6 Aplicações

6.1. Introdução

Neste capítulo, serão apresentadas as aplicações dos métodos, referentes aos capítulos 3, 4 e 5, a seis triângulos de runoff, sendo que trÊs deles têm o formato de um trapézio. O processo de modelagem será detalhado para apenas um triângulo (seção 6.2) e um trapézio (seção 6.3), enquanto que, para as demais bases de dados, serão apresentados apenas os resultados essenciais e finais (seção 6.4).

A implementação computacional foi feita utilizando as linguagens R (www.r-project.org) e Ox (www.oxmetrics.net/pages/software.html). Os algoritmos foram implementados em um processador Core 2 Duo com 2.0 GHz e 3,0GB de RAM em um sistema operacional de 32 Bits. O R foi utilizado na implementação dos métodos chain ladder (capítulo 3) e das análises de regressão com heterocedasticidade (capítulo 4), enquanto que o Ox foi utilizado na implementação dos modelos em espaço de estado (capítulo 5).

6.2. O triângulo T1

O primeiro triângulo analisado, aqui denominado como T1, foi disponibilizado em Taylor e Ashe (1983) e em Verrall (1989).

Ano de				De	esenvolvi	mento				
Origem	0	1	2	3	4	5	6	7	8	9
1	357848	766940	610542	482940	527326	574398	146342	139950	227229	67948
2	352118	884021	933894	1183289	445745	320996	527804	266172	425046	
3	290507	1001799	926219	1016654	750816	146923	495992	280405		
4	310608	1108250	776189	1562400	272482	352053	206286			
5	443160	693190	991983	769488	504851	470639				
6	396132	937085	847498	805037	705960					
7	440832	847631	1131398	1063269						
8	359480	1061648	1443370							
9	376686	986608								
10	344014									

Figura 13. Triângulo T1: Valores de sinistros IBNR.

As duas formas de representação gráfica dos valores apresentados na Figura 13 devem refletir as ordenações a serem usadas nas modelagens de regressão (subseção 6.2.2) e em espaço de estado (subseção 6.2.3), que são as de duplo índice (vide Figura 1 e 5) e a por linhas (vide Figuras 9 e 11), respectivamente.

A primeira delas se dá por diagramas de dispersão entre as observações do triângulo e os fatores linha e coluna, conforme feito na Figura 14. Por estes, notase o já comentado decaimento dos valores do triângulo à medida que os efeitos coluna estão mais próximos à cauda. Igualmente, pode-se perceber a também mencionada e potencial heterocedasticidade, caracterizada por variâncias menores para a primeira coluna e para as colunas situadas mais perto da cauda. O efeito linha também parece presente, embora o mesmo deva ser estatisticamente ratificado (ou refutado) mediante testes de significância.

Figura 14. Diagrama de dispersão das observações do triângulo T1 pelos fatores linha e coluna.

A Figura 15, por sua vez, representa os dados do triângulo ordenados por linha e com a cauda. Aparentemente, o nível parece se alterar pouco – algo que também deverá ser confirmado de forma menos ambígua com a estimação dos modelos, através de análise das variâncias estimadas na matriz Q_t em (35). Notase também uma possível periodicidade dos dados, associada às colunas do triângulo.

Figura 15. Gráfico dos dados do triângulo T1 via ordenação por linhas.

6.2.1. O chain ladder

As aplicações do método chain ladder consistem, basicamente, no uso direto das expressões apresentadas no capítulo 3. Apesar do grande destaque que o chain ladder possui na literatura, este é bastante limitado dentro do contexto vigente, no sentido de que não contempla as quantidades a serem estimadas correspondentes à cauda do triângulo. As reservas estimadas e seus correspondentes EQMs teóricos estão representados na Tabela 1.

Como o chain ladder utiliza observações da coluna um passo atrás para previsão das reservas, os cálculos das medidas de aderência (dentro da amostra) não consideram as observações da primeira coluna. Além disso, os cálculos da validação fora da amostra são feitos utilizando os valores da diagonal (último ano de calendário), excluindo-se a observação válida da última linha e da primeira linha e última coluna. Resultados de aderência do método são apresentados na Tabela 2.

Ano de origem	Reservas estimadas	EQM teórico
2	5433718,81	5705542382,23
3	5754659,78	14810539906,56
4	5915275,15	17835296140,84
5	5758477,72	68333331757,95
6	6441614,59	168928976684,39
7	7739823,08	311717714006,48
8	10586935,76	766198253108,93
9	5642266,26	943341726628,80
10	9822972,64	1858191313379,91
Ano de calendário	9509080,76	372143030771,86
Total	66962558,31	5988273257923,43

Tabela 3. Reservas calculadas para T1 via chain ladder e correspondentes EQMs teóricos.

Tabela 4. Informações analíticas sobre a estimação das reservas para T1 por chain

ladder.				
Critério	Resultado			
Pseudo R ²	0,708			
MAPE (%)	33,2783			
EQM amostral	91548197330,306			
Pseudo R ² – validação fora da amostra	0,797			
MAPE (%) - validação fora da amostra	32,844			
EQM amostral - validação fora da amostra	43010951802,5049			

Utilizando o método chain ladder, estimou-se que a seguradora deverá pagar U\$ 5.433.718,81 devido a sinistros que ocorreram no ano relacionado à linha dois. Raciocínio semelhante deve ser usado para as demais reservas calculadas por linha. Outro resultado obtido é o total de sinistros a serem pagos no próximo ano de calendário que equivale, pela expressão (i) de (7) – vide Capítulo 3 –, a U\$ 9.509.080,76. Este montante representa, conforme discutido na seção 2.5, a soma dos sinistros ocorridos nos anos anteriores, mas que serão avisados no próximo ano, além dos sinistros que ocorrerão no próximo ano e serão avisados no mesmo.

6.2.2. Modelagem utilizando análise de regressão

Ao longo desta seção, o algoritmo proposto na seção 4.4 foi evocado de forma a se buscar um modelo de regressão adequado aos dados de T1. Estimou-se primeiramente por MQO o modelo (9) aos dados considerando como regressores variáveis *dummies* para níveis dos fatores linha e coluna. Como o objetivo é modelar o triângulo com a cauda (cf. discutido na seção 2.2) e não existem adicionais informações disponíveis sobre os efeitos linha e coluna para as reservas nesta região (da cauda), foi utilizado, para estimação dos valores na cauda à direita, o mesmo nível do fator coluna do instante de tempo exatamente anterior à cauda. Em relação à estimação dos valores na cauda abaixo do triângulo (vide Figura 5), considerou-se como efeito linha nesta "região" o mesmo da linha anterior.

Foram obtidos os diagnósticos quanto ao pressuposto de homocedasticidade do erro. A Figura 16, com gráficos de resíduos, oferece indícios de heterocedasticidade, a qual, como previamente diagnosticado, parece estar associada às colunas do triângulo. Seguindo esta indicação prévia, fez-se uso de testes de Breush-Pagan (cf. Wooldridge, 2000, cap. 8; e Johnston e DiNardo, 1997, cap. 6), utilizando-se como variáveis explicativas (da heterocedasticidade) agrupamentos do fator coluna – no primeiro teste, foram considerados dois grupos (colunas de 1 a 3 e de 4 a 10) e, no segundo, foram feitos três grupos (colunas de 1 a 3, de 4 a 6 e de 7 a 10). Como pode ser visto na Tabela 3, a qual também oferece medidas de poder preditivo dentro e fora da amostra⁶, a suposição de homocedasticidade foi violada pelos dados, por pelo menos um dos testes, no nível de significância de 5%, motivando, desta forma, uma modelagem que contemple tal estrutura de heterogeneidade da variância.

⁶ A validação fora da amostra foi estruturada retirando-se os elementos do triângulo do último ano de calendário, mantendo a observação da última linha e da primeira coluna (isto é, $C_{J,0}$ – vide Figuras 1 e 6) e, para o caso dos triângulos, a observação da primeira linha e da última coluna (ou seja, $C_{1,J-1}$ – vide Figura 1).

Figura 16. Gráfico de resíduos do modelo MQO por fatores linha, coluna ajustados ao T1.

Fez-se uso do modelo alternativo sugerido nos Corolários 1 e 3, cuja estimação se dá por MQG factível, para que se reconhecesse o comportamento de heterocedasticidade. A matriz de variância-covariância factível utilizada é diagonal com as médias por coluna dos quadrados dos resíduos, vindos da estimação inicial via MQO (adapte a fórmula de $\hat{\sigma}_i^2$ do Teorema 4 à realidade do triângulo).

A verificação da qualidade de ajuste (medidas de poder preditivo) e da adequação dos pressupostos do modelo heterocedástico estimado por MQG apresentaram bons resultados conforme, demonstrado na Figura 17 e pelas informações analíticas da Tabela 3. Salienta-se que a heterocedasticidade foi bem incorporada, fato ratificado pelos Testes de Breush-Pagan sobre os resíduos padronizados. É notável a superioridade do poder preditivo para os modelos via análise de regressão (mesmo sem a incorporação da heterocedasticidade) frente o tradicional chain ladder quando se observa os valores obtidos de R^2 , MAPE e EQM amostral obtidos para validações dentro da amostra (vide Tabela 2 e Tabela 3). A modelagem via MQG se destaca pouco em relação à modelagem via MQO (vide Tabela 3) para a validação fora da amostra e o poder preditivo destas duas modelagens dentro da amostra é muito semelhante. No entanto, os critérios de informação AIC e BIC dão suporte adicional ao modelo heterocedástico frente ao homocedástico. Finalmente, tantos os testes de normalidade (testes de Anderson-Darling, Jarque-Bera e Shapiro-Wilk) apresentados na Tabela 3, quanto a Figura 18, apontam para a normalidade dos resíduos padronizados.

Os testes F dos efeitos linha e coluna (cf. Johnston e DiNardo, 1997, seção 5.4), cujos resultados são passíveis de serem analisados dada a qualidade dos diagnósticos, também são significativos ao nível de significância de 5%, corroborando o que já fora evidenciado na Figura 14.

Na qualidade de informação complementar, a Tabela 4 apresenta testes de dependência serial para quatro ordenações diferentes do triângulo (três delas consideradas e discutidas no capítulo 2). Como pode ser visto, não existem evidências estatísticas suficientes que apontem para dependência serial sob as ordenações por linha, coluna e diagonal 1⁷. Existe uma aparente dependência considerando-se a ordenação por diagonal 2, mas esta pode ser resultado pela dependência natural do resíduo, não indicando necessariamente uma dependência do erro.

Figura 17. Gráfico de resíduos padronizados do modelo MQG por fatores linha, coluna ajustados ao T1.

Figura 18. Gráfico QQ de normalidade dos resíduos padronizados para o modelo via MQG ajustado ao T1.

⁷ A ordenação por diagonal 1 é mostrada na Figura 3, enquanto por diagonal 2 é no sentido contrário ao da diagonal 1.

Tabela 5. Informações analíticas sobre a estimação de reservas em T1 via mode	lo de
regressão heterocedástico (p-valores em parêntesis)	

Critério	Resultado para o modelo via MQG	Resultado para o modelo via MQO		
Pseudo R ²	0,791	0,795		
MAPE (%)	22,974	23,842		
EQM amostral	25559509634,744	25087615884,871		
Pseudo R ² – validação fora da amostra	0,805	0,768		
MAPE (%) - validação fora da amostra	32,139	31,344		
EQM amostral – validação fora da amostra	39711816450,333	48484637352,882		
Tosto do Broush-Pagan	0,023	2,795		
(2 grupos)	(0,878)	(0,100)		
Teste de Breush-Pagan	0,060	4,566		
(3 grupos)	(0,942)	(0,015)		
Média	1,0 x 10 ⁻¹⁶	1,78 x 10 ⁻¹²		
Variância	1,452	-		
Teste de Anderson- Darling	0,316 (0,533)	-		
Teste de Jarque-Bera	1,644 (0,440)	-		
Teste de Shapiro-Wilk	0,974 (0,262)	-		
Teste F - efeito linha	10,244 (0,000)	_		
Teste F - efeito coluna	31,341	-		
	(0,000)			
AIC BIC	1474,648 1514,800	1512,084 1552,231		

Tabela 6. Medidas de dependência no triângulo T1 para os resíduos padronizados

referentes à estimação via MQG sob diferentes ordenações

Tosto	Ordenação					
Teste	Linha	Coluna	Diagonal 1	Diagonal 2		
Teste de Ljung-Box (nível)	9,327	22,870	18,762	27,115		
, , ,	(0,860)	(0,087)	(0,225)	(0,028)		
Teste de Ljung-Box (quadrado)	5,132 (0,991)	9,711 (0,838)	10,288 (0,801)	9,016 (0,877)		
Estatística de Durbin-Watson	2,668	1,490	2,022	1,462		

das observações (p-valores em parêntesis)

Tabela 7. Reservas calculadas para T1 via análise de regressão (com e sem heterocedasticidade) e correspondentes EQMs teóricos.

Ano de	Reservas estimadas –	Reservas estimadas -	EQMs teóricos (por modelos ajustados)						
origem	MQG	MQO	MQG	MQO	White	White (n-p)	White (h _{ii})	White (h _{ii} ²)	
1	67948,00	67948,00	466084549,93	75262847654,61	233042274,97	233042274,97	233042274,97	233042274,97	
2	463929,96	470467,10	2376717412,06	259238697477,00	19782139356,35	29976723837,51	26987602784,33	21334310751,25	
3	859896,39	872751,20	5467322959,06	354101245041,67	47418888698,82	72076540798,95	65593399909,20	51430413859,98	
4	974523,17	1133913,30	60898788825,17	462515585115,58	209780234768,21	319978579137,97	289532820377,57	227140446213,91	
5	1225265,26	1235873,20	129056771170,34	598033510207,97	158118385827,42	232147157947,78	213052407334,15	170269379844,29	
6	1925644,15	1804699,40	232930850036,82	780169601532,13	238879952554,19	334088903211,66	315350726778,20	256576143446,91	
7	2728648,36	2955041,00	348383016219,32	1045784734713,21	298011586569,90	409042275634,08	388965810175,98	319373742637,66	
8	4664073,76	5231739,80	521093464060,46	1479442095008,84	1155785822682,66	1679127159435,17	1826337098355,66	1349542755309,84	
9	4775343,11	4889991,20	722111343898,07	2333205023090,88	345691675812,66	430207960561,85	443004139996,23	374007277019,31	
10	5117725,24	5226297,70	1407858013639,93	4862872958148,74	397888856235,93	504233341817,04	487776147414,99	419807250680,67	
ano de calendário	5857001,22	5968842,20	270431594102,66	743967275823,98	272440152896,70	307111946879,92	305003261712,93	280742580977,62	
Total	23147011,41	24232735,90	5536158851171,19	31361013166558,60	6240359332563,92	9152378062267,45	8747155206895,64	6856322558098,04	

A Tabela 5 mostra as reservas estimadas tanto via MQO quanto via MQG. Note-se que a coluna com o EQM teórico via MQO, sem correção por heterocedasticidade, fornece informações claramente incorretas. Também nota-se que nem sempre as versões corretas dos mesmos, baseados na matriz de White (vide fórmulas para $EQM(\tilde{Y}^s)$ no Teorema 4, item (e)) são maiores, como teoricamente deveriam ser, do que os EQMs teóricos via MQG (vide fórmulas para $EQM(\hat{Y}^s_{MQGF})$ no Teorema 4, item (d)). A explicação natural é a de que estão sendo usadas versões factíveis dos EQMs teóricos, as quais estão sujeitas à variabilidade amostral. Menciona-se também que, apesar de o modelo via MQG constituir-se da alternativa mais precisa para o cálculo de reservas, optou-se aqui por mostrar os resultados por MQO visando ilustrar o quanto as colunas com as fórmulas de EQMs teóricos via MQO, estudadas no Corolário 2 do capítulo 4 (as quais, corrobora-se, estão incorretas sob o contexto de heterocedasticidade), mostram resultados que em muito destoam daqueles que fazem uso da matriz de White.

Como discutem Greene (2003), cap. 11, e Johnston e DiNardo (1997), cap. 6, a matriz de White é um estimador com boas propriedades assintóticas, as quais podem não se verificar com poucos dados. Para atenuar potenciais reveses, foram utilizadas as correções apresentadas pelos mesmos autores para pequenas amostras, o que, conseqüentemente, pode implicar resultados mais confiáveis quanto ao cálculo de EQMs teóricos para reservas estimadas via MQO. Estas (cujos resultados estão apresentados nas três últimas colunas da Tabela 5) consistem na multiplicação da matriz de variâncias-covariância por alguns fatores que inflacionam a matriz original de White. Por exemplo, no caso da antepenúltima coluna da Tabela 5, a matriz Σ na fórmula (14), que faz parte do cálculo das expressões do EQM teórico via MQO, é multiplicada pela razão $\frac{n}{n-p}$, na qual *n* indica o número de observações do triângulo e *p* o número de coeficientes utilizados na regressão. Nas colunas subseqüentes, a quantidade h_{ii} é tal que $h_{ii} = x_i'(X'X)^{-1}x_i$.

Observa-se que todas as reservas estimadas via análise de regressão (MQO e MQG) são menores do que as reservas estimadas utilizando o chain ladder (compare os resultados da Tabela 1 e da Tabela 5). Cabe ressaltar que o analista que estiver utilizando o método chain ladder – que apresenta medidas de ajuste fora da amostra inferiores aos obtidos via análise de regressão – como único método de estimação de reservas poderá estar superestimando a reserva a ser formada, fazendo com que a empresa seguradora perca competitividade no mercado.

6.2.3. Modelagem utilizando espaço de estado

Nesta subseção, a modelagem será feita utilizando os dois modelos M1 e M2 apresentados na seção 5.3, com auxílio do algoritmo proposto na seção 5.4. Na Tabela 6 a seguir, as razões sinal-ruído⁸ demonstram algo já previamente percebido na Figura 15: apesar de a variância estimada do choque do nível μ_{t} ser relativamente não tão pequena, ela é de magnitude desprezível em relação à da componente irregular ε_t – o que, particularmente, faz da componente do nível pouco relevante para descrever quaisquer movimentos da série. As Figuras 19 e 20, com os resultados do suavizador de Kalman aplicados aos modelos M1 e M2 estimados, enfatizam ainda mais este comportamento, apresentando gráficos de linha praticamente constantes ao longo do tempo para as componentes estimadas de nível⁹. Pelas mesmas Tabela 6, Figura 19 e Figura 20, comentários inteiramente análogos poderiam ser feitos sobre as componentes de periodicidades, valendo apenas acrescentar que estas refletem o comportamento esperado de efeito coluna do triângulo (qual seja: valores decrescem na medida em que aproximam-se da cauda). Outro ponto interessante, e, à luz dessa comprovada irrelevância dos choques das componentes, já bastante natural, é o de que a diferença entre os dois modelos M1 e M2, que caracteriza-se justamente pela adição de um choque na componente de periodicidade nos instantes correspondentes à cauda (vide discussão mais detalhada na seção 5.3), passa numericamente imperceptível.

⁸ A razão sinal-ruído é definida como a razão entre a variância do erro do nível (ou da periodicidade) pela variância da componente irregular. Tal medida tem como objetivo revelar a importância do nível na explicação dos movimentos da série em estudo. De certa forma, o mesmo poderia ser dito em relação à periodicidade. No entanto, assinala-se que uma razão sinal-ruído próxima de zero para esta componente pode indicar simplesmente que a mesma é (quase) determinística, mesmo que ainda possivelmente importante para capturar movimentos relevantes da série.

⁹ Apesar do comportamento aparentemente crescente do nível apresentado na Figura 19 e Figura 20, este pode ser considerado constante durante todo o período se for levado em conta a escala do gráfico em relação à variação desta componente.

	5	
Parâmetro	Valor estimado (M1)	Valor estimado (M2)
Log-verossimilhança	-714,206	-714,206
σ^2_{ϵ}	5,203 x 10 ¹⁰	5,203 x 10 ¹⁰
σ^2_μ	9,119 x 10 ⁻⁴	9,119 x 10 ⁻⁴
$\sigma_{ au}^2$	1,234 x 10 ⁻⁴	1,234 x 10⁻⁴
razão sinal-ruído (nível) razão sinal-ruído (periodicidade)	1,75 x 10 ⁻¹⁴ 2,37 x 10 ⁻¹⁵	1,75 x 10 ⁻¹⁵ 2,37 x 10 ⁻¹⁶

Tabela 8. Resultados das estimações dos parâmetros estimados do modelo em EE para o triângulo T1.

Figura 19. Suavização da série, nível e periodicidade de T1 utilizando o modelo M1.

Figura 20. Suavização da série, nível e periodicidade de T1 utilizando o modelo M2.

Figura 21. Diagnósticos com as inovações padronizadas do modelo M1 (ou M2) ajustado ao triângulo T1.

Como os parâmetros estimados são idênticos nos modelo M1 e M2, as séries de inovações padronizadas também são idênticas. Estudos sobre esta comum série de resíduos iniciam-se graficamente na Figura 21, cujos painéis sugerem ausência de correlação serial e homocedasticidade. O teste de Ljung-Box (vide Tabela 7) não apresenta evidências estatísticas suficientes que apontam para a correlação serial da componente aleatória ao nível de significância de 5%. A normalidade

também é relativamente satisfeita, mas, dado o afastamento dos quantís observados em relação aos teóricos mais à direita (vide painel com gráfico QQ), faz-se necessário o uso de testes de hipótese para este pressuposto. Dos três testes de hipótese sobre normalidade realizados, dois deles não apontam evidências estatísticas, no nível de significância 5 por cento contra a hipótese de normalidade.

Critério	Resultado para M1	Resultado para M2
Pseudo R ²	0,739	0,739
MAPE (%)	25,903	25,903
EQM amostral	31272300000	31272300000
Pseudo R ² - validação fora da amostra	0,874	0,874
MAPE (%) - validação fora da amostra	25,439	25,439
EQM amostral - validação fora da amostra	438911000000	438911000000
Tosto E do	0,869	0,869
heterocedasticidade	(0,829)	(0,829)
Média	0,259	0,259
Variância	0,68	0,68
Ljung-Box	21,611	21,611
(nível)	(0,868)	(0,868)
Ljung-Box	27,269	27,269
(quadrado)	(0,609)	(0,609)
Estatística de Durbin- Watson	2,141	2,141
Teste Anderson- Darling	0,72 (0,056)	0,72 (0,056)
	4,012	4,012
Teste Jarque-Bera	(0,134)	(0,134)
Tests Obseries Mill	0,944	0,944
i este Snapiro-Wilk	(0,031)	(0,031)
AIC	21,02	21,02
BIC	12,32	12,32

Tabela 9. Informações analíticas sobre a estimação de reservas em T1 via modelo em espaço de estado (p-valores em parêntesis).

Ano de origem	Reserva estimada	EQM teórico	
1	390850,00	2,61 x 10 ¹⁰	
2	394090,00	7,82 x 10 ¹⁰	
3	720220,00	1,56 x 10 ¹¹	
4	923280,00	1,82 x 10 ¹¹	
5	1313300,00	2,00 x 10 ¹¹ 2,13 x 10 ¹¹ 2,23 x 10 ¹¹	
6	1661900,00		
7	2162200,00		
8	3132100,00	2,32 x 10 ¹¹	
9	4020400,00	2,39 x 10 ¹¹	
10	4606800,00	2,46 x 10 ¹¹	
Ano de calendário	4933000,00	2,46 x 10 ¹¹	
Total	19587000,00	1,52 x 10 ¹³	

Tabela 10. Reservas calculadas para T1 via modelo em EE M1 (ou M2) e correspondentes EQMs teóricos.

As estimativas das reservas são dadas na Tabela 8. Estas foram calculadas
pelo método do acumulador (cf. seção 5.2), com as coordenadas de acumuladores
direcionadas a cada uma das reservas de interesse. Os resultados obtidos
utilizando a modelagem via EE é assaz superior ao chain ladder considerando-se o
pseudo- R^2 , MAPE e EQM amostral, tanto dentro quanto fora da amostra. Nota-se
que as reservas estimadas utilizando o chain ladder são sempre maiores que
utilizando o modelo em EE. Já os resultados do ajuste do modelo via análise de
regressão são ligeiramente melhores que os obtidos via EE (compare as medidas
de poder preditivo nas Tabelas 3 e 7). As reservas obtidas utilizando este último
método, em geral, são menores do que as obtidas na subseção 6.2.2 o que pode
gerar problemas à seguradora, caso a modelagem via EE esteja subestimando o
verdadeiro valor da reserva. Uma alternativa mais conservadora, neste caso, seria
adotar as reservas estimadas utilizando a modelagem via análise de regressão de
forma que a empresa seguradora se tornaria mais competitiva no mercado frente
às demais que utilizam o método do chain ladder tradicional e, também,
assumiriam menores riscos de subestimação da reserva em comparação à empresa
que adotar a modelagem via EE como método de estimação de reservas.

PUC-Rio - Certificação Digital Nº 0713596/CA

6.3. O trapézio Tp1

Todos os trapézios analisados nesta Dissertação referem-se a um regime de seguro chamado *Auto Bodily Injury* que cobre lesões de trânsito causadas por terceiros (semelhante ao DPVAT) dentro de um Estado da Austrália. Este tipo de seguro é compulsório naquele Estado. Os dados foram obtidos em Taylor e McGuire (2004) e são dados em milhares de dólares australianos.

O primeiro trapézio a ser analisado e, aqui denominado por Tp1, está representado na Figura 22.

Ano de	Desenvolvimento									
Origem	0	1	2	3	4	5	6	7	8	9
1	1708	1866	314	777	176	281	1566	124	505	253
2	2587	3694	2678	3154	1827	430	222	1296	749	542
3	1915	1441	366	1878	364	1244	304	594	638	1745
4	4419	2653	3034	799	332	597	1635	611	2043	3811
5	1780	2542	1305	829	1587	1317	758	1366	583	1473
6	2843	764	761	297	1361	2814	512	745	1276	149
7	896	1278	1652	2242	4731	682	1331	1229	821	1114
8	1882	1755	7216	2366	3323	861	1768	712	144	98
9	3733	2530	7858	2628	1218	1103	3441	783	694	
10	972	1594	2057	1644	1051	1149	1858	105		
11	1488	4174	1330	3695	410	976	641			
12	2406	2387	2706	1725	2431	785				
13	2585	5581	1455	1868	1740					
14	3221	5013	887	1711						
15	2529	2058	1413							
16	2426	3088								
17	5601								-	

Figura 22. Trapézio Tp1: valores de sinistros IBNR (valores em milhares de dólares australianos).

As ordenações propostas na Figura 1 e Figura 9 utilizadas na modelagem via análise de regressão e modelos em espaço de estado, respectivamente, estão representadas pela Figura 23 (para modelos via análise de regressão) e Figura 24 (para modelagem via espaço de estado).

Figura 23. Diagrama de dispersão das observações do trapézio Tp1 pelos fatores linha e coluna.

Figura 24. Gráfico dos dados do trapézio Tp1 via ordenação por linhas.

O diagrama de dispersão indica que as observações do Tp1 são menores nas últimas colunas apesar de haver uma única observação que destoa deste padrão (na última coluna). A variabilidade das observações por coluna tende a diminuir quando se aproxima da cauda do triângulo. Já quanto ao efeito linha, nota-se um leve crescimento no valor das observações do trapézio à medida que se aproxima da cauda abaixo do triângulo. A Figura 24 ilustra os dados do Tp1 sob a ordenação por linhas. Nesta ordenação os dados apresentam um leve aumento no nível nas últimas observações e uma clara estrutura de periodicidade.

6.3.1. O chain ladder

Como já exaustivamente citado nesta Dissertação, o chain ladder se limita à previsão de valores na parte de baixo do triângulo como mostrado na Figura 2. Os resultados de reservas estimadas e EQMs teóricos estão na Tabela 9. Já na Tabela 10, apresentam-se os resultados quanto ao poder preditivo dentro e fora da amostra. O desempenho do chain ladder é claramente melhor dentro da amostra com melhores pseudo- R^2 , MAPE e EQM amostral.

Ano de origem	Reservas	EQM teórioco
9	26044,27	60882,60
10	12006,43	95225,44
11	15510,55	757646,75
12	16877,29	2842108,16
13	19699,01	3202630,62
14	18936,31	7945287,72
15	13089,19	14639108,61
16	17701,00	104669924,09
17	38378,47	70422318,56
ano de		
calendário	42444,29	16013149,31
Total	178242,53	266326549,82

Tabela 11. Reservas calculadas para Tp1 via chain ladder e correspondentes EQMs teóricos

Critério	Resultado para o modelo via chain ladder
Pseudo R ²	0,409
MAPE (%)	98,629
EQM amostral	4828083,229
Pseudo R ² - validação fora da amostra	0,109
MAPE (%) - validação fora da amostra	2601,855
EQM amostral - validação fora da amostra	54205160,788

Tabela 12. Informações analíticas sobre a estimação das reservas em Tp1 por chain ladder.

A estimação da reserva por ano de calendário para Tp1, utilizando o chain ladder, indica que a empresa seguradora deverá formar uma reserva de 42.444,29 milhares de dólares australianos para cumprir com os compromissos de sinistros IBNR que deverão ser pagos no próximo instante de tempo, bem como com sinistros que irão ocorrer e serão avisados neste próximo instante de tempo. A reserva total que a seguradora ainda deverá formar é de, aproximadamente, 178.242 milhares de dólares australianos, enquanto as demais reservas por linhas são interpretadas de forma semelhante à feita na subseção 6.2.1.

6.3.2. Modelagem via análise de regressão

O procedimento adotado de ajuste do modelo via análise de regressão é análogo ao adotado na subseção 6.2.2 bem como o tratamento dado às estimações dos valores na cauda.

Devido à aparente importância dos efeitos linha e coluna nas observações em Tp1 (vide Figura 23), ajustou-se o modelo dado em (9) que não contempla nenhuma estrutura de heterocedasticidade no termo do erro. Assim como na subseção 6.2.2, há pelo menos moderadas evidências dos dados de que o pressuposto básico de homocedasticidade está sendo violado (vide Figura 25 e Tabela 11) e, também para Tp1, existem indícios de que a heterocedasticidade esteja associada às colunas (vide **Erro! Vínculo não válido.**). Respeitando-se estas evidências quanto à heterocedasticidade, adotou-se o modelo alternativo via MQG (cf. sugerido nos Corolários 1 e 3). Os testes de heterocedasticidade sobre os resíduos padronizados advindos desta segunda modelagem, construídos de forma análoga ao modelo ajustado via MQO, indicam que a estrutura heterocedástica foi, desta vez, bem incorporada (vide Tabela 11); esta melhor adequação pode ser corroborada pela na Figura 26. Novamente o modelo ajustado via análise de regressão apresentou um poder preditivo superior dentro e fora da amostra quando comparado ao chain ladder (vide Tabela 10 e Tabela 11). O modelo ajustado via MQO apresenta uma leve vantagem em relação ao modelo via MQG dentro da amostra, mas esta primeira modelagem tem um desempenho já consideravelmente pior quando se analisam resultados fora da amostra (vide Tabela 11). Além disso, novamente os critérios de informação indicam superioridade do modelo heterocedástico.

Como pode ser visto na Tabela 11, existem evidências estatísticas suficientes contra a hipótese de normalidade até mesmo no nível de significância de 1%, fato este reforçado pela Figura 27 que apresenta uma cauda mais pesada à direita da distribuição. A não-normalidade do termo do erro exige cautela quanto à analise dos resultados obtidos dos testes F para os efeitos linha e coluna que estão apresentados na Tabela 11.

Figura 25. Gráfico de resíduo do modelo MQO por fatores linha e coluna ajustados ao Tp1.

Figura 26. Gráfico de resíduos padronizados do modelo MQG por fatores linha e coluna ajustado ao Tp1.

Figura 27. Gráfico QQ de normalidade dos resíduos padronizados para o modelo via MQG ajustado ao Tp1.

Critério	Resultado para o modelo via MQG	Resultado para o modelo via MQO
Pseudo R ²	0,383	0,405
MAPE (%)	91,297	91,847
EQM amostral	1194623,353	1150951,874
Pseudo R ² - validação fora da amostra	0,664	0,484
MAPE (%) - validação fora da amostra	267,831	330,101
EQM amostral - validação fora da amostra	848119,856	1004322,012
Teste Breush-Pagan (2	0,832	2,955
grupos)	(0,363)	(0,088)
Teste Breush-Pagan (3	0,310	1,897
grupos)	(0,734)	(0,154)
Média	4,06 x 10 ⁻¹⁸	1,41 x 10 ⁻¹⁴
Variância	1,185	-
Teste Anderson- Darling	1,753 (0,000)	-
	14.232	
Teste Jarque-Bera	(0,001)	-
	0,950	
Teste Shapiro-Wilk	(0,000)	-
	2,163	
Teste F - efeito linha	(0,011)	-
Teste F - efeito coluna	4,972	-
	(0,000)	
AIC	2113,241	2153,247
BIC	2189,606	2229,612

Tabela 13. Informações analíticas sobre a estimação de reservas em Tp1 via modelo de regressão heterocedástico (p-valores em parêntesis).

Os testes de dependência serial oferecidos na Tabela 12 para as quatro diferentes ordenações apresentaram, para a ordenação por linha e coluna, considerável dependência das coordenadas do vetor do erro. Esta dependência pode, novamente, ser resultado da dependência natural dos resíduos do modelo e não necessariamente do termo do erro, salientando-se, contudo, que caso se deseje

modelar esta estrutura do termo do erro, é necessário deduzir expressões factíveis para os EQMs teóricos enunciados nos Teoremas 2 e 3.

Tabela 14. Medidas de dependência no trapézio Tp1 para os resíduos padronizados referentes à estimação via MQG sob diferentes ordenações das observações (p-valores em parêntesis).

Tosto	Ordenação					
Teste	Linha	Coluna	Diagonal 1	Diagonal 2		
Teste - Lj-Box (nível)	69,826	77,087	44,302	44,155		
	(0,000)	(0,000)	(0,135)	(0,138)		
Teste - Lj-Box (quadrado)	36,582	37,575	40,712	43,052		
(4)	(0,395)	(0,352)	(0,234)	(0,165)		
Est. Durbin Watson	2,047	1,478	1,788	1,780		

Ano do	Reservas	Reservas		EQ	Ms teóricos (por	modelos ajustad	los)	
origem	estimadas - MQG	estimadas - MQO	MQG	MQO	White	White (n-p)	White (h _{ii})	White (h _{ii} ²)
1	631,7	450,94	1410103,75	1762043,86	1358280,00	1400001,53	1398948,76	1365200,28
2	1343,72	1411,84	1410108,75	1762043,86	1393108,09	1443962,72	1442425,02	1401477,15
3	882,93	742,84	1410108,75	1762043,86	1397454,98	1449471,52	1447979,02	1406050,49
4	1658,97	1687,34	1410108,75	1762043,86	1550772,09	1643062,51	1640218,10	1565951,90
5	1120,23	1047,94	1410108,75	1762043,86	1355920,51	1397029,44	1396343,99	1362846,11
6	1078,2	846,14	1410108,75	1762043,86	1433216,01	1494628,50	1490303,81	1442665,23
7	1227,94	1291,54	1410108,75	1762043,86	1444539,57	1508892,86	1502487,58	1453929,52
8	1241,31	1706,44	1410108,75	1762043,86	1612112,70	1720478,19	1708981,00	1627742,19
9	3816,51	4650,53	3330223,51	4359660,48	4452944,04	4992409,30	4929376,85	4528937,30
10	2046,47	2143,66	4420464,20	7073259,39	4073978,93	4383328,45	4370106,63	4123742,49
11	4077,2	4051,93	6025944,85	10527234,48	7333047,36	8418296,04	8384093,98	7510614,30
12	5746,58	6176,98	8788615,99	15094545,93	5734540,20	6265409,49	6253000,36	5823389,45
13	9986,73	9722,41	13154693,76	21444308,64	18215909,36	21830854,52	22668168,43	19095938,61
14	13211,58	11284,63	19239452,24	30912599,21	32418333,56	39376001,50	43222340,90	34865718,28
15	9392,66	6594,37	31318685,62	46612571,48	15538417,93	17872263,55	19331762,30	16468906,08
16	14430,11	14890,37	44502641,26	77873035,68	15215148,44	16540000,96	17547385,88	15858155,77
17	48015,3	47815,74	70020913,62	171287891,29	16916275,44	18342375,84	18189286,71	17128423,82
ano de calendário	26113,90	26375,81	17446493,61	27000286,59	15747325,52	16725891,47	16801801,00	15946125,43
Total	119908,2	116515,62	346558062,24	586755666,84	264975562,92	318693904,00	324000000,00	276224400,00

Tabela 15. Reservas calculadas para Tp1 via análise de regressão (com e sem heterocedasticidade) e correspondentes EQMs teóricos.

Os EQMs teóricos para a reserva total, obtidos na modelagem por MQG, são, de acordo com a Tabela 13, maiores do que os obtidos utilizando-se os estimadores de White (com e sem correção). Os EQMs teóricos obtidos na modelagem por MQO foram piores em todo o tipo de reserva em relação a todos os modelos ajustados via análise de regressão, cabendo ressaltar que esta versão incorreta do cálculo de EQM teórico está sendo utilizada para evidenciar que qualquer decisão tomada baseada neste indicador estará muito comprometida.

Novamente, os modelos via análise de regressão apresentaram, comparandose ao chain ladder, desempenho superior nas medidas de pseudo R^2 , MAPE e EQM amostral na validação dentro e fora da amostra (vide Tabela 10 e Tabela 11), indicando que, para este conjunto de dados, as tomadas de decisão baseadas no método chain ladder estarão considerando um valor relativamente alto para todos os tipos de reservas.

6.3.3. Modelagem via espaço de estado

Tendo em mente a breve consideração apresentada no início desta seção 6.3 relativa à Figura 24, foram ajustados os modelos M1 e M2 aos dados do trapézio Tp1. Verificou-se, conforme mostrado na Tabela 15, na Figura 28 e na Figura 29, uma estrutura heterocedástica nas inovações padronizadas. Seguindo o algoritmo apresentado na seção 5.4 (4º Passo), foi proposto um modelo alternativo que objetiva capturar a estrutura heterocedástica encontrada.

Os modelos alternativos M1* e M2* (de M1 e M2, respectivamente) são tais que

$$H_t = \begin{cases} \sigma_{\varepsilon}^2, & 1 \le t \le q \\ \sigma_{\varepsilon}^{2*}, & q < t \le n \end{cases},$$

na qual q representa o ponto de quebra de estrutura das inovações, não alterandose as demais particularidades de cada modelo conforme apresentado na seção 5.3.

Figura 28. Diagnósticos com as inovações padronizadas do modelo M1 ajustado ao trapézio Tp1.

Figura 29. Diagnósticos com as inovações padronizadas do modelo M2 ajustado ao trapézio Tp1.

O modelo alternativo incorporou bem a estrutura de heterocedasticidade, como pode ser visto na Figura 30 e na Tabela 15 (vide testes F de heterocedasticidade e compare os critérios de informação). Nota-se, pela Figura 31, que a variabilidade do nível não é desprezível se comparada à variância estimada da componente irregular. Além disso, a razão sinal-ruído do nível é da ordem de 10^{-3} (vide Tabela 14), o que é uma contribuição considerável dessa componente (que, no contexto dos modelos de análise de regressão, representa o efeito linha) para explicar os movimentos da série. A variância estimada da periodicidade indica ainda que esta componente é quase determinística e apresenta o padrão esperado de observações de magnitude maior nas primeiras colunas do triângulo, diminuindo à medida que se deslocam para a direita do triângulo. A razão sinal-ruído, neste caso, foi construída dividindo-se a estimativa da variância do nível e da periodicidade pela estimativa da variância de H_t para $t \le q$.

O teste de Ljung-Box aponta para uma correlação serial da inovação padronizada em M1* e M2* ao nível de significância de 5% e, apesar de a estrutura heterocedástica ter sido bem incorporada pelos modelos, existem indícios que apontam para a não-normalidade das inovações (vide testes de Shapiro-Wilk e Anderson-Darling na Tabela 15). A não-normalidade das inovações padronizadas não altera as expressões de cálculo do FKIE e SKIE; no entanto, a expressão (27) representa uma função de quasi verossimilhança e, neste caso, mesmo verificando que as inovações padronizadas não seguem a distribuição Normal, basta apenas que se reconheça a consistência de $\hat{\psi}$.

Figura 30. Diagnósticos com as inovações padronizadas do modelo M1* (ou M2*) ajustado ao Tp1.

Parâmetro	Valor estimado (M1)	Valor estimado (M1*)	Valor estimado (M2)	Valor estimado (M2*)
Log- verossimilhança	-964,989	-959,354	-964,996	-959,354
$\sigma^2_{arepsilon}$	1454248,747	885581,703	1482143,635	885581,703
$\sigma_{\scriptscriptstyle arepsilon}^{_2}$ *	-	2213310,685	-	2213310,685
σ^2_μ	1983,662	2261,311	2001,796	2261,311
$\sigma_{ au}^2$	6572,832	0,002	0,003	0,002
razão sinal-ruído (nível)	1,36 x 10⁻³	2,553 x 10 ⁻³	1,3 x 10 ⁻³	2,553 x 10 ⁻³
razão sinal-ruído (periodicidade)	4,52 x 10⁻³	2,799 x 10 ⁻⁹	1,82 x 10 ⁻⁹	2,799 x 10 ⁻⁹

Tabela 16. Parâmetros estimados do modelo em EE para o trapézio Tp1.

Figura 31. Estimação da série, nível e periodicidade de Tp1 utilizando M1*.

Figura 32. Estimação da série, nível e periodicidade de Tp1 utilizando M2*.

Critério	M1	M1*	M2	M2*
Pseudo R ²	0,311	0,277	0,282	0,277
MAPE (%)	101,32	101,59	102,7	101,59
EQM amostral	1338350	1411850	1390710	1411850
Pseudo R ² - validação fora da amostra	0,693	0,738	0,693	0,738
MAPE (%) - validação fora da amostra	337,13	347,54	337,13	347,54
EQM amostral - validação fora da amostra	809506	763989	809506	763989
Teste F de heterocedasticidade	2,101 (0,014)	0,895 (0,711)	2,136 (0,012)	0,895 (0,711)
Média	0,146	0,17	0,145	0,17
Variância	1,008	0,969	1,008	0,969
Ljung-Box	61,148	73,256	60,302	73,256
(nível)	(0,001)	(0.000)	(0,001)	(0,000)
Ljung-Box (quadrado)	42,171 (0,069)	28,766 (0,530)	42,171 (0,069)	28,766 (0,530)
Estatística de Durbin- Watson	1,797	1,671	1,814	1,671
Taata Andaraan	2,727	2,546	2,389	2,546
Darling	(6,56 x 10 ⁻⁷)	(1,82 x 10 ⁻⁶)	(2,47 x 10 ⁻⁷)	(1,82 x 10 ⁻⁶)
Teste de Jarque-Bera	97,823 (2,20 x 10 ⁻⁶)	43,915 (2,91 x 10 ⁻¹¹)	97,823 (2,20 x 10 ⁻⁶)	43,915 (2,91 x 10 ⁻¹¹)
Teste de Shapiro-Wilk	0,895 (1,83 x 10 ⁻⁷)	0,925 (6,93 x 10 ⁻⁶)	0,902 (9,71 x 10 ⁻⁷)	0,925 (0,000)
AIC	9,879	9,832	9,879	9,832
BIC	10,095	10,064	10,095	10,064

Tabela 17. Informações analíticas sobre a estimação de reservas em Tp1 via modelo em espaço de estado (p-valores em parêntesis).

Ano de origem	Reserva estimada	EQM
1	689,60	1,54 x 10 ⁵
2	735,25	1,48 x 10 ⁵
3	830,13	1,36 x 10⁵
4	886,52	1,38 x 10⁵
5	892,50	1,42 x 10 ⁵
6	964,79	1,47 x 10 ⁵
7	1072,30	1,52 x 10 ⁵
8	1137,50	1,82 x 10 ⁵
9	2783,40	6,01 x 10 ⁵
10	3949,70	1,14 x 10 ⁶
11	5107,10	1,72 x 10 ⁶
12	6654,10	2,54 x 10 ⁶
13	8173,30	3,75 x 10 ⁶
14	9883,10	5,51 x 10 ⁶
15	11964,00	7,26 x 10 ⁶
16	14545,00	1,04 x 10 ⁷
17	17511,00	1,46 x 10 ⁷
ano de calendário	19472,00	5,99 x10 ⁶
Total	90670,00	3,05 x 10 ⁸

Tabela 18. Reservas calculadas para Tp1 via modelo em EE M1* (ou M2*) e

correspondentes EQMs teóricos.

Mesmo que o modelo via análise de regressão tenha apresentado melhores medidas de ajuste dentro da amostra em relação ao modelo em EE, o modelo apresentado na subseção 6.3.2 apresenta resultados piores de pseudo- R^2 e EQM amostral na validação fora da amostra (vide Tabela 11 e Tabela 15).

Como observado para o triângulo T1 (seção 6.2), também para o trapézio Tp1 as estimativas das reservas por EE, em sua maioria, são menores que as obtidas através do modelo de análise de regressão que, por sua vez, são muitíssimo menores que as obtidas utilizando o chain ladder. Os EQMs teóricos obtidos pela modelagem via EE também são significativamente menores do que os obtidos via análise de regressão. Não é possível comparar os EQMs teóricos obtidos para os modelos obtidos nas subseções 6.3.2 e 6.3.3 com os obtidos na subseção 6.3.1, pois o chain ladder não contempla valores na cauda do triângulo, e as reservas calculadas no chain ladder são diferentes das reservas calculadas nos modelos apresentados nas duas últimas subseções desta seção.

6.4. Resultados para os demais triângulos

6.4.1. O triângulo AFG

O próximo triângulo apresentado será chamado por AFG. Este triângulo já foi exaustivamente utilizado pela literatura (vide Mack, 1993; Mack, 1994; England e Verrall, 2002, de Jong, 2006; Atherino et. al, 2010, entre outros). O triângulo está apresentado na Figura 33 a seguir e seus valores estão na unidade de milhares de dólares. O triângulo AFG apresenta um valor negativo (vide linha 2). Os valores negativos podem ser causados como resultado de *prêmios salvados* (ou ganhos) além da incorporação de prêmios como sinistros negativos (vide England e Verrall, 2002). Porém, o objetivo desta dissertação é a modelagem de quantias a serem pagas em relação a sinistros que ocorreram e que serão pagos com atraso. Sob este enfoque, as quantias somente poderão assumir valores definidos nos reais positivos. Dito isto, os valores negativos encontrados nos triângulos serão tratados como um valor ausente, apesar de este valor não ser atribuído no cálculo das reservas total e da linha 2.

Ano de	Desenvolvimento									
Origem	0	1	2	3	4	5	6	7	8	9
1	5012	3257	2638	898	1734	2642	1828	599	54	172
2	106	4179	1111	5270	3116	1817	-103	673	535	
3	3410	5582	4881	2268	2594	3479	649	603		
4	5655	5900	4211	5500	2159	2658	984			
5	1092	8473	6271	6333	3786	225				
6	1513	4932	5257	1233	2917					
7	557	3463	6926	1368						
8	1351	5596	6165							
9	3133	2262								
10	2063									

Figura 33. Triângulo AFG: valores de sinistros IBNR (escala em milhares de dólares).

A Tabela 17 contém as informações analíticas de cada um dos métodos propostos nessa Dissertação aplicados ao triângulo AFG. Para os modelos de análise de regressão e em EE, foram seguidos os algoritmos apresentados nas seções 4.4 e 5.4, respectivamente. A Tabela 18, por sua vez, apresenta as reservas estimadas e raiz dos EQMs teóricos correspondentes.

Na modelagem deste triângulo, verificou-se, dentro do contexto de análise de regressão com heterocedasticidade, que o efeito linha não era significativo (vide testes F na Tabela 17), fazendo com que este fosse retirado do modelo. No entanto, para fins de comparação, o resultado obtido da modelagem via MQG será apresentado com e sem o efeito linha.

Como é mostrado na Tabela 17, o chain ladder apresentou pior Pseudo- R^2 dentro da amostra e altos EQM amostral e MAPE quando comparado aos modelos em EE e ao modelo de regressão sem o efeito linha. O modelo sem o efeito linha, dentro da abordagem de modelos de regressão, apresenta resultados dentro e fora da amostra semelhantes aos obtidos utilizando a abordagem via modelo em EE. Os demais modelos de análise de regressão (estimados por MQO e por MQG, ambos com efeito linha) apresentaram bons resultados dentro da amostra, mas um desempenho ruim fora da amostra com baixo Pseudo- R^2 e altos MAPE e EQM.

As reservas calculadas utilizando M1 e M2 são semelhantes às obtidas utilizando o modelo de regressão sem o efeito linha e às reservas obtidas utilizando o chain ladder. No entanto, as reservas total e por ano de calendário estimadas utilizando o chain ladder são menores que as reservas obtidas nas demais abordagens, o que era esperado uma vez que o chain ladder não contempla os valores da cauda.

Critéria	MQG (sem	MOO	MQG (com	M4	MO	Chain Laddar
Pseudo R ²	0.466	0.555	0.584	0.465	0.465	
MAPE (%)	114 772	115 678	86 621	114 770	114 770	125 983
EQM amostral	2368323 958	1971039 527	1840036 549	2368320.000	2368320.000	10627079 164
Pseudo R ² -	2000020,000	101 1000,021	1010000,010	2000020,000	2000020,000	10021010,101
validação fora da	0.000	0.440	0.400	0.040	0.040	0.450
	0,396	0,119	0,166	0,349	0,349	0,152
MAPE (%) - validação fora da						
amostra	184,994	318,491	320,852	205,000	205,000	276,612
EQM amostral –						
validação fora da	0700047 570	5077707 045	5000700 500	0470700.000	0470700 000	5550500.004
amostra	2788617,570	52///3/,615	5032768,598	3178730,000	3178730,000	5552533,084
Teste Breush-Pagan	0,029	6,287	3,105	-	-	-
(2 grupos)	(0,866)	(0,015)	(0,084)			
	0.067	2 6 1 6	2 207			
Teste Breush-Pagan	0,007	(0.034)	2,297			
(5 grupos) Teste F de	(0,900)	(0,034)	(0,110)	1 123	1 123	_
heterocedasticidade				(0.858)	(0.858)	
Média	-4.210 x 10 ⁻¹⁶	6.450×10^{-14}	5.276×10^{-17}	0.094	0.094	-
	.,	-,	-,	-,	-,	
Variância	1,200	-	1,319	0,890	0,890	-
Teste Anderson-						
Darling	0,450	-	0,174	0,220	0,2203	-
	(0,267)	-	(0,923)	(0,823)	(0,823)	
						-
	2,029		0,466	1,046	1,046	
Teste Jarque-Bera	(0,360)		(0,792)	(0,593)	(0,593)	
		-				-
Teste Shapiro-Wilk	0,976		0,989	0,980	0,980	
	(0,340)		(0,889)	(0,632)	(0,632)	
		-				-
			1,133	-	-	
Teste F - efeito linha	-	-	(0,366)			
				-	-	-
Teste F - efeito			7,859			
coluna	-	-	(3,127e-06)	7 (00	7 (00	
AIC	925,173	975,925	949,375	7,480	7,480	-
BIC	947,052	1015,705	989,154	7,780	7,780	-

Tabela 19. Informação analítica sobre a estimação do AFG via o chain ladder, análise de

Ano de origem	MQG (sem efeito linha)	MQO	MQG (com efeito linha)	M1	M2	Chain Iadder
4	172	172	172	294,50	294,50	
1	(340,12)	(240,50)	(340,12)	(1268,23)	(1268,23)	-
2	344	4,55	906,72	466,50	466,50	153,95
2	(589,10)	(1909,52)	(596,69)	(2196,66)	(2196,66)	(206,22)
2	638,5	2667,12	1459,15	761,00	761,00	617,37
3	(658,64)	(2045,70)	(671,93)	(3106,52)	(3106,52)	(623,38)
4	1263,5	6474,65	3954,49	1386,00	1386,00	1636,14
4	(659,80)	(3307,11)	(1774,54)	(3274,60)	(3274,60)	(747,18)
5	2417,17	9069,67	10129,40	2539,70	2539,70	2746,74
5	(873,75)	(5786,00)	(2871,66)	(3434,38)	(3434,38)	(1469,46)
6	4581,37	3244,46	5102,20	4703,90	4703,90	3649,10
6	(1491,00)	(4870,55)	(3902,65)	(3526,75)	(3526,75)	(2001,86)
7	7299,03	3363,06	2697,69	7421,50	7421,50	5435,30
'	(1653,90)	(8829,55)	(7266,45)	(3602,08)	(3602,08)	(2209,24)
0	10566,18	14388,43	14505,75	10689,00	10689,00	10907,19
0	(2843,01)	(8367,59)	(9336,17)	(3665,24)	(3665,24)	(5357,87)
٥	15248,68	8374,4	5356,15	15371,00	15371,00	10649,98
5	(3452,42)	(14573,31)	(12427,32)	(3719,68)	(3719,68)	(6333,17)
10	20098,01	16785,78	15923,70	20221,00	20221,00	16339,44
10	(3904,45)	(9722,60)	(19189,62)	(3767,49)	(3767,49)	(24566,29)
ano de calendário	22487,21	21941,06	21530,06	22610,00	22610,00	17501,42
	(4323,50)	(5834,29)	(5999,75)	(3809,85)	(3809,85)	(8748,15)
Total	65017,63	66607,12	62270,26	66243,00	66243,00	52135,23
iolai	(8898,97)	(35034,00)	(31088,25)	(10441,26)	(10441,26)	(26909,01)

Tabela 20. Reservas estimadas de AFG para cada método (e raiz dos EQMS entre

parênteses).

As raízes dos EQMs para os modelos M1, M2 e para o modelo de análise de regressão com heterocedasticidade são semelhantes. O EQM para a reserva total utilizando o chain ladder é muito maior do que os demais EQMs citados equiparando-se ao EQM obtido utilizando o modelo de regressão com o efeito linha, tanto estimado por MQO ou por MQG.

Finalmente, observando-se a Tabela 19, não existem evidência estatísticas que indicam dependência serial dos resíduos padronizados para nenhum dos modelos ajustados.

Tabela 21. Medidas de dependência no triângulo AFG para os resíduos padronizados referentes à estimação via MQG e EE sob diferentes ordenações

			Teste				
Modelo	Ordenação	Teste - Lj-Box (nível)	Teste - Lj-Box (nível ²)	Est. Durbin Watson			
	Linha	6,850	17,320	1,915			
	Linna	(0,962)	(0,300)				
	Columo	24,713	15,547	1,305			
Modelo de Regressão	Coluna	(0,054)	(0,413)				
	Diagonal 1	24,110	19,722	1,7469			
		(0,063)	(0,183)				
	Diagonal 2	21,2	9,934	1,8685			
		(0,131)	(0,824)				
	N44	31,731	22,313	1,751			
Modelos	171 1	(0,380)	(0,842)				
em EE	MO	31,731	22,313	1,751			
	IVI Z	(0,380)	(0,842)				

das observações (p-valores em parêntesis).

6.4.2. O triângulo T2

O triângulo (T2) foi obtido em Taylor, G. (2000). Na modelagem, foram retiradas as duas primeiras linhas do triângulo.

Ano de		Desenvolvimento																
Origem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1707	4758	5746	7061	6272	3325	3051	4393	2343	377	237	864	409	0	866	137	116	22
2	2179	6544	5969	6658	2527	3465	1436	1902	1247	191	46	352	362	620	12	0	0	
3	2249	5439	5638	6919	6309	4496	3238	1286	1503	612	1210	649	492	543	446	39		
4	2412	4368	7275	7293	5051	4349	3069	2355	1455	1543	2440	251	37	45	119			
5	1289	5817	6568	9349	6429	4193	1969	1362	1933	3162	898	296	449	387				
6	1968	4469	5178	6330	6171	3197	3239	2683	1792	537	1103	673	367					
7	2126	4557	6554	6869	4715	3791	9760	3658	4003	1603	902	904						
8	1589	3510	5156	5976	5445	6715	5101	3379	1240	3070	1408							
9	1551	4318	4688	5620	6812	5685	6386	4113	3049	910								
10	1629	3144	4725	6479	6519	7732	6130	6315	4366									
11	1544	4606	3358	7386	5162	5901	7367	2836										
12	2036	3241	5219	6084	10405	9964	5811											
13	2279	4712	4408	7669	12830	11870												
14	2570	3975	8460	8526	10308													
15	2521	5367	6854	16634														
16	3186	5271	8662															
17	2778	6195																
18	3017																	

Figura 34. O triângulo T2: Valores de pagamento de sinistro por número de ocorrências.

Critério	MQO	MQG	M1 (ou M2)	M1*(ou M2*)	Chain Ladder
Pseudo R ²	0,751	0,735	0,743	0,733	0,775
MAPE (%)	40,128	30,402	39.231	38,599	52,955
EQM amostral	2148364,717	2288099,374	2219490,000	2332770,000	7883830,872
Pseudo R ² - validação fora da amostra	0,829	0,838	0,811	0,780	0,836
MAPE (%) - validação fora da amostra	43,038	46,164	38,806	36,665	39,100
EQM amostral – validação fora da amostra	8456097,955	8456097,955	10216800,000	10448600,000	6895742,171
Teste Breush-Pagan (2 grupos)	6,881	0,339	-	-	-
	(0,010)	(0,561)			
Teste Breush-Pagan (3 grupos)	7,379	2,254	-	-	-
•••	(0,000)	(0,110)			
Teste F de			2,715	1,208	-
heterocedasticidade			(0,000)	(0,506)	-
Média	-	-4,521x10 ⁻¹⁷	0,142	0,144	-
Variância	-	0,880	0,803	0,868	-
Teste Anderson-	0,854	1,271	4,555	4,049	
Darling	(0,027)	(0,002)	(2,263x10 ⁻¹¹)	(3,829x10 ⁻¹⁰)	-
	27,404	15,726	184,713	215,310	
Teste Jarque-Bera	(0,000)	(0,000)	(0,000)	(0,000)	-
	0,965	0,959	0,827	0,833	
Teste Shapiro-Wilk	(0,003)	(0,001)	(9,722x10 ⁻¹⁰)	(1,556x10 ⁻⁰⁹)	-
	2.7281	2,432		-	
Teste F - efeito linha	(0.0021)	(0,006)	-		-
	(0.0021)	(0,000)			
Teste F - efeito coluna	13.208	23,276	-	-	-
	(2.233e-16)	(0,000)			
AIC	2150,171	2080,884	7,791	7,743	-
BIC	2233,796	2164,508	8,040	7,993	-

Tabela 22. Informação analítica sobre a estimação do T2 via chain ladder, análise de regressão e EE (p-valores em parênteses)

Como pode ser observado na Tabela 20, encontraram-se evidências estatísticas suficientes contra a hipótese nula de homocedasticidade do termo do erro no modelo (9). O modelo proposto, que inclui esta estrutura heterocedástica, não apresentou melhora significativa para os valores de EQM, pseudo- R^2 e

MAPE. Encontraram-se também, dentro do contexto de modelagem via EE, evidências estatísticas suficientes contra a hipótese de homocedasticidade do erro e ambos os modelos M1 (sem incorporação da estrutura heterocedástica) o M1* (com incorporação desta estrutura) apresentaram parâmetros idênticos aos modelos M2 e M2* respectivamente. Nota-se que todos os modelos (incluindo o chain ladder tradicional) não se destacaram frente ao outro dentro ou fora da amostra.

Ano de origem	MQO	MQG	M1 (ou M2)	M1* ou (M2*)	chain ladder
1	119,00	119,00	226,94	254,78	_
•	(93,93)	(132,84)	(1209,13)	(1466,90)	_
2	546,29	841,83	319,61	226,13	125,12
Ł	(1057,87)	(329,05)	(2123,65)	(2586,70)	(326,61)
3	0,00	922,42	815,36	883,88	297,79
5	(1231,02)	(715,79)	(3077,17)	(3746,20)	(394,68)
4	3373,58	3171,15	1622,80	1889,00	737,56
4	(2270,18)	(1215,18)	(3469,01)	(3987,48)	(561,27)
5	1814,58	1851,98	2774,80	2892,60	1176,07
5	(1847,19)	(2050,14)	(3801,84)	(4203,09)	(610,67)
6	4317,34	4446,13	5368,40	5528,00	2646,28
U	(2340,98)	(2813,85)	(4123,23)	(4512,76)	(1034,49)
7	10860,95	12432,32	8970,10	9478,40	5157,41
1	(3573,76)	(3614,90)	(4456,57)	(4939,33)	(1809,64)
8	8485,03	7126,85	13353,00	15124,00	7011,49
U	(4291,83)	(4672,27)	(4820,89)	(5354,62)	(2072,85)
٥	22027,81	18123,54	19587,00	23892,00	12707,98
3	(6850,21)	(5808,75)	(5239,37)	(5818,50)	(3051,47)
10	40864,00	32581,09	27276,00	35134,00	23181,09
10	(11349,44)	(6916,65)	(5744,21)	(6374,87)	(5575,91)
11	45781,64	39623,85	34603,00	45048,00	30898,49
	(7546,38)	(8011,05)	(6379,73)	(7085,90)	(7229,54)
10	73646,24	54637,13	42800,00	54797,00	51816,85
12	(21111,10)	(9195,56)	(7196,53)	(8053,51)	(11084,75)
13	69101,02	63134,50	50865,00	63031,00	57961,05
15	(8766,24)	(10420,49)	(8229,52)	(9421,04)	(12816,68)
14	72120,46	66695,65	57449,00	69849,00	66480,18
14	(8177,12)	(12144,80)	(9457,43)	(11322,54)	(14545,14)
	74034,17	70692,60	62655,00	75651,00	77045,81
15	(7077,77)	(15505,30)	(10891,74)	(13761,54)	(20910,10)
ano de	64621 54	61251 52	56452.00	62060.00	65762 52
	(6031.00)	(58/2.00)	(5222,00	(5621 66)	(6071.67)
calenuario	(0031,09)	(3043,99) 270417 OF	(0222,40)	(3021,00)	(09/1,0/)
Total	(42074 17)	J19411,00 (25542.20)	(65006.02)	(71250,00	1243,10
	(42974,17)	(30043,30)	(00000,92)	(1200,00)	(30030,20)

Tabela 23. Reservas estimadas do T2 para cada método (e raiz dos EQMs entre parênteses)

As reservas por estimadas pelo método chain ladder são, em geral, menores do que as reservas estimadas pelos outros métodos. Este padrão era esperado uma vez que o método do chain ladder não é utilizado para estimação de reservas na cauda. Os EQMs obtidos na modelagem via análise de regressão (com e sem reconhecimento da estrutura heterocedástica) não foram sistematicamente maiores ou menores que os EQMS obtidos via EE.

			Teste	
Modelo	Ordenação	Teste - Lj-Box (nível)	Teste - Lj-Box (nível ²)	Est. Durbin Watson
	Linha	18,918	11,743	1,614
	Linna	(0,218)	(0,698)	
	Columa	66,544	24,680	1,682
Modelo de	Coluna	(1,829x10 ⁻⁰⁸)	(0,054)	
Regressão	Diagonal 1	95,267	23,493	1,122
		(1,023x10 ⁻¹³)	(0,074)	
	Diagonal 2	58,702	8,929	1,134
	Diagonal 2	(4,210x10 ⁻⁰⁷)	(0,881)	
	M1 (ou M2)	35,676	22,109	1,559
Modelos em		(0,219)	(0,850)	
EE	M1* (ou M2*)	27,684	9,483	1,646
		(0,587)	(0,999)	

Tabela 24. Medidas de dependência no triângulo T2 para os resíduos padronizados referentes à estimação via MQG e EE sob diferentes ordenações das observações (p-valores entre parênteses).

Finalmente, como pode ser visto na Tabela 22, existem evidências estatísticas suficientes que apontam para dependência serial dos resíduos padronizados na modelagem via análise de regressão para ordenação por coluna, diagonal 1 e diagonal 2. Isso pode sugerir extensões do modelo adotado nesta Dissertação no sentido de incorporação de auto-correlação no termo do erro.

6.4.3. O trapézio Tp2

Todos os trapézios utilizados vieram da mesma fonte (e já foram descrito na seção 6.3). O próximo trapézio a ser analisado será denominado Tp2.

Ano de		Desenvolvimento									
Origem	0	1	2	3	4	5	6	7	8	9	
1	1101	1413	1839	1170	1493	805	2153	932	1865	730	
2	4569	6094	8931	4781	6972	3183	6695	5344	3563	1667	
3	6165	6640	2973	4302	5603	5982	5248	4287	3473	5550	
4	12655	5078	5780	6620	7086	8035	5216	3932	5322	2935	
5	4589	4753	6304	6085	6043	5016	10251	5847	4274	2830	
6	7169	6308	6881	4183	4446	5274	4247	3703	4917	2656	
7	4491	5647	5015	6081	5736	4635	4857	4756	3793	3224	
8	5366	5246	6932	7495	5589	4762	9615	3532	3362	2067	
9	6984	6170	5031	9244	5783	4996	4842	3730	2297	4424	
10	5934	6767	8576	4098	7389	2687	3886	1880	4534	7378	
11	5654	6678	5797	4207	4167	5396	3236	5807	12137	3909	
12	5225	3730	7353	3374	5833	2744	3950	3817	2499	2694	
13	3815	10341	4479	5755	3072	5046	3969	2822	2666	3847	
14	6880	4670	4775	4734	3146	4016	5570	2002	2779	2021	
15	4215	6045	3188	6368	3316	3345	4198	3334	2685	4675	
16	5476	5212	7386	4765	7866	4308	6153	3455	5819	1793	
17	4992	6735	7242	7403	9829	8446	7969	6711	7192	2693	
18	6237	6806	10558	5085	6570	4882	5377	2669	4702	3006	
19	8260	6386	5277	7161	4647	3459	4264	4344	2455		
20	8429	4465	6050	7378	12514	5076	5091	4303			
21	8427	6730	7886	9256	5401	7277	5676				
22	7274	7858	9303	5688	5800	6527					
23	7803	11137	11257	5040	5261						
24	9162	8265	7600	5807							
25	10347	8534	8310								
26	8487	9557									
27	6164										

Figura 35. Trapézio Tp2: valores de sinistros IBNR (valores em milhares de dólares).

Sob a ótica da modelagem via análise de regressão, não foi necessária a incorporação da estrutura heterocedástica para Tp2, de forma que o modelo (9) se ajustou bem aos dados de Tp2 (vide testes de heterocedasticidade na Tabela 21).

Na Tabela 24, pode-se verificar que o chain ladder apresenta um ajuste pior que os demais modelos dentro da amostra enquanto que os modelos via EE e análise de regressão apresentam resultados parecidos com leve vantagem dos modelos em EE. O chain ladder, no entanto, apresenta alto pseudo- R^2 e baixos, MAPE e EQM no ajuste fora da amostra, semelhantes ao modelo via análise de regressão e melhores que os modelo em EE.

Critério	MQQ	M1	M2	Chain ladder
	0.526	0 543	0 543	0 230
MAPE (%)	25 474	25.098	25.098	33 733
EQM amostral	2432239 809	2376840	2376840	5121304 356
Pseudo R ² – validação fora da amostra	0,646	0,526	0,526	0,635
MAPE (%) - validação fora da amostra	33,725	38,014	38,014	31,340
EQM amostral - validação fora da amostra	3079509,765	3608460	3608460	2857851,293
Teste Breush-Pagan (2 grupos)	0,002 (0,963)	-	-	-
Teste Breush-Pagan (3 grupos)	0,006 (0,994)	-	-	-
Teste F de heterocedasticidade	-	1,056 (0,835)	1,056 (0,835)	-
Média	-0,137	0,070	0,070	-
Variância	-	1,026	1,026	-
Teste Anderson- Darling	2,886 (0,000)	2,041 (0,000)	2,041 (0,000)	-
Teste Jarque-Bera	124,206 (0,000)	70,044 (0,000)	70,044 (0,000)	-
Teste Shapiro-Wilk	0,934 (0,000)	0,949 (0,000)	0,949 (0,000)	-
Teste F - efeito linha	4,505 (0,000)	-	-	-
Teste F - efeito coluna	6,448 (0,000)	-	-	-
AIC	4020,995	11,859	11,859	-
BIC	4147,390	12,016	12,016	-

Tabela 25. Informação analítica sobre a estimação do Tp2 via o chain ladder, análise de regressão e EE (p-valores em parêntesis).

As reservas estimadas, utilizando o modelo via análise de regressão (vide Tabela 22), são menores que as reservas obtidas em M1 e M2. Já as reservas estimadas via chain ladder são menores que todas as outras reservas dos outros modelos (novamente isso pode ser explicado pelo fato de o chain ladder não contemplar os valores da cauda).

		parenteses	·).	
Ano de origem	MQO	M1	M2	chain ladder
1	0,00	2718,60	2718,60	
I	(1824,78)	(642,18)	(642,18)	-
2	3429,25	4063,80	4063,80	
2	(1824,78)	(635,62)	(635,62)	-
3	3271,65	5124,40	5124,40	_
Ū	(1824,78)	(635,23)	(635,23)	
4	4515,25	4745,30	4745,30	-
-	(1824,78)	(635,19)	(635,19)	
5	3848,55	4720,80	4720,80	-
-	(1824,78)	(635,18)	(635,18)	
6	3227,75	4152,40	4152,40	-
	(1824,78)	(635,18)	(635,18)	
7	3072,85	4430,10	4430,10	-
	(1824,78)	(035,18)	(035,18)	
8	3043,93	4014,90	4014,90	-
	(1024,70)	(035,16)	(035,16)	
9	(1824 78)	(635 18)	(635,18)	-
	3562.25	4527.80	4527.80	
10	(1824 78)	(635,18)	(635,18)	-
	3948 15	4488 20	4488 20	
11	(1824 78)	(635,18)	(635,18)	-
	2371.25	3816.30	3816.30	
12	(1824,78)	(635,18)	(635,18)	-
40	2830.55	3628.90	3628.90	
13	(1824,78)	(635,18)	(635,18)	-
4.4	2308,65	3366,10	3366,10	
14	(1824,78)	(635,18)	(635,18)	-
15	2386,25	4108,20	4108,20	
15	(1824,78)	(635,19)	(635,19)	-
16	3472,65	55004,70	55004,70	
10	(1824,78)	(635,26)	(635,26)	-
17	5170,55	5549,30	5549,30	-
	(1824,78)	(636,37)	(636,37)	
18	3838,55	4904,00	4904,00	-
	(1824,78)	(658,08)	(658,08)	
19	6388,11	9137,20	9137,20	3206.72
	(2791,57)	(1250,96)	(1250,96)	(2398,35)
20	14802,78	(10400	16400	9391.71
	(3593,75)	(1933,57)	(1933,57)	(3542,19)
21	21404,01	(2552 57)	(2552 57)	(4475.92)
	27203 20	(2000,07)	(2000,07)	21013.00
22	(5312 57)	(3246.08)	(3246.08)	(4901 78)
	38427 83	39952	39952	29838 86
23	(6358,68)	(4064.97)	(4064.97)	(5190.70)
	43133.15	48721	48721	66286.12
24	(7662.40)	(5787.91)	(5787.91)	(5457.58)
	59841.28	55273	55273	35452.12
25	(9440,63)	(7924,64)	(7924,64)	(6655,13)
00	69301,34	59602	59602	48690,01
26	(12241,49)	(8927,77)	(8927,77)	(9705,24)
07	49226,98	64956	64956	58318,59
21	(18214,58)	(12482,39)	(12482,39)	(13683,60)
ano de	69121,26	73824	73824	57576,79
calendário	(7143,80)	(4611,61)	(4611,61)	(5524,53)
Total	388318,90	434320	434320	266365,48
rotar	(32701,53)	(34259,31)	(34259,31)	(33256,73)

Tabela 26. Reservas estimadas de Tp2 para cada método (e raiz dos EQMS entre

parênteses)

Tabela 27. Medidas de dependência no trapézio Tp2 para os resíduos padronizados referentes à estimação via MQO e EE sob diferentes ordenações das observações (p-valores em parêntesis).

			Teste	
Modelo	Ordenação	Teste - Lj-Box (nível)	Teste - Lj-Box (nível ²)	Est. Durbin Watson
	Linha	70,690	23,660	2,066
	Liina	(0,001)	(0,927)	
	Columa	43,470	15,990	2,163
Modelo de	Colulia	(0,154)	(0,998)	
Regressão	Diagonal 1	72,840	11,700	1,524
	Diagonal I	(0,000)	(1,000)	
	Diagonal 2	55,540	13,200	1,559
	Diagonal 2	(0,015)	(0,999)	
	M4	50,931	20,994	1,941
Modelos em	141.1	(0,009)	(0,888)	
EE	Mo	50,931	20,994	1,941
	IVIZ	(0,009)	(0,888)	

A Tabela 25 indica evidências estatísticas consideráveis a favor de uma aparente dependência serial quando se observa a ordenação dos dados por Diagonal 1 para o modelo de regressão. No entanto, este resultado deve ser observado com cautela, uma vez que pode estar expressando a dependência natural entre os *resíduos* e não da componente do *erro*.

6.4.4. O trapézio Tp3

Ano de				Des	senvolv	imento				
Origem	0	1	2	3	4	5	6	7	8	9
1	1169	1192	1381	1065	1149	1437	1250	481	926	2628
2	3439	3270	5306	10651	7187	4929	4616	4471	8490	3100
3	5531	5555	5758	3769	3443	5781	3887	6597	5242	5367
4	3898	6602	11973	6055	4933	6079	7011	7515	4888	5306
5	5332	4648	5253	8834	2824	6063	8382	7525	6979	2821
6	4295	4173	7276	4211	7421	5877	7486	3928	5070	3583
7	3039	4596	5485	6140	3394	7740	3876	8296	2885	4328
8	4438	6842	7675	5985	5869	7775	6455	3315	3505	897
9	4038	7355	6985	9914	7170	4608	3632	3378	3166	1857
10	6361	5805	6119	4438	8435	3231	2410	2775	3280	3050
11	7444	5571	6903	4754	2866	3287	2015	3962	5238	5091
12	4742	4314	7397	3176	3282	4055	3707	2844	3510	2622
13	6485	10205	4452	6501	3640	2103	2039	4868	2341	5025
14	6292	3413	7127	2846	2826	4147	4940	5124	4838	1528
15	2823	4810	3227	2481	5889	5258	2633	3344	2715	4699
16	5203	3783	4084	5255	7258	7690	6548	4481	5312	2087
17	5117	3893	7186	7966	5599	11969	7303	7723	7486	10009
18	4587	5634	9425	5373	8626	4608	6539	4038	4868	6188
19	4916	9749	5366	8804	5391	3899	3736	4402	2483	
20	11923	4247	7727	4678	9901	6165	4279	7077		
21	9317	8123	8999	7495	6069	6988	4428			
22	9088	7461	8498	4853	7232	6023				
23	6589	6830	11414	5911	4560					
24	8683	7655	7845	5033						
25	10856	9088	7014							
26	8466	6389								
27	6256									

O último trapézio a ser analisado será aqui denominado como trapézio Tp3.

Figura 36. Trapézio Tp3: valores de sinistros IBNR (valores em milhares de dólares).

Na Tabela 26 observa-se que a modelagem dentro da amostra é semelhante em todos os modelos. Porém, fora da amostra, o chain ladder apresentou baixo pseudo-R² e altos MAPE e EQM, relativamente aos sues concorrentes. O modelo que melhor se ajustou aos dados foi o modelo de regressão com ou sem incorporação da estrutura heterocedástica do termo do erro. A hipótese de normalidade não foi confirmada em nenhum dos testes realizados para as modelagens via análise de regressão e EE.

As reservas estimadas via chain ladder (vide Tabela 27) são sempre menores que as demais reservas estimadas (o método não contempla a cauda do triângulo) enquanto que as reservas estimadas nos modelos via análise de regressão e EE são muito semelhantes.

			,	
Critério	MQO	MQG	M1 (ou M2)	Chain Ladder
Pseudo R ²	0,438	0,433	0,466	0,574
MAPE (%)	31,663	31,410	32,932	38,703
EQM amostral	3016835,664	3045606,681	2915100	29980925,563
Pseudo R ² -				
validação fora da	0,211	0,204	0,113	0,063
MAPE (%) - validação fora da amostra	42,376	47,084	35,363	137,496
EQM amostral – validação fora da amostra	6144211,804	6020218,344	3350430	306239958,086
Teste Breush-Pagan (2 grupos)	3,095	0,824	-	-
(- 3	(0,080)	(0,365)		
Teste Breush-Pagan (3 grupos)	1,150	0,256	-	-
	(0,319)	(0,774)		
Teste F de	-	-	0,536	-
heterocedasticidade			(0,093)	-
Média		-2,317 x 10 ⁻¹⁸	0,065	-
Variância	-	1,178	1,032	-
Taata Andaraan	1,678	1,710	1,1838	
Darling	(0,000)	(0,000)	(0,004)	-
	13 758	13,376	13 172	
Teste Jarque-Bera	(0.001)	(0.001)	(0.001)	-
-	(0,001)	(0,001)	(0,001)	
	0,972	0,970	0,967	
ieste Snapiro-wilk	(0,000)	(9,733 x 10⁻⁵)	(0,000)	-
	4,143	4,591		
Teste F - efeito linha	(4,818 x 10 ⁻⁹)	(2,654 x 10 ⁻¹⁰)	-	-
Teste F - efeito	2,528	2,662	_	_
coluna	0.009	(0.006)		
AIC	4069.459	4061.076	11,9953	-
BIC	4195,855	4187,472	12.1527	-

Tabela 28. Informação analítica sobre a estimação do Tp3 via o chain ladder, análise de regressão e EE (p-valores em parêntesis).

		1	1	7
ls.	entre			

Ano de origem MQO MQG M1 (ou M2) chain ladder 1 (183,21) 183,21 2647,60 - 2 (4461,31) 4461,31 4363,20 - 3 4008,41 5020,20 - - 4 5341,41 5341,41 5145,60 - 5 4781,51 4781,51 4781,51 4783,71 - 6 (2032,29) (1949,64) (678,87) - - 6 (2032,29) (1949,64) (678,80) - - 7 3893,31 3893,31 4670,40 - - 7 3893,21 3893,31 4670,40 - - 9 4125,71 4125,71 4098,20 - - 9 (2032,29) (1949,64) (678,80) - - 10 3205,21 3228,51 3273,74 - - 11 (2032,29) (1949,64) (678,80) -			parentese	5)	
1 183.21 183.21 2647.60 - 2 (4461.31) (4363.20) - 3 (2032.29) (1949.64) (679.37) - 4 (2032.29) (1949.64) (678.87) - 4 (2032.29) (1949.64) (678.87) - 5 (2032.29) (1949.64) (678.81) - 6 (2032.29) (1949.64) (678.80) - 6 (2032.29) (1949.64) (678.80) - 7 3893.31 3893.31 4670.40 - 7 (2032.29) (1949.64) (678.80) - 7 (2032.29) (1949.64) (678.80) - 8 (2032.29) (1949.64) (678.80) - 9 4125.71 4125.71 4098.20 - 10 3605.81 3664.20 - - 12 280.31 3681.31 361.31 361.31 361.31 -	Ano de origem	MQO	MQG	M1 (ou M2)	chain ladder
(2032.29) (1949.64) (687.44) 2 (4461.31) 4461.31 4463.32 3 (4008.41) 4008.41 5020.20 4 (232.29) (1949.64) (678.87) 4 (232.29) (1949.64) (678.87) 5 (2032.29) (1949.64) (678.80) 6 (2032.29) (1949.64) (678.80) 6 (2032.29) (1949.64) (678.80) 6 (2032.29) (1949.64) (678.80) 7 (2893.31) (289.31) (288.01) 7 (2032.29) (1949.64) (678.80) - 9 (125.71) 4125.71 4098.20 - 9 (2032.29) (1949.64) (678.80) - 10 (2032.29) (1949.64) (678.80) - 11 (2032.29) (1949.64) (678.80) - 12 (280.31) 3861.31 361.30.01 - 13 3681.31 3681.31	1	183,21	183,21	2647,60	_
2 4461,31 4461,31 4363,20 - 3 (2032,29) (1949,64) (679,37) - 4 (2032,29) (1949,64) (678,87) - 5 (2032,29) (1949,64) (678,81) - 5 (2032,29) (1949,64) (678,80) - 6 (2032,29) (1949,64) (678,80) - 7 3893,31 3893,31 4670,40 - 7 (2032,29) (1949,64) (678,80) - 9 4125,71 4125,71 4098,20 - 9 (2032,29) (1949,64) (678,80) - 10 3505,81 3505,81 3864,20 - 11 (2032,29) (1949,64) (678,80) - 12 (2032,29) (1949,64) (678,80) - 13 3661,31 3628,51 3737,40 - - 14 3223,51 3324,00 - - <td< th=""><th>•</th><th>(2032,29)</th><th>(1949,64)</th><th>(687,44)</th><th>_</th></td<>	•	(2032,29)	(1949,64)	(687,44)	_
- (2032,29) (1949,64) (679,37) 3 (2032,29) (1949,64) (678,87) - 4 (232,29) (1949,64) (678,87) - 5 (278,229) (1949,64) (678,81) - 6 (2032,29) (1949,64) (678,80) - 7 (2032,29) (1949,64) (678,80) - 7 (2032,29) (1949,64) (678,80) - 8 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 12 (280,31 380,31 3830,90 - 13 3661,31 3681,31 3619,80 - 14 3223,51 3224,00 - 13 3661	2	4461,31	4461,31	4363,20	-
3 4008,41 4008,41 5020,20 - 4 5341,41 5341,41 5445,60 - 5 (2032,29) (1949,64) (678,87) - 6 4247,41 4247,41 4417,40 - 7 3893,31 3893,31 4670,40 - 8 4191,01 4191,01 4451,20 - 9 (2032,29) (1949,64) (678,80) - 10 2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 3050,81 3864,20 - - 11 3628,51 3505,81 3864,20 - 12 (2032,29) (1949,64) (678,80) - 12 2880,31 3881,31 361,31 361,31 361,31 361,31 13 (2032,29) (1949,64) (678,80) - - 14 32223,51 3324,00 - <th>-</th> <th>(2032,29)</th> <th>(1949,64)</th> <th>(679,37)</th> <th></th>	-	(2032,29)	(1949,64)	(679,37)	
(2) (2) (1) (1) (1) (1) 4 (2) (2) (1) (1) (1) (1) (1) 5 (2) (2) (1) (4) (6) (7) (2) (2) (2) (1) (4) (6) (7) (2) (2) (1) (4) (6)	3	4008,41	4008,41	5020,20	-
4 5341,41 5141,41 5141,60 - 5 (2032,29) (1949,64) (678,80) - 6 (2032,29) (1949,64) (678,80) - 7 3893,31 3893,31 4670,40 - 7 (2032,29) (1949,64) (678,80) - 8 4191,01 4425,71 4098,20 - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 (2032,29) (1949,64) (678,80) - 11 3628,51 3362,51 3374,40 - 12 2880,31 2880,31 3830,90 - - 13 3628,51 3324,00 - - - 14 (2032,29) (1949,64) (678,80) - - 15 2703,31 2703,31 3914,50 </th <th>-</th> <th>(2032,29)</th> <th>(1949,64)</th> <th>(678,87)</th> <th></th>	-	(2032,29)	(1949,64)	(678,87)	
(2)32,29) (1949,64) (678,80) - 6 (2032,29) (1949,64) (678,80) - 7 3893,31 3893,31 4670,40 - 7 (2032,29) (1949,64) (678,80) - 8 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 3505,81 3505,81 3664,20 - 11 3628,51 3528,51 3737,40 - 12 (2032,29) (1949,64) (678,80) - 13 3681,31 3681,31 3819,80 - 14 (2032,29) (1949,64) (678,80) - 15 (2032,29) (1949,64) (678,80) - 16 4085,51 3009,00 - - 17 (2032,29) (1949,64) (678,80) - 18	4	5341,41	5341,41	5145,60	-
5 4781,51 4781,51 4781,51 4633,40 - 6 (2032,29) (1949,64) (678,80) - 7 (2032,29) (1949,64) (678,80) - 8 4191,01 4451,20 - - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 12 (2880,31 3830,90 - - 13 (2032,29) (1949,64) (678,80) - 14 3223,51 3324,00 - - 13 (2032,29) (1949,64) (678,80) - 14 3223,51 3324,00 - - 15 (2032,29) (1949,64) (678,80) -		(2032,29)	(1949,64)	(678,81)	
(2002,29) (1949,64) (676,80) 6 (2032,29) (1949,64) (678,80) 7 3893,31 3893,31 4670,40 8 (2032,29) (1949,64) (678,80) 9 (2032,29) (1949,64) (678,80) 9 (2032,29) (1949,64) (678,80) 10 3505,81 3505,81 3864,20 11 (2032,29) (1949,64) (678,80) 12 (2032,29) (1949,64) (678,80) 13 3628,51 3737,40 12 (2032,29) (1949,64) (678,80) 13 3681,31 3619,80 - 14 3223,51 3223,51 3324,00 15 (2032,29) (1949,64) (678,80) - 16 4085,51 4085,51 5009,00 - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 4904,01 4904,01 4908,01 - </th <th>5</th> <th>4/81,51</th> <th>4/81,51</th> <th>4853,40</th> <th>-</th>	5	4/81,51	4/81,51	4853,40	-
6 4247,41 447,41 4477,40 - 7 3893,31 3893,31 4670,40 - 8 (2032,29) (1949,64) (678,80) - 9 4125,71 4125,71 4098,20 - 9 (2032,29) (1949,64) (678,80) - 10 3505,81 3505,81 3864,20 - 11 (2032,29) (1949,64) (678,80) - 12 2880,31 3802,851 3337,40 - 12 (2032,29) (1949,64) (678,80) - 13 3681,31 3619,80 - - 14 (2032,29) (1949,64) (678,80) - 15 2703,31 2703,31 3914,50 - 16 4085,51 5009,00 - - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 5409,00 - -		(2032,29)	(1949,04)	(070,00)	
7 3893.31 3893.31 4670.40 8 4191.01 4191.01 4451.20 9 (2032.29) (1949.64) (678.80) 9 4125.71 4125.71 4098.20 9 (2032.29) (1949.64) (678.80) 10 3505.81 3864.20 10 (2032.29) (1949.64) (678.80) 11 3628.51 3628.51 3737.40 12 2880.31 2880.31 3830.90 12 2880.31 2880.31 3619.80 13 3681.31 3681.31 3619.80 14 3223.51 3223.51 3324.00 15 (2032.29) (1949.64) (678.80) 16 4085.51 4085.51 5009.00 16 (2032.29) (1949.64) (678.81) 17 6340.51 6340.51 6065.60 17 6340.51 6340.51 6065.60 18 4904.01 4904.01 5409.00 <th>6</th> <th>4247,41</th> <th>4247,41</th> <th>4417,40</th> <th>-</th>	6	4247,41	4247,41	4417,40	-
7 (2032,29) (1949,64) (678,80) - 8 (2032,29) (1949,64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 12 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 15 (2703,31 2703,31 3914,50 - 16 (4085,51 4008,51 6005,60 - 17 (2032,29) (1949,64) (678,81) -<		(2032,29)	(1949,04)	(070,00)	
1000000000000000000000000000000000000	7	(2032,20)	(1040 64)	(678.80)	-
8 (10,1) (10,4),64) (678,80) - 9 (2032,29) (1949,64) (678,80) - 10 (3505,81) (3864,20) - 11 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 12 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 13 (3681,31) 3681,31 3619,80 - 14 (2032,29) (1949,64) (678,80) - 15 (2032,29) (1949,64) (678,80) - 16 (4085,51 4085,51 5009,00 - 17 (6340,51 6340,51 6065,60 - 17 (6340,51 6340,51 6065,60 - <t< th=""><th></th><th>(2032,29) 4101 01</th><th>4101 01</th><th>(070,00) 4451 20</th><th></th></t<>		(2032,29) 4101 01	4101 01	(070,00) 4451 20	
4 (125,71) (134,04) (104,05) 9 (1232,29) (1949,64) (678,80) - 10 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 11 (2032,29) (1949,64) (678,80) - 12 (2880,31) 2880,31 3830,90 - 13 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 15 (2032,29) (1949,64) (678,80) - 16 (4085,51 5009,00 - - 16 (2032,29) (1949,64) (678,81) - 17 (6340,51 6340,51 6066,60 - 18 4904,01 4904,01 5409,00 - <t< th=""><th>8</th><th>(2032 20)</th><th>(1949 64)</th><th>(678.80)</th><th>-</th></t<>	8	(2032 20)	(1949 64)	(678.80)	-
9 112.0.1 112.0.1 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 100000 100000		4125 71	4125 71	4098 20	
(10) (150,1) (130,1) (136,1) (136,1) (136,1) 10 (2032,29) (1949,64) (678,80) - 11 3628,51 3628,51 3737,40 - 12 2880,31 2880,31 3830,90 - 13 3681,31 3681,31 3619,80 - 14 3223,51 3223,51 3324,00 - 15 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,80) - 17 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,81) - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,91) - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679	9	(2032 29)	(1949 64)	(678 80)	-
10 00000,000,000,000,000,000,000,000,000,		3505.81	3505.81	3864 20	
11 3628,51 3737,40 - 12 2880,31 2880,31 3830,90 - 12 (2032,29) (1949,64) (678,80) - 13 3681,31 3681,31 3619,80 - 14 (2032,29) (1949,64) (678,80) - 14 (2032,29) (1949,64) (678,80) - 15 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,80) - 17 (2032,29) (1949,64) (678,81) - 18 (2032,29) (1949,64) (678,81) - 17 (2032,29) (1949,64) (678,91) - 18 (2032,29) (1949,64) (680,32) - 18 (2032,29) (1949,64) (680,32) - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 25	10	(2032 29)	(1949 64)	(678 80)	-
11 (2032,29) (1949,64) (678,80) - 12 2880,31 2880,31 3830,90 - 13 3681,31 3681,31 3681,31 3619,80 - 14 3223,51 3223,51 3324,00 - - 15 2703,31 2703,31 3914,50 - - 16 4085,51 4085,51 5009,00 - - 17 6340,51 6340,51 6065,60 - - 17 6340,51 6340,51 6065,60 - - 18 4904,01 4904,01 5409,00 - - 18 4904,01 4904,01 5409,00 - - 18 4904,01 4904,01 5409,00 - - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 21 25175,15 23989,00 111133,01		3628.51	3628.51	3737.40	
12 (2880,31) (2880,31) (3330,90) - 13 (2032,29) (1949,64) (678,80) - 13 (2032,29) (1949,64) (678,80) - 14 3223,51 3324,00 - - 15 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,80) - 17 (2032,29) (1949,64) (678,81) - 18 (2032,29) (1949,64) (678,81) - 17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - (2032,29) (1949,64) (678,91) - 18 (2791,57) (2955,08) (1263,25) (5679,63) 17570.29 17570,29 17673,00 11133,01 1133,01 21 25175,15 25175,15 23989,00 18100,90 21 (2512,57) (532,20) (3272,92) (9306,5	11	(2032, 29)	(1949.64)	(678,80)	-
12 (2032,29) (1949,64) (678,80) - 13 3681,31 3681,31 3619,80 - 14 3223,51 3223,51 3324,00 - 15 2703,31 2703,31 3914,50 - 16 (2032,29) (1949,64) (678,80) - 17 (2032,29) (1949,64) (678,80) - 18 (2032,29) (1949,64) (678,81) - 17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,91) - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 21 25175,15 23989,00 18100,90 (4414,10) (4355,79) (2598,75) (9867,13) 22 (5317,27) (532,20) (3272,92) (9306,59) 23		2880.31	2880.31	3830.90	
13 3681,31 3681,31 3619,80 - 14 3223,51 3223,51 3324,00 - 14 (2032,29) (1949,64) (678,80) - 15 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,81) - 17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,91) - 19 8422.23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 17570.29 17570,29 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 (4414,10) (4355,79) (2598,75) (9867,13) 22 5312,57) (5332,20) (3272,92) (9306,59)	12	(2032.29)	(1949.64)	(678.80)	-
13 (2032,29) (1949,64) (678,80) - 14 3223,51 3223,51 3324,00 - 15 2703,31 2703,31 3914,50 - 16 4085,51 4085,51 5009,00 - 17 (2032,29) (1949,64) (678,80) - 18 4085,51 4085,51 5009,00 - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,81) - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570.29 17570,29 17673,00 11133,01 21 25175.15 25175,15 23989,00 18100,90 21 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 37238,00 2316,47 (5656,65)	40	3681.31	3681.31	3619.80	
14 3223,51 3223,51 3324,00 - 15 2703,31 2703,31 3914,50 - 15 (2032,29) (1949,64) (678,80) - 16 4085,51 4085,51 5009,00 - 17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - 18 4904,01 4904,01 5409,00 - 19 8422,23 8422,23 10288,00 4137,48 19 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570,29 17570,29 17673,00 11133,01 21 25175,15 25175,15 23989,00 18100,90 24 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 24 (762,40) (8021,99) (4644,00 36623,47 27 (5312,57) (5332,20) (3272,	13	(2032,29)	(1949,64)	(678,80)	-
14 (2032,29) (1949,64) (678,80) - 15 2703,31 2703,31 3914,50 - 16 4085,51 4085,51 5009,00 - 17 6340,51 6340,51 6065,60 - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (680,32) - 19 8422.23 8422,23 10288,00 4137,48 20 17570,29 17570,29 1767,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 23 30215.21 30215.21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 24 43889,91 43889,91 46464,00 36623,47		3223,51	3223,51	3324,00	
15 2703,31 2703,31 3914,50 - 16 (2032,29) (1949,64) (678,80) - 16 (2032,29) (1949,64) (678,81) - 17 (6340,51) 6340,51) 6065,60 - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,91) - 19 (2032,29) (1949,64) (680,32) - 19 8422,23 8422,23 10288,00 4137,48 20 (3593,75) (2586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 21 (5312,57) (5322,20) (3272,92) (9306,59) 23 30215,21 302968,00 23216,47 (6538,68) (6549,20) (401,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) 8021,99) (4952,58) (9503,10) 563703,76 54065,00<	14	(2032,29)	(1949,64)	(678,80)	-
15 (2032,29) (1949,64) (678,80) - 16 4085,51 4085,51 5009,00 - 17 6340,51 6340,51 6065,60 - 17 (2032,29) (1949,64) (678,81) - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (680,32) - 19 8422.23 8422,23 10288,00 4137,48 20 (2791,57) (2955,08) (1263,25) (5679,63) 21 (2791,57) (2955,79) 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 (25175,15 23989,00 18100,90 24 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 24 (762,40) (8021,99) (4952,58) (9503,10) 25 (9440,63) (989,761) (6268,33)	45	2703,31	2703,31	3914,50	
16 4085,51 4085,51 5009,00 - 17 6340,51 6340,51 6065,60 - 17 (2032,29) (1949,64) (678,91) - 18 4904,01 4904,01 5409,00 - 19 (2032,29) (1949,64) (680,32) - 19 (2791,57) (295,08) (1263,25) (5679,63) 20 17570,29 17570,29 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 (25175,15 25175,15 23989,00 18100,90 23 30215,21 30215,21 29698,00 23216,47 23 36094,04 36094,04 37238,00 29310,75 24 (7662,40) (8021,99) (4952,58) (9503,10) 25 (3703,76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 <th>15</th> <th>(2032,29)</th> <th>(1949,64)</th> <th>(678,80)</th> <th>-</th>	15	(2032,29)	(1949,64)	(678,80)	-
10 (2032,29) (1949,64) (678,81) - 17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (678,91) - 19 8422,23 8422,23 10288,00 4137,48 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570,29 17570,29 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 (4414,10) (4355,79) (2598,75) (9867,13) 30215.21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 24 43889,91 43889,91 46464,00 36623,47 7662,40) (8021,99) (4952,58) (9503,10) 25	16	4085,51	4085,51	5009,00	
17 6340,51 6340,51 6065,60 - 18 4904,01 4904,01 5409,00 - 18 (2032,29) (1949,64) (680,32) - 19 8422.23 8422,23 10288,00 4137,48 19 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570.29 17570,29 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 (4414,10) (4355,79) (2598,75) (9867,13) 22 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 63703,76 54065,00 52885,68 (12241,49) (13131,01) (8581,20) (1	10	(2032,29)	(1949,64)	(678,81)	-
17 (2032,29) (1949,64) (678,91) 1 18 4904,01 4904,01 5409,00 - 19 (2032,29) (1949,64) (680,32) - 19 8422,23 8422,23 10288,00 4137,48 20 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570.29 17570,29 17673,00 11133,01 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 (4414,10) (4355,79) (2598,75) (9867,13) 30215.21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68	17	6340,51	6340,51	6065,60	_
18 4904,01 (2032,29) 4904,01 (1949,64) 5409,00 (680,32) - 19 8422.23 (2791,57) 8422,23 (2955,08) 10288,00 (1263,25) 4137,48 (5679,63) 20 17570.29 (3593,75) 17570,29 (3586,69) 17673,00 (1978,16) 11133,01 (7729,80) 21 25175.15 (5312,57) 25175,15 (5332,20) 23989,00 (3272,92) 18100,90 (9867,13) 22 30215.21 (5312,57) 30215,21 (5332,20) 29698,00 (3272,92) 2310,75 (9366,59) 23 36094.04 (3638,68) 36094,04 (6549,20) 37238,00 (4031,75) 29310,75 (8756,05) 24 43889.91 (7662,40) 43889,91 (8021,99) 46464,00 (4952,58) 9603,10) 25 63703.76 (3703.76 63703,76 (54065,00) 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 5983,00 54877,59 (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (1269,33) (16991,91) Ano de calendário 71370,62 71370,62 7268,00 59292,20 <th>17</th> <th>(2032,29)</th> <th>(1949,64)</th> <th>(678,91)</th> <th>-</th>	17	(2032,29)	(1949,64)	(678,91)	-
10 (2032,29) (1949,64) (680,32) 19 8422.23 8422,23 10288,00 4137,48 20 17570.29 17570,29 17673,00 11133,01 20 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 24 (5312,57) (5332,20) (3272,92) (9306,59) 23 30215.21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 24 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (989,761) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 27 57386.67 57386,67 65763,00 51931,38 27 57386.67 57386,67	18	4904,01	4904,01	5409,00	_
19 8422.23 8422,23 10288,00 4137,48 20 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570,29 17570,29 17673,00 11133,01 21 (3593,75) (3586,69) (1978,16) (7729,80) 21 (4414,10) (4355,79) (2598,75) (9867,13) 22 30215,21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094,04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20)	10	(2032,29)	(1949,64)	(680,32)	_
10 (2791,57) (2955,08) (1263,25) (5679,63) 20 17570.29 17570,29 17673,00 11133,01 21 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 (4414,10) (4355,79) (2598,75) (9867,13) 22 30215.21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889.91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 (18214,58) (19431,52) (12629,33) (16991,9	19	8422.23	8422,23	10288,00	4137,48
20 17570.29 17570,29 17673,00 11133,01 21 (3593,75) (3586,69) (1978,16) (7729,80) 21 25175.15 25175,15 23989,00 18100,90 (4414,10) (4355,79) (2598,75) (9867,13) 22 30215.21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386,67 57386,67 65763,00 51931,38 <th>15</th> <th>(2791,57)</th> <th>(2955,08)</th> <th>(1263,25)</th> <th>(5679,63)</th>	15	(2791,57)	(2955,08)	(1263,25)	(5679,63)
10 (3593,75) (3586,69) (1978,16) (7729,80) (7729,80) (7729,80) (18100,90) (1810,90) (180,91,91)	20	17570.29	17570,29	17673,00	11133,01
21 25175.15 25175,15 23989,00 18100,90 22 30215.21 30215,21 29698,00 23216,47 23 36094.04 36094,04 37238,00 29310,75 24 43889.91 43889,91 46464,00 36623,47 25 6358,68 (6549,20) (4031,75) (8756,05) 24 43889.91 43889,91 46464,00 36623,47 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 27 57386,67 57386,67 65763,00 51931,38 27 57386,67 57386,67 65763,00 51931,38 28 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) 414924.13 414924,13 431000,00 829856,68	_0	(3593,75)	(3586,69)	(1978,16)	(7729,80)
22 (4414,10) (4355,79) (2598,75) (9867,13) 30215,21 30215,21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386,67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) 414924,13 414924,13 431000,00 829856,68 <th>21</th> <th>25175.15</th> <th>25175,15</th> <th>23989,00</th> <th>18100,90</th>	21	25175.15	25175,15	23989,00	18100,90
22 30215.21 30215.21 29698,00 23216,47 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889.91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)		(4414,10)	(4355,79)	(2598,75)	(9867,13)
23 (5312,57) (5332,20) (3272,92) (9306,59) 23 36094.04 36094,04 37238,00 29310,75 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386,67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)	22	30215.21	30215,21	29698,00	23216,47
23 36094.04 36094,04 37238,00 29310,75 24 (6358,68) (6549,20) (4031,75) (8756,05) 24 43889.91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71262,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)		(5312,57)	(5332,20)	(3272,92)	(9306,59)
24 (6356,68) (6549,20) (4031,75) (6756,05) 24 43889,91 43889,91 46464,00 36623,47 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703,76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280,86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386,67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71262,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)	23	36094.04	36094,04	37238,00	29310,75
24 43889.91 43889.91 43889.91 46464,00 36623,47 25 (7662,40) (8021,99) (4952,58) (9503,10) 25 63703.76 63703,76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370,62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)		(0358,08)	(0049,20)	(4031,75)	
25 63703.76 63703.76 54065,00 52885,68 (9440,63) (9897,61) (6268,33) (13592,53) 26 62280.86 62280,86 59893,00 54877,59 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370.62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)	24	43009.91	43009,91	40404,00	30023,47
25 03703.76 03703.76 03703.76 034003,00 032883,00 032883,06 032883,0		(7002,40)	(0021,99)	(4952,56)	(9003,10)
26 (5440,03) (5697,01) (6206,33) (13592,33) 26 62280,86 62280,86 59893,00 54877,59 27 57386.67 57386,67 65763,00 51931,38 27 18214,58 (19431,52) (12629,33) (16991,91) Ano de 71370,62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)	25	(0110 62)	(0807 61)	(6268 22)	(13502 53)
26 02200.00 02200,00 039093,00 54877,39 27 (12241,49) (13131,01) (8581,20) (15878,23) 27 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370.62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)		(3440,03) 62280 86	(10,1808) 62280 86	(0200,33) 50803 00	(10092,00) 54877 50
27 (12241,45) (13131,01) (0301,20) (13076,23) 57386.67 57386,67 65763,00 51931,38 (18214,58) (19431,52) (12629,33) (16991,91) Ano de 71370.62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)	26	(122/11/0)	(13131 01)	(8581 20)	(15879 22)
27 37300.07 37300,07 3370,02 31931,36 Ano de 71370.62 71370,62 72628,00 59292,20 calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701,53) (34609,17) (33170,77) (64195,42)		(12241,49) 57386 67	57386.67	(0001,20) 65763.00	(10070,20) 51031 38
Ano de calendário (13431,32) (12029,33) (10991,91) Total 71370.62 71370,62 72628,00 59292,20 (14994,13) (7400,98) (4371,38) (8833,79) (32701,53) (34609,17) (33170,77) (64195,42)	27	(1821/ 58)	(10431 52)	(12620 33)	(16001 01)
calendário (7143,80) (7400,98) (4371,38) (8833,79) Total (32701 53) (34609 17) (33170 77) (64195 42)	Ano do	(10214,00) 71370 60	71270 62	72628,337	50202 20
Total (7430,30) (7400,30) (4371,30) (6033,79) (32701,53) (34609,17) (33170,77) (64195,42)	calendária	(71/2 20)	(7400 08)	(12020,00	(8833 70)
Total (32701 53) (34609 17) (33170 77) (64195 42)	calentianto	414924 13	414024 12	431000 00	829856 68
	Total	(32701 53)	(34609 17)	(33170 77)	(64195 42)

Tabela 29. Reservas estimadas do Tp3 para cada método (e raiz dos EQMs entre

parênteses)

Modelo	Ordenação	Teste		
		Teste - Lj-Box (nível)	Teste - Lj-Box (nível ²)	Est. Durbin Watson
Modelo de Regressão	Linha	81,210	19,295	2,025
		(0,000)	(0,986)	
	Coluna	49,991	31,400	1,988
		(0,048)	(0,643)	
	Diagonal 1	124,697	22,170	1,358
		(0,000)	(0,955)	
	Diagonal 2	92,096	30,691	1,382
		(0,000)	(0,676)	
Modelos em EE	M1	70,803	24,880	1,934
		(0,000)	(0,731)	
	M2	70,803	24,880	1,934
		(0,000)	(0,731)	

Tabela 30. Medidas de dependência no trapézio Tp3 para os resíduos padronizados referentes à estimação via MQG e EE sob diferentes ordenações das observações (pvalores entre parênteses).