria Isabel Pais da. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD 540

Para minha GRANDE família, Álvaro meu eterno amigo e incentivador, Fernanda, minha filha e meu estímulo e aos meus pais.

Agradecimentos

A Deus por ter me concedido saúde e determinação ao longo desses anos para concretização deste trabalho.

Aos meus pais, por terem sempre me apoiado e ajudado a encontrar forças para enfrentar mais esse desafio.

A minha orientadora Maria Isabel Pais da Silva, pelo apoio, empenho, pela forma serena e segura que conduziu este trabalho.

Ao Ronaldo Pedro da Silva, Roberto R. Avillez, Carla M. da Silva, Henrique Meira da Silva, pela assistência nas análises.

Ao Instituto de Química da Universidade Federal da Bahia.

Ao Instituto de Catálisis y petroquímica, CSIC, na Espanha.

Ao estagiário da Pós-Graduação Bruno Damacena de Souza, pela ajuda nas análises, e por todo carinho e dedicação demonstrados ao longo de sua permanência no departamento.

A Universidade Federal Fluminense e ao Departamento de Engenharia Química e Petróleo pela concessão de tempo e estímulo para a realização desse trabalho.

A PUC-Rio pelos auxílios concedidos, e acolhimento durante o desenvolvimento deste trabalho.

Aos componentes da Comissão Examinadora.

Resumo

Bragança, Laurinda Fátima F. P. G.; Silva, Maria Isabel Pais da. Síntese e Caracterização de Nanocristais de Co-Fe suportados em Sílicas Mesoporosas para a Síntese de Fischer-Tropsch. Rio de Janeiro, 2010. 201p. Tese de Doutorado – Departamento de Química. Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho foram sintetizadas amostras bimetálicas de cobalto e ferro suportadas em sílicas mesoporosas do tipo SBA-15 e HMS. A preparação das mesmas ocorreu pelo método de impregnação incipiente do ponto úmido com soluções aquosas de nitratos de Co e Fe para obtenção de amostras com 25% p/p total de metal. Para estudos de efeitos comparativos das diversas propriedades, amostras monometálicas de Co ou Fe foram também preparadas com o mesmo teor metálico. Para investigar o efeito de diferentes direcionadores de estrutura, duas séries da sílica mesoporosa HMS foram preparadas utilizando dois tipos de direcionadores: dodecilamina (DDA) e tetradecilamina (TDA). As amostras foram caracterizadas por medidas de fisissorção de N2, análise de difração de Raios-X (DRX), redução com temperatura programada (RTP), microscopia eletrônica de transmissão (TEM), quimissorção de H₂ e espectroscopia fotoeletrônica de raios-X (XPS). A quantidade de metal incorporado foi estimada por espectroscopia de absorção atômica (EAA). Os suportes foram também caracterizados por análise diferencial termogravimétrica (ATG/ATD). As curvas ATG evidenciaram que os direcionadores de estrutura foram, em grande parte, removidos até 700 K. As propriedades de textura mostraram que após a introdução metálica no suporte SBA-15, a área específica, o volume de poros e o diâmetro de poro decresceram em menor extensão para a amostra bimetálica em relação às monometálicas. As análises de DRX detectaram a formação das fases de Co₃O₄ e CoFe₂O₄ para todas as amostras bimetálicas; sendo que para a amostra de Co-Fe/HMS (TDA), a fase α-Fe₂O₃ foi também indicada. A presença do suporte HMS (TDA) resultou na formação de fases cristalitas de maiores dimensões. Os valores das espessuras de parede para os suportes do tipo HMS foram maiores em relação aos encontrados na literatura, sugerindo a formação de materiais mais estáveis. Os perfis de RTP foram similares entre as amostras monometálicas e bimetálicas, entretanto,

maiores temperaturas de redução do óxido de cobalto na amostra bimetálica foi indicada em relação às amostras monometálicas de cobalto, no suporte HMS (TDA). Uma interação metal-suporte mais forte foi evidenciada para a amostra Co-Fe/SBA-15. As medidas de quimissorção de H₂ indicaram valores das dispersões metálicas maiores para as amostras bimetálicas em comparação as monometálicas de ferro e menores em relação às monometálicas de cobalto. A partir das micrografias obtidas por MET, foi observada uma menor formação (percentual) de aglomerados para a amostra de Co-Fe/SBA-15 em relação à de Co-Fe/HMS (DDA). O espectro Co2p resultante da análise de XPS, para a amostra bimetálica de Co-Fe/HMS (DDA) indicou a presença de Co₃O₄. O catalisador de Co-Fe/HMS (DDA) apresentou maiores seletividades para C5+ e álcoois em relação ao catalisador Fe/HMS (DDA) na síntese de Fischer-Tropsch. O parâmetro de probabilidade de crescimento da cadeia (α) foi maior para o catalisador bimetálico Co-Fe/HMS (DDA) em comparação ao catalisador Co-Fe/SBA-15. Ambos os catalisadores bimetálicos exibiram uma seletividade (%) maior para a fração de leves, C₂-C₄.

Palavras-Chave

Silicas mesoporosas; HMS; SBA-15; amostras bimetálicas de cobalto e ferro; síntese de Fischer-Tropsch.

Abstract

Bragança, Laurinda Fátima F. P. G.; Silva, Maria Isabel Pais da (Advisor). Synthesis and Characterization of Co-Fe Nanocrystals supported on Mesoporous Silicas for the Fischer-Tropsch Synthesis. Rio de Janeiro, 2010. 201p. Doctorade Tesis – Departamento de Química. Pontifícia Universidade Católica do Rio de Janeiro.

In this work, cobalt and iron bimetallic samples supported on SBA-15 or HMS mesoporous sílicas were prepared by incipient wetness impregnation. Cobalt nitrate and iron salts were used to obtain samples containing 25 wt% total of metal content. Also, a series of supported monometallic cobalt or iron samples were synthesized, with the same metal loading, and compared to bimetallic ones. In order, to investigate the effect of different templates, a series of HMS sílicas have been prepared using two types of structure direction: dodecylamine (DDA) and tetradecylamine (TDA). The samples were cheracterized by N₂-physisorption, X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM), H₂ chemisorption and X-ray photoelectron spectroscopy (XPS) analysis. The amount of incorporated metal was estimated by atomic absorption spectroscopy (AAS). The supports were, also, characterized by thermogravimetric (TGA), as well as differential thermal (DTA) analyses. The TGA/DTA curves showed that the templates were mainly removed until 700 K. The textural properties revealed that after metal introduction to SBA-15 support, specific area, pore volume and pore diameter decreased in a lesser extension for the bimetallic sample compared to monometallic ones. XRD measurements detected the formation of Co₃O₄ and CoFe₂O₄ phases for all bimetallic samples. For Co-Fe/HMS (TDA) sample, the α -Fe₂O₃ phase formation and a higher Co₃O₄/CoFe₂O₄ crystallite sizes were also observed. The wall thickness valour for HMS supports was higher than previously reported values, suggesting more stable materials. The TPR profiles indicated similar behavior between bimetallic and monometallic samples. In case of cobalt oxide on bimetallic sample, higher reduction temperatures were indicated compared to monometallic ones for HMS (TDA) support. A higher interaction metal-support was showed for Co-Fe/SBA-

15. According to hydrogen chemisorption, the bimetallic samples dispersions were higher than iron monometallic and lower than cobalt monometallic samples. From TEM microphotografs, it was observed a lesser fraction of agglomerates to Co-Fe/SBA-15 than Co-Fe/HMS (DDA) sample. XPS spectrum of Co2p region indicated the presence of Co₃O₄ for the bimetallic sample, Co-Fe/HMS (DDA). The Fe-Co/HMS (DDA) bimetallic catalyst showed higher C₅₊ and alcohols selectivities than Fe/HMS (DDA) on the Fischer-Tropsch reaction. Also, the bimetallic cobalt and iron based catalyst supported on HMS (DDA) recorded a higher value for the chain growth parameter (α) than Co-Fe/SBA-15. Both bimetallic catalysts exhibited highter selectivities (%) for lighter fractions, C₂-C₄.

Keywords

Mesoporous silicas; HMS; SBA-15; Co-Fe bimetallic samples; Fischer-Tropsch synthesis.

Sumário

1.	Introdução	20
1.1	Panorama mundial para uso da tecnologia GTL	20
1.2	Objetivos	23
1.2.1	Objetivo Principal	23
1.2.2	Objetivos Específicos	23
2	Revisão da Literatura	25
2. 2.1	Gás Natural	25
2.1	Rotas tecnológicas para o gás natural	29
2.2	Comercialização das tecnologias GTI	28
2.5		32
241	Geração de Gás de Síntese	33
2.4.2	Conversão do gás de síntese	34
2.4.3	Hidroprocessamento	35
2.5	Fischer-Tropsch – Desenvolvimento Histórico	35
2.5.1	Fischer-Tropsch – Mecanismo de Síntese	39
2.5.2	Distribuição de produtos – Modelo ASF	40
2.5.3	Catalisador de Cobalto	43
2.5.4	Catalisador de ferro	50
2.5.5	Catalisadores bimetálicos	56
2.5.6	Reatores FT-GTL	59
2.6	Peneiras Moleculares	62
2.6.1	Introdução	62
2.6.2	Sílicas Mesoporosas: M41S – SBA-15 – HMS	69
3	Metodologia Experimental e Métodos	93
3.1	Preparação dos Sistemas Catalíticos	93
311	Síntese da sílica mesonorosa SRA-15	90 90
312	Síntese das sílicas mesoporosas HMS (DDA)	90
e HMS		۵٦
		30

3.1.3	Preparação dos catalisadores suportados em SBA-15	94
3.1.4	Preparação dos catalisadores suportados em	
HMS ([DDA) e HMS (TDA)	95
3.2	Técnicas de Caracterização	95
3.2.1	Composição Química	95
3.2.2	Análise Termogravimétrica	96
3.2.3	Propriedades Texturais	96
3.2.4	Difração de raios –X	97
3.2.5	Redução com temperatura programada (RTP)	98
3.2.6	Quimissorção de hidrogênio	98
3.2.7	Microscopia Eletrônica de Transmissão (MET)	100
3.2.8	Espectroscopia fotoeletrônica de raios-X (XPS)	101
3.2.9	Testes catalíticos na síntese de Fischer-Tropsch	101
4.	Resultados e Discussões	103
4.1	Determinação da Composição Química	103
4.2	Análise Termogravimétrica	103
4.2.1	Silica Mesoporosa Hexagonal, HMS (DDA)	103
4.2.2	Silica Mesoporosa Hexagonal, HMS (TDA)	104
4.2.3	Silica Mesoporosa, SBA-15	106
4.3	Propriedades Texturais	107
4.3.1	HMS e amostras suportadas na silica mesoporosa	
HMS		107
4 2 2	SPA 15 a amastros supertodos no silios maseneros	
4.3.Z	SBA-15 e amostras suportadas na silica mesoporosa	112
	Difração de raios-X	115
4.4 1 1 1	HMS e amostras suportadas na sílica mesoporosa	110
4. 4. I	rimo e amostras suportadas na silica mesoporosa	116
1 11/13	SBA-15 o amostras suportadas na sílica mosoporosa	110
4.4.2 SRΔ_1/	SBA-15 e amostras suportadas na silica mesoporosa	100
15	Redução com Temperatura Programada (RTP)	122
т.J Д 5 1	Amostras suportadas na sílica mesonorosa HMS	127
452	Amostras suportadas na sílica mesoporosa SRA-15	12/
4.6		130
ч. 0		103

4.6.1	Amostras suportadas na sílica mesoporosa HMS	139
4.6.2	Amostras suportadas na silica mesoporosa SBA-15	142
4.7	Microscopia Eletrônica de Transmissão	145
4.7.1	Amostras suportadas na sílica mesoporosa	
HMS (C	DDA)	145
4.7.2	Amostras suportadas na sílica mesoporosa SBA-15	149
4.8	Espectroscopia fotoeletrônica de raios-X (XPS)	155
4.8.1	Amostras suportadas na sílica mesoporosa	
HMS (C	DDA)	155
4.9	Testes catalíticos na síntese de Fischer-Tropsch	160
4.9.1	Amostras suportadas na sílica mesoporosa	
HMS (C	DDA)	160
4.9.1.1	Co/HMS (DDA)	160
4.9.1.2	Fe/HMS (DDA)	164
4.9.1.3	Co-Fe/HMS (DDA)	168
4.9.2	Amostras suportadas na sílica mesoporosa SBA-15	173
4.9.2.1	Co/SBA-15	173
4.9.2.2	Fe/SBA-15	176
4.9.2.3	Co-Fe/SBA-15	179
5.	Conclusões e Sugestões	185
5.1 5.2	Conclusões Sugestões	185 190
6.	Referências Bibliográficas	191

Lista de Tabelas

Tabela 1 - Distribuição das reservas, produção e	
consumo de gás natural no mundo.	21
Tabela 2 - Características do diesel de refinaria e	
Fischer-Tropsch.	23
Tabela 3 - Principais plantas GTL (em funcionamento	
e previstas).	31
Tabela 4 - Dados termodinâmicos para reação	
Fischer-Tropsch.	38
Tabela 5 - Hidrogenação de CO em presença de	
catalisadores de cobalto suportados em SCMM.	49
Tabela 6 - Área específica e volume de poros	
para catalisadores de ferro suportados.	55
Tabela 7 - Catalisadores típicos de plantas GTL.	61
Tabela 8 - Efeito do comprimento da cadeia do	
surfactante no tamanho do poro da MCM-41.	66
Tabela 9 - Propriedades texturais de sílicas	
mesoporosas e catalisadores de cobalto em	
diferentes suportes.	73
Tabela 10 - Composição química e propriedades	
texturais de Co/SBA-15 preparado com diversos precursores.	75
Tabela 11 - Resultados da síntese de FT para	
catalisadores de Co/SBA-15.	76
Tabela 12 – Comparação das propriedades texturais	
dos catalisadores CoS1 e CoS2.	78
Tabela 13 - Desempenho catalítico de CoS1 e CoS2	
na síntese de FT.	79
Tabela 14 – Resultados dos testes catalíticos na	
síntese FT para catalisadores de Co/SBA-15 promovidos	
com Ru.	80
Tabela 15 – Resultados dos testes catalíticos para	
catalisadores de Co/SBA-15 com diferentes tamanhos de poro.	81

Tabela 16 – Efeito da adição de Ru na atividade	
catalítica de catalisadores a base de cobalto suportados	
em MCM-41 e SBA-15.	81
Tabela 17 – Propriedades de textura e atividade em	
FT para Co/SBA-15 preparado com solução de	
etanol-Co(CH3COO)2 .	82
Tabela 18 – Conversão de CO, seletividade para	
C10-C20 e probabilidade de crescimento da cadeia para	
Co/SBA-15 e Fe/SBA-15, com diferentes diâmetros de poro.	84
Tabela 19 – Tamanho médio do cristalito de Co3O4 para	
diferentes suportes.	84
Tabela 20 – Resultados dos testes catalíticos em FT	
para diferentes suportes.	85
Tabela 21 – Propriedades de textura e resultados	
DRX para os suportes HMS, AI-HMS, ZrO2/HMS e	
catalisadores de Co suportados.	88
Tabela 22 – Resultados da síntese de FT para	
catalisadores de Co/HMS.	90
Tabela 23 – Atividade catalítica e seletividade na síntese	
de Fischer-Tropsch para catalisadores de cobalto	
suportados em HMS.	92
Tabela 24 – Percentual metálico (Co e/ou Fe) determinado	
através de E.A.A.	103
Tabela 25 – Quantificação dos eventos de perda de massa	
das sílicas mesoporosas HMS e SBA-15.	107
Tabela 26 – Propriedades de textura para o suporte HMS	
e amostras suportadas.	110
Tabela 27 – Propriedades de textura para o suporte	
SBA-15 e amostras suportadas.	114
Tabela 28 – Resultados DRX para o suporte HMS	
e amostras suportadas.	121
Tabela 29 – Resultados DRX para o suporte SBA-15	
e amostras suportadas.	126
Tabela 30 – Consumo de hidrogênio e grau de redução	
das amostras monometálicas suportadas em HMS.	134

Tabela 31 – Consumo de hidrogênio e grau de redução	
das amostras monometálicas suportadas em SBA-15.	137
Tabela 32 – Quantidade de hidrogênio adsorvida e área	
metálica das amostras de Co e/ou Fe suportadas em HMS.	141
Tabela 33 – Dispersão metálica e diâmetro de partícula,	
determinados por quimissorção de H2, para as amostras	
mono e bimetálicas suportadas em HMS.	141
Tabela 34 – Quantidade de hidrogênio adsorvida e área	
metálica das amostras de Co e/ou Fe suportadas em SBA-15.	143
Tabela 35 – Dispersão metálica e diâmetro de partícula,	
determinados por quimissorção de H2, para as amostras	
mono e bimetálicas suportadas em SBA-15.	143
Tabela 36 – Tamanho médio de partícula e aglomerado	
para amostras suportadas em HMS (DDA) e SBA-15.	155
Tabela 37 – Concentração atômica (%) a partir de análise	
de XPS para amostras mono/bimetálica suportadas	
em HMS (DDA).	159
Tabela 38 – Energias de ligação (eV) a partir de análise	
de XPS para amostras mono/bimetálica suportadas em	
HMS (DDA).	159
Tabela 39 – Conversão, Seletividade e probabilidade	
de crescimento da cadeia para o catalisador de	
Co/HMS (DDA).	160
Tabela 40 – Conversão, Seletividade e probabilidade de	
crescimento da cadeia para o catalisador de Fe/HMS (DDA).	164
Tabela 41 – Conversão, seletividade e probabilidade de	
crescimento da cadeia para o catalisador Co-Fe/HMS (DDA).	168
Tabela 42 – Conversão, seletividade e probabilidade de	
crescimento da cadeia para o catalisador Co/SBA-15.	173
Tabela 43 – Conversão, seletividade e probabilidade de	
crescimento da cadeia para o catalisador Fe/SBA-15.	176
Tabela 44 – Conversão, seletividade e probabilidade de	
crescimento da cadeia para o catalisador Co-Fe/SBA-15.	179

Lista de Figuras

Figura 1 – Rotas GTL (Gas to Liquids).	27
Figura 2 – Valor dos produtos derivados de 1MBTU de	
Gás Natural.	28
Figura 3 – Estágios da tecnologia GTL.	32
Figura 4 – Esquemas de mecanismos para as reações	
de Fischer-Tropsch: carbeno (a), hidroxicarbeno (b) e	
inserção de CO (c).	40
Figura 5 – Seletividade de hidrocarbonetos baseada na	
equação ASF.	42
Figura 6 – Esquemas de Reatores Típicos para a	
Síntese de FT.	61
Figura 7 – Estruturas mesoporosas do tipo M41S:	
(a) hexagonal, (b) cúbica e (c) lamelar.	63
Figura 8 – Partícula de Si-MCM-41 - arranjo hexagonal.	63
Figura 9 – Mecanismos possíveis para formação de	
MCM-41.	64
Figura 10 – Difração de raios-X da sílica mesoporosa ,	
MCM-41, Calcinada.	65
Figura 11 – Imagens SEM e TEM de sílica mesoporosa	
SBA-15 preparada com TMOS como fonte de sílica.	71
Figura 12 – Imagens SEM da SBA-15 preparada com	
TEOS, como fonte de sílica.	72
Figura 13 – Imagens MET da sílica mesoporosa, HMS.	87
Figura 14 – Curvas ATG/ATD da sílica mesoporosa	
hexagonal, HMS (DDA), não calcinada.	104
Figura 15 – Curvas ATG/ATD da sílica mesoporosa	
hexagonal, HMS (TDA), não calcinada.	105
Figura 16 – Curvas ATG/ATD da sílica mesoporosa	
SBA-15, não calcinada.	106
Figura 17 – Isotermas de adsorção/dessorção de N2 do	

suporte HMS (DDA) e amostras mono/bimetálica suportadas.	108
Figura 18 – Isotermas de adsorção/dessorção de N2	
do suporte HMS (TDA) e amostras mono/bimetálica	
suportadas em HMS (TDA).	109
Figura 19 – Curva de distribuição de diâmetro de poros	
para a amostra Co-Fe/HMS (DDA).	112
Figura 20 – Curva de distribuição de diâmetro de poros	
para a amostra Co-Fe/HMS (TDA).	113
Figura 21 – Isotermas de adsorção/dessorção de N2 do	
suporte SBA-15 e amostras mono/bimetálica suportadas	
em SBA-15.	114
Figura 22 – Curva de distribuição de diâmetro de poros	
para a amostra Co-Fe/SBA-15.	115
Figura 23 – Análise de DRX do suporte HMS (DDA)	
e amostras mono/bimetálica suportadas em HMS (DDA).	117
Figura 24 – Análise de DRX do suporte HMS (TDA)	
e amostras mono/bimetálicasuportadas em HMS (TDA).	118
Figura 25 – Análise de DRX do suporte SBA-15	
e amostras mono/bimetálica suportadas em SBA-15.	123
Figura 26 – Análise de RTP para as amostras	
mono/bimetálica suportadas em HMS (DDA).	128
Figura 27 – Análise de RTP para as amostras	
mono/bimetálica suportadas em HMS (TDA).	129
Figura 28 – Análise de RTP para as amostras	
mono/bimetálica suportadas em SBA-15.	137
Figura 29 – Imagens obtidas por MET para a amostra	
Co/HMS (DDA) (a) e (b); histograma de distribuição de	
tamanho de partícula (d) e análise por difração de elétrons	
(c) da região assinalada em (b).	146
Figura 30 – Imagem obtida por MET de alta resolução para	
a amostra Fe/HMS e respectivo histograma de distribuição	
de tamanho de partícula.	147
Figura 31 – Imagens obtidas por MET para a amostra	
Co-Fe/HMS (DDA) (a) e (c); histograma de distribuição de	
tamanho de partícula (d), análise por difração de eletrons	

(b) da região assinalada em (a).	148
Figura 32 – Imagens MET da amostra Co-Fe/HMS (DDA)	
e respectivos espectros EDS.	149
Figura 33 – Imagens obtidas por MET para a amostra	
Co/SBA-15 (a) e (b); histograma de distribuição de	
tamanho de partícula (d) e análise por difração de elétrons	
(c) da região assinalada em (b).	150
Figura 34 – Imagem obtida por MET para a amostra	
Co/SBA-15.	151
Figura 35 – Imagem obtida por MET de alta resolução para	
a amostra Fe/SBA-15 e respectivo histograma de	
distribuição de tamanho de partícula.	152
Figura 36 – Imagem obtida por MET da amostra	
Co-Fe/SBA-15 e respectivos espectros EDS das regiões	
(1) e (2).	153
Figura 37 – Histograma de distribuição de tamanho de	
partícula da amostra Co-Fe/SBA-15 e imagem de maior	
resolução para Co-Fe/SBA-15.	154
Figura 38 – Espectros em alta resolução do Fe2p para	
amostra de Fe/HMS (DDA).	156
Figura 39 – Espectros em alta resolução do Co2p para	
amostra de Co/HMS(DDA).	157
Figura 40 – Espectros em alta resolução do Co2p	
da amostra bimetálica Co-Fe/HMS (DDA).	158
Figura 41 – Espectros em alta resolução do Fe2p	
da amostra bimetálica Co-Fe/HMS (DDA).	158
Figura 42 – Distribuição de produtos para o catalisador	
Co/HMS (DDA)	162
Figura 43 – Diagrama da probabilidade de crescimento da	
cadeia para produtos obtidos com Co/HMS (DDA).	162
Figura 44 – Distribuição de produtos para o catalisador	
Fe/HMS (DDA).	165
Figura 45 – Diagrama da probabilidade de crescimento da	
cadeia para produtos obtidos com Fe/HMS (DDA)	166
Figura 46 – Distribuição de produtos para o catalisador	

Co-Fe/HMS (DDA).	169
Figura 47 – Diagrama da probabilidade de crescimento	
da cadeia para produtos obtidos com Co-Fe/HMS (DDA).	170
Figura 48 – Seletividade para hidrocarbonetos dos	
catalisadores de Co/HMS (DDA), Fe/HMS (DDA) e	
Co-Fe/HMS (DDA).	170
Figura 49 – Distribuição de hidrocarbonetos para	
o catalisador Co/SBA-15.	174
Figura 50 - Diagrama da probabilidade de crescimento	
da cadeia para produtos obtidos com Co/SBA-15.	175
Figura 51 – Distribuição de produtos para o catalisador	
Fe/SBA-15.	177
Figura 52 – Diagrama da probabilidade de crescimento da	
cadeia para produtos obtidos com Fe/SBA-15.	178
Figura 53 – Distribuição de produtos para o catalisador de	
Co-Fe/SBA-15.	180
Figura 54 – Diagrama da probabilidade de crescimento da	
cadeia para produtos obtidos com Co-Fe/SBA-15.	180
Figura 55 – Seletividade para hidrocarbonetos dos	
catalisadores de Co/SBA-15, Fe/SBA-15 e Co-Fe/SBA-15.	181
Figura 56 – Seletividade (%) para olefinas dos	
catalisadores Co-Fe/HMS (DDA) e Co-Fe/SBA-15.	182
Figura 57 - Seletividade (%) para diversas frações dos	
catalisadores bimetálicos Co-Fe/HMS (DDA) e Co-Fe/SBA-15.	183